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Abstract 19 

In the field of groundwater, accurate delineation of contaminant plumes is critical for designing 20 

effective remediation strategies. Typically, this identification poses a challenge as it involves 21 

solving an inverse problem with limited concentration data available. To improve the understanding 22 

of contaminant behavior within aquifers, hydrogeophysics emerges as a powerful tool by enabling 23 

the combination of non-invasive geophysical techniques (i.e., electrical resistivity tomography - 24 
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ERT) and hydrological variables. This paper investigates the potential of the Ensemble Smoother 25 

with Multiple Data Assimilation (ES-MDA) method to address the inverse problem at hand by 26 

simultaneously assimilating observed ERT data and scattered concentration values from monitoring 27 

wells. A novelty aspect is the integration of a Convolutional Neural Network (CNN) to replace and 28 

expedite the expensive geophysical forward model. The proposed approach is applied to a synthetic 29 

case study, simulating a tracer test in an unconfined aquifer. Five scenarios are compared, allowing 30 

to explore the effects of combining multiple data sources and their abundance. The outcomes 31 

highlight the efficacy of the proposed approach in estimating the spatial distribution of a 32 

concentration plume. Notably, the scenario integrating apparent resistivity with concentration 33 

values emerges as the most promising, as long as there are enough concentration data. This 34 

underlines the importance of adopting a comprehensive approach to tracer plume mapping by 35 

leveraging different types of information. Additionally, a comparison was conducted between the 36 

inverse procedure solved using the full geophysical forward model and the CNN model, showcasing 37 

comparable performance in terms of results, but with a significant acceleration in computational 38 

time. 39 

 40 
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 43 

1. Introduction 44 

Over the last century, groundwater systems have faced increasingly severe environmental pressures 45 

as a consequence of massive industrial and agricultural development. To release these pressures, 46 

collaborative efforts are necessary, involving coordination with authorities and end-users to 47 

formulate decisions that prevent the depletion and contamination of aquifers. This poses a challenge 48 

that necessitates a comprehensive understanding of the subsurface environment and groundwater 49 
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systems whose complex spatial distribution can be difficult to characterize (Gómez-Hernández and 50 

Wen, 1994; Gómez-Hernández et al., 2003). Conventional survey methods, such as water sampling 51 

from monitoring wells, may not adequately capture a contaminant plume's structure and spread 52 

since they provide little localized information; furthermore, they are invasive, relatively expensive, 53 

and time-consuming. As a result, complementary techniques have been developed to overcome 54 

these survey-related challenges. Hydrogeophysics has emerged as a powerful, non-invasive and 55 

cost-effective tool in the field of contaminant hydrogeology, leveraging geophysical data to gain 56 

insights into hydrological processes and the underlying geology that govern the subsurface (Rubin 57 

and Hubbard 2005; Vereecken et al. 2006; Hubbard and Linde 2011). These methods, such as 58 

electrical resistivity tomography (ERT), ground-penetrating radar (GPR), and seismic surveys, 59 

enable subsurface imaging and detection of anomalies. Given that polluted groundwater exhibits 60 

increased electrical conductivity (Frohlich and Urish 2002; Carpenter et al. 2012), approaches that 61 

measure ground electrical conductivity or its reciprocal, electrical resistivity, become particularly 62 

interesting when combined with hydrological data. For this reason, ERT is widely used in 63 

hydrological studies (e.g., Page 1968; Wilson et al. 2006; Pereira et al. 2023). 64 

Recovering aquifer characteristics and groundwater contaminant information from geophysical 65 

data, alongside sparse hydrological data, requires solving a complex geophysical inverse problem. 66 

Several deterministic and stochastic methods have been proposed to address these challenges. A 67 

comprehensive review of hydrogeology inverse methodologies is available in the works of 68 

McLaughlin and Townley (1996), Zimmerman et al. (1998), Carrera et al. (2005), Hendricks 69 

Franssen et al. (2009), Zhou et al. (2014) and Gómez-Hernández and Xu (2022). Stochastic inverse 70 

methods, such as the geostatistical approach (Kitanidis 1995), offer an effective way of 71 

characterizing spatial variability and inferring properties of interest at unsampled locations 72 

associated with their uncertainty (Michalak and Kitanidis 2004; El Idrysy and De Smedt 2007; 73 

Huysmans and Dassargues 2009; Zhou et al., 2012; Butera et al. 2013; Cupola et al. 2015; Zanini 74 

and Woodbury 2016; Visentini et al. 2020). Among the stochastic inversion techniques, the 75 
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ensemble Kalman filter (Evensen 1994) and the ensemble smoother (Leeuwen and Evensen, 1996), 76 

have seen a rise in popularity in hydrogeology due to their adaptability and effectiveness (Chen and 77 

Zhang 2006; Li et al. 2012; Crestani et al. 2013, 2015; Xu and Gómez-Hernández, 2016, 2018; 78 

Chen et al. 2018, Li et al. 2019). In particular, Emerick and Reynolds (2012, 2013) introduced the 79 

ensemble smoother with multiple data assimilation (ES-MDA), which involