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Abstract 1 

The Iberian Peninsula is a water-scarce region that is increasingly reliant on groundwater. Climate 2 

change is expected to exacerbate this situation due to projected irregular precipitation patterns and 3 

frequent droughts. Here, we utilised convolutional neural networks (CNNs) to assess the direct effect 4 

of climate change on groundwater levels, using monthly meteorological data and historical 5 

groundwater levels from 3829 wells. We considered temperature and antecedent cumulative 6 

precipitation over 3, 6, 12, 18, 24, and 36 months to account for the recharge time lag between 7 

precipitation and groundwater level changes. Based on CNN performance, 92 location-specific 8 

models were retained for further analysis, representing wells spatially distributed throughout the 9 

peninsula. The CNNs were used to assess the influence of climate change on future groundwater 10 

levels, considering an ensemble of eight combinations of general and regional climate models under 11 

the RCP4.5 and RCP8.5 scenarios. Under RCP4.5, an average annual temperature increase of 12 

1.7°C and a 5.2% decrease in annual precipitation will result in approximately 15% of wells 13 

experiencing > 1-m decline between the reference period [1986-2005] and the long-term period 14 

[2080-2100]. Under RCP8.5, with a 3.8°C increase in temperature and a 20.2% decrease in annual 15 

precipitation between the same time periods, 40% of wells are expected to experience a water level 16 

drop of > 1 m. Notably, for 72% of the wells, temperature is the main driver, implying that evaporation 17 

has a greater impact on groundwater levels. Effective management strategies should be 18 

implemented to limit overexploitation of groundwater reserves and improve resilience to future 19 

climate changes. 20 

Keywords 21 

water table depth, groundwater management, water scarcity, Mediterranean, groundwater 22 

sustainability, convolutional neural networks  23 

 24 

Highlights 25 

● Data-driven assessment of climate change on groundwater in the Iberian Peninsula 26 
● Deep learning (CNN) was used to create site-specific groundwater models 27 
● Evaporation has a major influence on shallow groundwater levels 28 
● Resilient groundwater management essential to mitigate climate change impacts 29 

1. Introduction  30 

Groundwater accounts for 99% of the planet's total liquid fresh water, serving as a strategic resource 31 

for multiple sectors, including drinking water, agriculture, and ecosystem services. Groundwater is 32 

the main source of fresh water for more than two billion people worldwide (Adams et al., 2022; Alley 33 

et al., 2002; Gleeson et al., 2012), making up more than 20% of global water usage and 43% of 34 

irrigation water (Earman and Dettinger, 2011; Zektser and Everett, 2004). With continued growth of 35 

the global population and projected changing climate, it is anticipated that groundwater’s contribution 36 

will rise as surface water resources become less dependable (Adams et al., 2022; Burchi and 37 

Mechlem, 2005; UN World Water Development Report., 2020)). 38 

In the Iberian Peninsula, groundwater plays a vital role in supporting domestic and agricultural 39 

needs. Spain relies on an estimated 131 m³ of annual per capita extraction, with 30 m³ used for 40 

domestic purposes and 94 m³ for irrigation, while Portugal exhibits one of the highest global 41 

extraction rates at 474 m³ per capita, including 33 m³ for domestic use and over 420 m³ for irrigation 42 

(Margat and Gun, 2013). Groundwater has sustained essential water supplies, such as Porto's 43 

Paranhos spring system, in use since 1120 AD (Chaminé et al., 2010). The region's agri-food sector 44 
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is critical to Europe’s food security, with exports of olive oil, wine, and fresh products valued at €15 45 

billion in 2022 (Eurostat and Cook, 2024; Moral-Pajares et al., 2024). These factors underscore the 46 

need for sustainable groundwater management amidst growing environmental challenges. 47 

The hydrogeological conditions of the Iberian Peninsula are shaped by its diverse geological 48 

formations, variable climate, and historical fluctuations in precipitation and temperature. 49 

Groundwater is a vital resource for ecosystems, agriculture, and domestic supply in the region, with 50 

aquifers playing a crucial role in storing and regulating water. The peninsula features both shallow 51 

and deep aquifers, with shallow systems averaging 36 m in depth, making them particularly 52 

vulnerable to climatic variability. Deeper aquifers, often semi-confined, provide more stable 53 

freshwater reserves, capable of buffering against short-term climatic changes. However, they are 54 

susceptible to long-term anthropogenic and climatic pressures (Diodato et al., 2024; Estrela et al., 55 

2024). 56 

The geological diversity of the peninsula includes porous, fractured, and karstic aquifer systems, 57 

each with distinct hydrogeological properties. In regions like Castile and León, the aquifer system 58 

consists of an unconfined upper layer and a semi-confined deeper layer, forming a complex 3D 59 

network. Recharge in these systems primarily occurs through meteoric infiltration, with rivers such 60 

as the Duero acting as major discharge outlets. Karstic aquifers, characterized by high permeability 61 

due to dissolution features in limestone and dolomitic formations, are critical for water storage and 62 

flow. These systems are particularly sensitive to variations in precipitation and anthropogenic 63 

extraction, which influence their recharge and discharge dynamics. Extensive groundwater pumping 64 

in many areas, such as Castile and León, has led to significant declines in water table levels, 65 

highlighting the challenges of balancing extraction with natural replenishment (Diodato et al., 2024; 66 

García-Valdecasas Ojeda et al., 2021). 67 

The interplay of geological diversity, shallow aquifer vulnerability, and climatic variability 68 

underscores the complexity of groundwater dynamics in the Iberian Peninsula. Sustainable 69 

management efforts must account for the unique geological characteristics of these aquifers, along 70 

with their sensitivity to climatic influences, to ensure the resilience of water systems that are critical 71 

for the region’s ecosystems and human livelihoods (Estrela et al., 2024; García-Valdecasas Ojeda 72 

et al., 2021).Recent studies highlighted the increasing stress on groundwater resources caused by 73 

climate change, heatwaves, and human activity, affecting both groundwater quantity and quality. 74 

Due to climate change and water scarcity, Catalonia in the western Mediterranean region of the 75 

Iberian Peninsula is experiencing a severe drought and increased groundwater nitrate pollution 76 

(Mas-Pla and Menció, 2019). Groundwater in the peninsula is also important for various ecosystems, 77 

particularly in the Mediterranean area. Groundwater uptake predominates during the dry summer 78 

months, impacting different groundwater-dependent ecosystems. For instance, in Quercus suber 79 

forests, which cover substantial portions of the Iberian Peninsula, groundwater accounts for 73.2% 80 

of tree transpiration (Pinto et al., 2014). As climatic variability rises and water quality deteriorates, 81 

the need for sustainable water management grows, especially in semi-dry climate regions like the 82 

Iberian Peninsula (Grantham et al., 2008). 83 

The southeastern corner of the Iberian Peninsula is expected to be one of the regions most affected 84 

by climate change in Europe (Carvalho et al., 2021). Model predictions indicate that the 85 

Mediterranean region, and particularly the Iberian Peninsula, will receive less precipitation while 86 

temperature distributions are expected to shift toward higher mean (+2°C) and maximum (+4°C) 87 

temperatures by the end of the century under the RCP8.5 scenario, along with increased drought 88 

frequency and duration (Pereira et al., 2021). Moreover, future climate change is predicted to worsen 89 

water stress and it’s severity in the Mediterranean area (Strada et al., 2023). Climate change in 90 

Portugal is expected to significantly affect temperature and precipitation patterns, potentially 91 

severely impacting crops such as vineyards (Wunderlich et al., 2023). 92 



3 
 

Machine learning (ML) is a powerful prediction tool for modelling groundwater level fluctuations 93 

because of its ability to handle complex and nonlinear relationships between explanatory variables 94 

and groundwater changes. Furthermore, it can be used to assess the uncertainty of model outputs 95 

(Ahmadi et al., 2022; Seifi et al., 2020). In a study comparing ML and numerical models for simulating 96 

groundwater dynamics, it was shown that multilayer perceptron (MLP), radial basis function (RBF), 97 

and support vector machine (SVM) methods can perform as well or better than physically based 98 

numerical models, such as MODFLOW (Chen et al., 2020). Also, artificial neural networks (ANN) 99 

are effective tools for forecasting changes in groundwater levels (Guzman et al., 2017; Jeong and 100 

Park, 2019; Müller et al., 2021; Wunsch et al., 2021; Zhang et al., 2020). Wunsch et al. (2021) 101 

recently showed that 1D-convolutional neural networks (CNNs) outperform long short-term memory 102 

(LSTM) models in terms of accuracy and calculation speed for simulating groundwater levels. CNNs 103 

exhibited superior adaptability and consistency compared to nonlinear autoregressive models with 104 

exogenous inputs (NARX) models. Because of their demonstrated precision, efficiency, reliability, 105 

and versatility in handling diverse temporal patterns, CNNs were selected for the present study. 106 

They excel at capturing both short-term fluctuations and long-term seasonal trends, making them 107 

well-suited to model the direct effects of climatic factors on groundwater systems. Their ability to 108 

efficiently process large datasets, identify complex hierarchical features, and adapt to various 109 

temporal scales enhances their reliability for tasks involving spatially and temporally distributed data 110 

across the Iberian Peninsula. Additionally, CNNs’ computational efficiency, stemming from their 111 

weight-sharing mechanism, minimizes overfitting risks while optimizing resource usage on modern 112 

GPUs, further justifying their selection for this extensive regional-scale analysis. 113 

Before investigating the indirect effects caused by regional and local human activities, which 114 

certainly have a significant impact, it is crucial to first focus on the broader climate-driven influences. 115 

Only the wells that appear to be unaffected by human activities will be considered as the projections 116 

rely solely on meteorological variables. This approach is based on the expectation that future 117 

changes in temperature and precipitation will be primary drivers of groundwater behaviour. For 118 

example, on the Iberian Peninsula, significant fluctuations in precipitation and temperature have 119 

already influenced groundwater recharge and availability (Diodato et al., 2024), highlighting the 120 

importance of understanding climate-driven impacts for sustainable groundwater management. In 121 

this study, we investigate the impact of climate change on groundwater levels, using temperature 122 

and cumulative precipitation as explanatory variables, referred to hereafter as the direct impact of 123 

climate change. The direct impact of climate change on groundwater is evident through various 124 

mechanisms, such as increased temperatures leading to higher evaporation rates, reducing surface 125 

water availability, and subsequently decreasing groundwater recharge (Cuthbert et al., 2019). 126 

Climate change, characterized by rising temperatures, altered precipitation patterns, and increased 127 

frequency of extreme weather events, has a profound impact on the global hydrological cycle. 128 

Changes in precipitation patterns, with some areas experiencing prolonged droughts and others 129 

intense rainfall, can disrupt the natural replenishment of aquifers (Neidhardt and Shao, 2023). This 130 

disruption is particularly critical in regions like the Mediterranean, where future warming is expected 131 

to exceed global rates, significantly affecting water availability (Cramer et al., 2018).  132 

Below, we use the CNN deep learning methodology of Wunsch et al. (2022) to forecast groundwater 133 

level changes. Our focus on understanding climate change impacts, so the models are driven by 134 

gridded meteorological data. We apply it at various locations within the Iberian Peninsula using an 135 

extensive database comprising 3829 wells with monitoring durations from 4 to 596 months. This 136 

approach allows us to evaluate how groundwater levels may evolve under different representative 137 

concentration pathway (RCP) scenarios. The specific objectives are to (i) evaluate the future direct 138 

climate change impact (without considering the local human activities) on groundwater under the 139 

RCP4.5 and 8.5 scenarios for three time periods: near- [2021-2040], mid- [2041-2060] and long-140 

term [2081-2100], (ii) explore the best explanatory variables including temperature and cumulative 141 
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precipitation computed for different antecedent time lags (3, 6, 9, 12, 18, 24, and 36 months), and 142 

(iii) identify the groundwater systems that are mainly controlled by climate forcing. 143 

2. Materials and Methods 144 

2.1. Data 145 

We used a gridded dataset of daily precipitation and temperature over Iberia (Herrera et al., 2019, 146 

2016) for historical climate data. Precipitation is considered a proxy for groundwater recharge, while 147 

temperature is a proxy for evapotranspiration. Furthermore, temperature has a distinct yearly cycle, 148 

which supplies the models with vital information on seasonality. This dataset (referred to as 149 

Iberia01), developed using data from 3156 monitoring stations, consists of daily precipitation and 150 

temperature data at a 0.1° regular resolution across the Iberian Peninsula from 1971 to 2015. The 151 

meteorological influence at each well location was determined as the average precipitation and 152 

temperature values from the nine surrounding grid cells of the Iberia01 dataset to reduce the 153 

uncertainty. Other weighting schemes were assessed but were found to have little influence on the 154 

results. 155 

For historical groundwater data in Spain, we used data provided by the Ministry of Ecological 156 

Transition and Demographic Challenge, which hosts a piezometric monitoring network 157 

(https://sig.mapama.gob.es/redes-seguimiento/, last accessed 11 November 2024, data were 158 

downloaded with a web scraping code in early 2020). In Portugal, groundwater data is managed in 159 

a national hydrologic information system (https://snirh.apambiente.pt/, last accessed 11 November 160 

2024). The data consist of records with variable durations, from 4 to 596 months and frequencies, 161 

from monthly to bimonthly water table depth (WTD) measurements in both country databases as 162 

meters below ground level (m b.g.l.). For consistency, data were downloaded in early 2020. The 163 

analysed data comprised 940 wells in Portugal and 2889 wells in Spain, giving a total of 3829 wells. 164 

Figure 1 depicts the distribution of wells over the Iberian Peninsula along with their associated 165 

geological formations, with the Köppen climate classification (Cui et al., 2021) shown in the 166 

background. 167 

https://sig.mapama.gob.es/redes-seguimiento/
https://snirh.apambiente.pt/
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 168 
Figure 1. Spatial distribution and geological formation of the 3829 groundwater level wells in the Iberian Peninsula. 169 

2.2. Climate projections 170 

For climate projections of daily precipitation and temperature, we utilised an ensemble of eight 171 

combinations of general circulation models (GCMs) and regional climate models (RCMs) from the 172 

Euro-Cordex initiative (Jacob et al., 2012), as delineated in Table 1. The spatial resolution of the 173 

climate model data is 0.1° (EUR-11 grid), closely resembling that of the historical dataset (Iberia01). 174 

These climate projections cover the period from 1950/1970 to 2100, comprising a historical 175 

simulation until 2005 and the model predictions from 2006 to 2100. 176 

Precipitation and temperature climate projections for each GCM/RCM combination were initially 177 

interpolated onto the Iberia01 grid and then subjected to bias correction, using a distribution mapping 178 

approach (D’Oria et al., 2017; Teutschbein and Seibert, 2012), based on the observed data from 179 

the period 1976-2005 (further details are given in Supplementary Material, Bias correction). The 180 

bias-corrected climate projections for the period 1976-2100 were obtained for RCP4.5 and 8.5. 181 
Table 1. Ensemble of eight Euro-Cordex combinations of general circulation models (GCMs) and regional climate 182 
models (RCMs) (M1-8) used for climate projections. 183 

Abbreviation  GCM-RCM combinations 

M1 
CNRM_CERFACS_CNRM_CM5_CCLM4_8_1

7 

M2 DMI_HIRHAM5_NorESM1-M 

M3 ICHEC_EC_EARTH_HIRHAM5 

M4 IPSL-INERIS_WRF381P_IPSL-CM5A-MR 

M5 KNMI_CNRM-CM5 

M6 MPI_M_MPI_ESM_LR_RCA4 

M7 ICHEC-EC-EARTH_RACMO22E 

M8 IPSL_IPSL_CM5A_MR_RCA4 
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2.3. Data selection and outlier removal  184 

The raw WTD data consisted of a total of 3829 time series. Inspection of the raw data revealed that 185 

21 wells lacked valid measurements and were eliminated from the database. For the purpose of 186 

training the deep learning models, the datasets were first screened based on two criteria: the total 187 

number of measurements in each time series and the percentage of missing measurements. 188 

Specifically, we only included datasets with less than 50% missing data and at least 120 valid 189 

measurements, which yielded 1205 wells for analysis. This technique ensured that the models were 190 

trained on the most extensive datasets available. 191 

Outlier detection approaches are classified into two types: test discordance methods and labelling 192 

methods (Muthukrishnan and Poonkuzhali, 2017). Most outlier detection systems consider extreme 193 

values to be outliers. In this work, outliers were identified using the generalised extreme studentized 194 

deviate (ESD) test (Rosner, 1983) and excluded from model training. Among the most common 195 

outlier removal methodologies, the ESD method was used because it only needs as input an upper 196 

bound for the suspected number of outliers (Heckert et al., 2002). We chose the value of 10 for the 197 

maximum number of outliers for each time series, as suggested in the guidance for the PyAstronomy 198 

(Czesla et al., 2019) Python package. 199 

2.4. Model  200 

We expanded on Wunsch et al. (2022), who only used temperature and precipitation as explanatory 201 

variables, by incorporating accumulated precipitation over various time periods (3, 6, 12, 18, 24, and 202 

36 months) as additional variables. The convolutional neural networks (CNNs) used include layers 203 

designed to optimize model performance and prevent overfitting. We applied techniques like Monte-204 

Carlo dropout, gradient clipping, and early stopping to improve model accuracy and robustness. 205 

Bayesian optimization was used to fine-tune the model’s hyperparameters, and the entire process 206 

was built using Python and several key machine-learning libraries such as TensorFlow, Keras, and 207 

Scikit-Learn (further model description is given in Supplementary Material, Models setup). 208 

2.5. Training and hyperparameter optimization 209 

After finishing the pre-processing, we optimized key hyperparameters such as the number of filters, 210 

batch size, sequence length, and dense layer size. To do this, we used monthly WTD data from 211 

1974 to 2015 and weather data, and split the time series into four sets: training, validation, 212 

optimization, and testing. The test period was always a four-year stretch, and adjustments were 213 

made when the data series ended early. The first 80% of the data before 2012 was used for training, 214 

and the rest was split evenly for validation and optimization during hyperparameter tuning. (Figure 215 

2a) (Wunsch et al., 2022). 216 

A maximum of 150 epochs was set for optimisation, stopping after 15 steps without improvement, 217 

provided at least 60 iterations had been performed. The data were scaled in the range [-1,1] and 10 218 

different CNNs were built with randomly initialised weights. For each of the ten CNNs, we used 219 

Monte-Carlo dropout to estimate the model uncertainty from 100 realisations. The 95% confidence 220 

interval was then calculated using 1.96 times the standard deviation of the resultant distribution for 221 

each time step. To assess the model’s accuracy, we computed various performance metrics, 222 

including the Nash-Sutcliffe efficiency (NSE), squared Pearson r (R2), absolute and relative root 223 

mean squared error (RMSE, rRMSE), and absolute and relative Bias (Bias, rBias). The 224 

hyperparameters and test results are shown in Figure 2c for the well in the location indicated in 225 

Figure 2b. 226 
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 227 
Figure 2. a) Time series splitting scheme for training (80%), validation (10%), optimization (10%), and testing (last four 228 
year) periods. b) Approximate location of the well in the region. c) Hyperparameters and model's performance using 229 
several statistical metrics for a random well (ID 05.51.104) during the test period [2012-2016]. 230 

2.6. Filtering models based on test results 231 

CNNs were constructed for 1205 wells and filtered based on R2 and NSE. Aimed at retaining those 232 

wells that could really be explained with temperature and precipitation, only those CNNs with NSE 233 

≥ 0 and R2 ≥ 0.5 were retained, resulting in a final selection of 170 wells. Figure S1 234 

(Supplementary Material) presents a scatter plot showing the NSE and R2 values for all locations, 235 

highlighting the selected ones. 236 

2.7. Model evaluation 237 

A plausibility test of the 170 CNN models was performed by analysing their behaviour for explanatory 238 

variable values outside the range of the training data. We retrained all models with hyperparameters 239 

from Section 2.6 and data until 2016. Data time series were divided into two parts: 80% for training 240 

and 20% for early stopping. 241 

The retrained models were used to simulate well evolution assuming four times the precipitation and 242 

a uniform 5°C temperature rise with respect to the historical data in the training set (Duan et al., 243 

2020) (Figure 3a). As expected, higher precipitation and temperatures produce larger oscillations 244 

in WTD. SHapley Additive exPlanations (SHAP) were used to identify how each explanatory variable 245 

contributes to the model’s prediction for a specific instance. Figure 3b shows a SHAP summary plot 246 

for one of the wells (typical results shown). Each dot corresponds to one of the times over which the 247 

prediction is performed. A positive SHAP value indicates that a given feature drives the prediction 248 

above its average, and a negative one, the contrary. The larger the SHAP magnitude, the more 249 

important the feature is to explain the model prediction.  250 

Thus, the results in Figure 3b show that elevated temperatures, which tend to induce larger 251 

evapotranspiration, result in a rise in WTD (i.e., depletion of groundwater levels), whereas high 252 

precipitation, which produces more recharge, drives WTD to decrease (groundwater recharge). The 253 

SHAP values are consistent with known aquifer responses to changes in meteorological forcing. 254 

In this phase, we assessed all 170 models using results from extreme conditions to ensure the 255 

stability of the models and analysed SHAP summary plots to confirm that the direction of the 256 

explanatory variables aligned with physical understanding of the groundwater system. Additionally, 257 

we evaluated the models based on rBias and rRMSE, ensuring that both metrics fell within a ±25% 258 

range. Models that did not meet these criteria were eliminated. Following this comprehensive 259 

evaluation, 92 wells were selected for further analysis. 260 
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 261 
Figure 3. a) Plausibility Check under extreme conditions for a typical well (ID 07.26.001). Model output under an artificial 262 
extreme climate scenario in the past (1974 - 2015) along with the location of the well. b) SHAP summary plot for well (ID 263 
331.89) and its approximate location. [P1, P3, ..., P36] are accumulated precipitation values for [1, 3, ..., 36] months and 264 
T is the average monthly temperature. 265 

2.8. Model selection 266 

To analyse the impact of climate change on groundwater in the Iberian Peninsula, we focus on the 267 

92 best-performing CNN models. These models are those for which the CNNs were able to predict 268 

groundwater fluctuations in response to temperature and precipitation data; this behaviour could be 269 

interpreted as that the 92 retained CNN wells were mainly controlled by climate variables. The 270 

Supplementary Material (Figures S2-S93) contains the results of the hyperparameter optimization 271 

test, extreme conditions, and SHAP summary plots for all 92 wells.  272 

At the next step, we forecasted the WTD for each well using the eight Euro-Cordex models (M1-M8) 273 

in Table 1 for two distinct climate change scenarios—RCP4.5 as the best-case scenario and 274 

RCP8.5 as the worst-case. This yields a total of 16 projection outcomes for each well (eight for each 275 

RCP scenario). 276 

2.9. Evaluation of results 277 

Following the projections for the 92 retained models, we  examined changes in WTD along with a 278 

detailed analysis of their depths and historical trends. The changes were calculated using the 279 

following process: For each climate scenario, the annual median values from the eight models were 280 

first calculated. The average of these median values for both the 20-year reference period and the 281 

20-year future projection period were computed, and the difference between these two averages 282 

represents the reported change. The equation used was: 283 

∆𝑊𝑇𝐷 =
1

20
∑ (𝑚𝑒𝑑(𝑊𝑇𝐷𝑦,𝑀1, … ,𝑊𝑇𝐷𝑦,𝑀8))

𝑓𝑢𝑡

20

𝑦=1

−
1

20
∑ (𝑚𝑒𝑑(𝑊𝑇𝐷𝑦,𝑀1, … ,𝑊𝑇𝐷𝑦,𝑀8))

𝑟𝑒𝑓

20

𝑦=1

 284 
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 285 

where ∆𝑊𝑇𝐷 is the change displayed in the figure, 𝑚𝑒𝑑(𝑊𝑇𝐷𝑦,𝑀1, … ,𝑊𝑇𝐷𝑦,𝑀8) denotes the median 286 

WTD from the eight different models (M1-M8) for year y, and the summation refers to the averaging 287 

over the 20-year time period considered (ref: refers to the reference period [1986-2005], while fut: 288 

refers to the future periods [2021-2040], [2041-2060] or [2081-2100] which corresponds to short-, 289 

mid- and long-term, respectively). 290 

Additionally, we examined the significance of aquifer depth on the climate change impact. We used 291 

the maximum historical water table depth for each well as an indicator to classify them considering 292 

a depth threshold of 50 m for shallow aquifers,  293 

As previously stated, our models focus solely on climatic data, specifically the direct impact of 294 

climate change on groundwater levels, with precipitation and temperature being the primary direct 295 

drivers (Taylor et al., 2012; Wu et al., 2020). We used the Mann-Kendall test considering 5% 296 

significance level (P < 0.05) to evaluate trends in the historical groundwater level data for the same 297 

period as in model training. We performed the modified Mann-Kendall test with the Trend-Free Pre-298 

Whitening method proposed by Yue and Wang (2002) to mitigate the effects of serial correlation. 299 

3. Results 300 

Analysis of yearly average temperature and precipitation data for the reference period [1986-2005] 301 

and the long-term period [2081-2100] reveals notable changes under both the RCP4.5 and RCP8.5 302 

scenarios. The yearly average temperature under RCP4.5 is projected to increase from 15.0°C 303 

during the reference period to 16.7°C in the long-term period, a rise of 1.7°C. Under the more 304 

extreme RCP8.5 scenario, the yearly average temperature is projected to increase by 3.9°C from 305 

15.0°C to 18.9°C (Figure 4a). 306 

The yearly average precipitation is projected to decline for both scenarios. Under RCP4.5, the 307 

annual precipitation decreases from 624 mm in the reference period to 592 mm in the long-term 308 

period, with an absolute decrease of 32.8 mm, equivalent to a 5.2% reduction. The RCP8.5 scenario 309 

exhibits a more pronounced decline, with the annual precipitation decreasing from 624 mm to 498 310 

mm, representing an absolute decrease of 126 mm, or 20.2% (Figure 4b). 311 
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 312 
Figure 4. a) Median line and uncertainty band of temperature projection data of 92 well locations and eight ensemble 313 
climate projection models under the RCP 4.5 and 8.5 scenarios. b) The same results for annual precipitation. 314 

Figure 5a presents a heatmap of the projected WTD for a typical well (ID: 594.34) from 2020 to 315 

2100. This figure compares predictions from eight different climate models under two RCP 316 

scenarios. The top row corresponds to the RCP4.5 scenario, and the various model predictions 317 

while the lower row corresponds to the RCP8.5 scenario. Under the RCP4.5 it is observed that most 318 

models indicate a relatively stable condition by not showing intense red tones in the long-term period 319 

[2080-2100] in water levels, except model M2 that shows a more extreme drop in groundwater levels 320 

towards the end of the century. The difference in model simulations (M1-M8) underscores the 321 

uncertainty level associated with climate change projection. 322 
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 323 
Figure 5. a) Heatmaps of water table depth (WTD) for a typical well (ID 594.34) under different climate scenarios (see 324 
Table 1). The top row represents RCP4.5, and the second row represents RCP8.5. The heatmaps cover the simulation 325 
period from 2020 to 2100 for each climate model projection within the respective scenario. b) Projections of WTD until 326 
2100, showing the 5-y moving average, 25th-75th percentile range, and min-max range of the median values from eight 327 
models for both RCP4.5 and RCP8.5. The approximate location of the well is indicated in the map next to the legend. 328 

Unsurprisingly, under RCP8.5 (second row in Figure 5a), the influence of climate change on 329 

groundwater levels is more pronounced than for RCP4.5. The deviation between the RCP4.5 and 330 

RCP8.5 predictions begin in the mid-term period [2041-2060] and intensifies as the long-term period 331 

[2081-2100] approaches. It is evident that the M2 model shows the greatest decline in groundwater 332 

levels compared to other models, which is also observed for RCP4.5 scenario in the long run. As 333 

might be expected, all models exhibit the most significant impact during the long-term period [2081-334 
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2100]. To assess the uncertainty associated with future scenarios and model predictions, Figure 5b 335 

presents the median, 25th-75th percentile interval, and min-max range obtained from the ensemble 336 

of climate models for both scenarios. To smooth the results, we computed all these statistics based 337 

on a 5-y moving average of the predictions. Figure 5b indicates that, despite variations, the medians 338 

of the two scenarios are comparable and relatively stable between 2006 and 2060, after which they 339 

begin to diverge from each other with the largest differences toward the end of the century. In the 340 

Supplementary Material (Figures S94–S185), heatmaps and predictions for all 92 wells are 341 

provided. 342 

Figure 6 illustrates the magnitude of the predicted changes during each of the three analysed 343 

periods under the two RCP scenarios. The results show that under the RCP8.5 scenario, changes 344 

are more pronounced than under RCP4.5. For the RCP8.5 scenario, the magnitude of the WTD 345 

changes tends to escalate as the century progresses, with the most significant changes occurring 346 

in the long-term period. On the other hand, for the RCP4.5 scenario, there is no clear trend, and for 347 

some wells, the long-term changes are even smaller than the mid- and short-term ones. 348 

Each well in Figure 6 is represented by a set of three bars, each indicating the absolute changes in 349 

WTD from the reference period [1986-2005] to the respective future time periods. The bars 350 

correspond to the short-term [2021-2040], mid-term [2041-2060], and long-term [2081-2100] 351 

periods. 352 

 353 
Figure 6. Bar charts of WTD changes under RCP4.5 (a) and RCP8.5 (b) during the near-term [2021-2040], mid-term 354 
[2041-2060] and long-term [2081-2100] periods compared to the reference period [1986-2005]. 355 

Results in Figure 7a, b show changes only in the long-term period under both climate scenarios. 356 

Under the RCP4.5 scenario, 10.9% of the wells show a rise between 0 and 2 m (the highest rise is 357 

1.5 m for well 09.821.002, see the location in the figure), while the rest of the wells display a decline. 358 

This decline is between 0 and 1 m for 73.9% of the wells, 15.2% of the wells show drops > 1 m with 359 

the highest predicted decline being 3.2 m for well 09.104.005. In comparison, under the RCP8.5 360 

scenario, a smaller fraction of wells (5.0%) shows a rise (the highest rise is 0.7 m for well 361 

09.106.004), while the rest display a decline. This decline is between 0 and 1 m for 55.0% of the 362 

wells, 40% shows drop > 1 m with the highest predicted decline being 18.8 m for well 09.801.003. 363 

The histograms of the changes are shown in Figure 7c for both scenarios. The result clearly 364 

illustrates that the range of WTD changes under RCP4.5 is narrower than that for RCP8.5 and that 365 

the median for RCP4.5 is smaller than for RCP8.5, resulting in a more skewed distribution for 366 

RCP8.5 than for RCP4.5. 367 

 368 
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 369 
Figure 7. WTD changes in under RCP4.5 (a) and 8.5 (b) during the long-term period [2081-2100] compared to the 370 
reference period [1986-2005]. c) Comparison between RCP8.5 and RCP4.5 histogram of changes in both scenarios. 371 

As described in the methodology section, eight explanatory variables: temperature and cumulative 372 

precipitation over periods ranging from 1 to 36 months. Utilising SHAP values with each CNN model, 373 

we identified the dominant driver of groundwater level changes. In more than 70% of the models, 374 

temperature is the most influential driver, implying that evaporation has a greater impact on 375 

groundwater levels than precipitation. 376 

The significance of aquifer depth was further examined in relation to climate change impacts. Among 377 

the 92 studied wells, 20 have depths greater than 50 m, with 7 of these exceeding 100 m. The 378 

average depth across all wells is 36 m, and the deepest water table reaches 290 m, based on 379 

historical records. This depth distribution may modulate how temperature and precipitation influence 380 

groundwater levels across varying depths (Figure 8a, b). Notably, almost 90% of the wells exhibited 381 

no trend during the training period considered (Figure 8c, d).  382 
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 383 
Figure 8. a) Classification of 92 selected wells based on the maximum water table depth (WTD) during the historical 384 
period, with b) the stacked bar chart representing the dominant explanatory variable (temperature) based on SHAP value 385 
results. c) Modified Mann-Kendall test results based on the yearly historical data used for the training period. d) Bar chart 386 
showing the trend analysis results. 387 

4. Discussion 388 

Despite historically stable or increasing groundwater levels over recent decades (Chávez García 389 

Silva et al., 2024; Scanlon et al., 2023), projections from this study under the RCP4.5 and RCP8.5 390 

climate scenarios suggest significant potential declines. These scenarios underscore the increased 391 

vulnerability of shallow groundwater to the impacts of climate change in the Iberian Peninsula 392 

(Barredo et al., 2018). 393 

4.1. Importance of small changes 394 

Although a groundwater decline of 1 m might not seem significant in a period of around 90 y, it is 395 

important to note that the models only consider the direct impact of climate change on groundwater 396 

levels. Climate change can directly impact groundwater levels through changes in precipitation 397 

patterns and intensity (Barredo et al., 2018), and a decrease in precipitation can lead to reduced 398 

groundwater recharge, resulting in lower groundwater levels. Similarly, lower levels are likely for 399 

temperature increases due to greater evapotranspiration and reduced soil moisture (Hunkeler et al., 400 

2022; Odwori, 2022). Climate change can also indirectly affect groundwater levels through changes 401 

in land use and domestic as well as crop/vegetation water demand. As the climate changes, 402 

agricultural practices and water usage patterns may shift, potentially resulting in increased 403 

groundwater extraction for irrigation. This overexploitation of groundwater resources can lead to 404 

significant additional declines in groundwater levels (Davamani et al., 2024; Khoso et al., 2024). 405 

Changes in groundwater levels can greatly affect the ecological services provided by groundwater 406 

and its sustainable management. This is particularly true for ecosystems that rely on groundwater 407 

during low-flow conditions when it becomes scarce. Changes in groundwater depth can impact soil 408 

properties, which can subsequently alter surface vegetation characteristics (Dong et al., 2023; 409 
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Scanlon et al., 2023). In the Iberian Peninsula, groundwater depletion can significantly affect soil 410 

moisture dynamics and evapotranspiration fluxes, particularly in shallow water table regions where 411 

groundwater is hydraulically connected to the upper soil through upward capillary fluxes (Llamas et 412 

al., 2015). Although we consider only the direct impact of climate change on groundwater levels, it 413 

is important to recall that foreseen circumstances such as lengthy droughts (Gómez-Martínez et al., 414 

2021) would potentially lead to over-pumping of groundwater to cope with water stress resulting in 415 

further drop in water levels (Taylor et al., 2012). In summary, the changes we forecast are the 416 

minimum ones, and they will be worsened by other actions induced by climate change. 417 

4.2. Similar previous studies 418 

Several studies have investigated the impact of climate change on groundwater levels within specific 419 

aquifers in the Iberian Peninsula, whereas our study examines the entire region. For instance, 420 

Samper et al. (2022) used a semi-distributed water balance model to assess changes in 421 

groundwater recharge in the municipality of Abegondo in Galicia, Spain (annotated in Figure 7b), 422 

projecting a reduction in recharge by 6-10% by the end of the century. Similarly, Costa et al. (2021) 423 

evaluated the Campina de Faro aquifer in southern Portugal using a 3D groundwater flow and nitrate 424 

transport model (FEFLOW), finding that climate change, along with agricultural practices, could lead 425 

to groundwater depletion and potential salinization. In another study, Moutahir et al. (2017) utilized 426 

the VISUAL-BALAN model in a Mediterranean region of southeastern Spain, forecasting decreases 427 

in groundwater recharge and streamflow, particularly under RCP8.5. Furthermore, Pisani et al. 428 

(2019) examined the Serra da Estrela region in central Portugal, predicting reductions in aquifer 429 

recharge and streamflow using water balance models. 430 

These studies, although conducted on an aquifer scale, generally align with our findings, confirming 431 

that climate change significantly influences groundwater levels. However, these studies employed 432 

process-based models that require the incorporation of a large amount of data including: 433 

groundwater recharge, soil properties such as hydraulic conductivity, land use, agricultural 434 

practices, and abstraction rates, alongside climate variables like precipitation and temperature. The 435 

present study, in contrast, employs deep learning (CNN models) on a regional scale, using 436 

temperature and accumulated precipitation as the only explanatory variables to isolate the direct 437 

impact of climate change on groundwater levels. While aquifer-scale studies provide valuable 438 

localized insights and consider both climatic and anthropogenic factors, our approach offers a 439 

simpler data-driven approach that captures the spatial variability and climate-driven trends across 440 

the entire Iberian Peninsula. 441 

Among the explanatory variables considered, temperature, which strongly influences 442 

evapotranspiration, has a greater impact than precipitation, confirming previous findings (Wunsch 443 

et al., 2022). Furthermore, we used cumulative precipitation data as explanatory variables to capture 444 

the time lag between precipitation events and groundwater response. While temperature was the 445 

dominant factor influencing groundwater levels, P36 (cumulative precipitation over 36 months) 446 

emerged as the main driver for 8.7% of the wells. This was followed by P6, P18, P12, P24, and P3, 447 

as shown in Figures 8a, b. As expected, P1 (precipitation over one month) was not identified as the 448 

main driver for any of the wells, indicating that long-term cumulative precipitation has a stronger 449 

influence on groundwater levels than short-term precipitation. 450 

These results agree with numerous studies that emphasize the importance of accumulated long-451 

term precipitation towards changes in groundwater levels. For instance, Jan et al. (2007) showed 452 

that groundwater level variations follow short-run and long-run cumulative rainfall, as evidenced in 453 

their work on the Donher well station in Central Taiwan. They found that the cumulated rainfall over 454 

10 d was more influential in groundwater levels than shorter periods. They attributed this to the 455 

typically delayed response of groundwater to rainfall, wherein past rainfall contributes much to the 456 

current water table conditions. By using an exponential-decay weighting technique to determine 457 
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effective cumulative rainfall, they showed that older precipitation events continue to affect 458 

groundwater levels, although their influence becomes weaker over time (Jan et al., 2007). 459 

Further, the Wisconsin study (Smail et al., 2019) trend of CDM60 (cumulative deviation from 5-y 460 

moving mean precipitation) indicated that groundwater levels are more correlated with long-term 461 

than short-term precipitation oscillations. This further reinforces the concept that groundwater 462 

systems take successive periods of surplus precipitation to alter their levels drastically. Thus, it is 463 

expected that P1 lacks influence, while more seasonable measures like P36 are responsible for 464 

groundwater responses to significant precipitation. 465 

The deep learning algorithm identifies the relationship between input parameters, precipitation and 466 

temperature, and the output parameter, groundwater level. The 92 wells are those where 467 

groundwater levels can be described well using only these input parameters, thereby implying that 468 

the influence of external or anthropogenic pressures is minimal. As evidenced by the trend analysis, 469 

90% of the wells exhibited no trend during the training period, indicating that they are naturally in a 470 

stable condition and not under heavy stress. Consequently, we can conclude that these wells are 471 

not subject to significant anthropogenic or any other pressure (Figure 8c, d).  472 

A recent study examining groundwater level trends Chávez García Silva et al. (2024) covered the 473 

period from 1960 to 2020 across Spain, Portugal, France, and Italy, and similarly found that 68% of 474 

wells remained stable over this time, with an additional 20% showing rising levels. These findings 475 

underscore the resilience of many groundwater systems to external influences during the historical 476 

period, especially in temperate regions. However, the situation for groundwater wells in the future is 477 

projected to change significantly. While both studies highlight a period of relative stability in the past 478 

and near future, our future projections based on climate models and deep learning algorithms 479 

indicate that future conditions will likely shift towards declining groundwater levels. The anticipated 480 

reduction in precipitation and increased temperatures, which exacerbate evapotranspiration and soil 481 

moisture deficits, suggest that wells that are currently stable could experience depletion in the 482 

coming decades due to climate change. 483 

Of the 92 wells, 72 have a depth of 50 m or less, indicating that approximately 78% are in shallow 484 

aquifers (Figure 8b). This distribution suggests that shallow aquifers are more influenced by climate 485 

variability and change, responding quickly to surface climatic conditions due to shorter lag times. A 486 

recent study by Gumuła-Kawęcka et al. (2023) supports this, demonstrating that shallow aquifers in 487 

northern Poland have shown significant responses to climate change over the past 70 y. In contrast, 488 

deeper aquifers exhibit greater resilience to climate impacts and serve as more stable, long-term 489 

freshwater storage due to their reduced sensitivity to surface conditions. This finding is consistent 490 

with Zhou et al. (2022), who studied the hydrochemical background levels and threshold values of 491 

phreatic groundwater in the Greater Xi'an Region, China, underscoring the importance of 492 

understanding aquifer characteristics for effective water quality management. 493 

4.3. Challenges and perspectives 494 

The Iberian Peninsula was chosen for its relatively dense and accessible groundwater data 495 

compared to other regions, yet only a few wells were retained for further analysis. Dropped wells 496 

were excluded primarily due to inconsistencies in regional monitoring strategies, including variability 497 

in frequency, duration, and completeness of the time series. Many historical groundwater time series 498 

suffer from short durations, irregular frequencies, and a lack of uniformity, all of which impact model 499 

training quality. Additionally, wells influenced by human activities, such as irrigation and domestic 500 

use, are unsuitable for our approach, which considers climate variables exclusively as controlling 501 

factors of groundwater changes. Comprehensive information of the effects of anthropogenic activities 502 

on groundwater levels remains challenging in the region due to fragmented monitoring of key drivers 503 

(Deines et al., 2019; Leduc et al., 2017). Furthermore, including more climate forcing parameters like 504 

soil moisture, surface net solar radiation and finding a suitable proxy parameter to capture the 505 
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anthropogenic pressures on groundwater levels (such as groundwater abstraction) would also be 506 

highly beneficial. Numerous studies have utilized Earth Observation data to assess anthropogenic 507 

pressures on groundwater levels. Barron et al. (2014) used Sentinel-1 SAR data to identify 508 

groundwater-dependent vegetation. Similarly, numerous studies combined remote sensing data with 509 

hydrological and hydrogeological modelling results to capture human-induced groundwater depletion 510 

across scales (Abdelkareem et al., 2023; Döll et al., 2014; Guermazi et al., 2019). In the case of the 511 

Iberian Peninsula, similar methodologies have been applied, including the use of multispectral 512 

satellite imagery to map irrigated crops in Spain (Garrido-Rubio et al., 2018) as well as integration of 513 

global groundwater models with in situ observations for assessment of the status of groundwater 514 

resources and the impact of human activities on groundwater levels (Ben-Salem et al., 2023). 515 

Future research could explore the use of multi-well training approaches alongside training individual 516 

models for each well. Multi-well training has gained popularity in recent years due to its potential 517 

advantages, such as predicting groundwater levels in areas with insufficient historical in situ data. 518 

However, these approaches do not consistently provide better accuracy compared to single-well 519 

training methods. As an example, Chidepudi et al. (2023) and Heudorfer et al. (2024) demonstrated 520 

that while deep learning models trained on multiple wells can effectively capture broader hydrological 521 

patterns, they do not always outperform models trained on individual wells in terms of predictive 522 

accuracy. By utilizing data from all available piezometric stations, multi-well models can identify 523 

relationships or events that might occur at a target location, even if not previously observed there. 524 

5. Conclusions 525 

In a future characterised by rising temperatures and decreasing precipitation (RCP8.5), groundwater 526 

resources will face significant stress. However, by limiting greenhouse gas emissions (RCP4.5), 527 

long term impacts of climate change on the depletion of groundwater levels are limited. Groundwater 528 

level changes under RCP8.5 intensify over time, with more severe impacts observed over the long 529 

term [2080–2100], while under RCP4.5, groundwater levels remain relatively stable, with occasional 530 

decreases.  531 

Using deep learning, we developed CNN models with high computational speed irrespective of the 532 

availability of local geological or geophysical information. Only temperature and cumulated 533 

precipitation (the latter to account for the time lag between the actual precipitation event and the 534 

aquifer response), were used to identify the direct impact of climate change on groundwater levels. 535 

While the indirect impact related to human activities were not considered in our study, they could 536 

have even more severe consequences for groundwater. To address both climate and anthropogenic 537 

impacts and safeguard groundwater resources, effective management strategies must be 538 

implemented to optimize water consumption and enhance groundwater recharge. These include 539 

managed aquifer recharge techniques, adoption of water-saving irrigation practices, and 540 

prioritization of nature-based solutions. While groundwater aquifers will continue to be a vital and 541 

resilient resource, their long-term sustainability will depend on prompt and effective mitigation 542 

actions. 543 
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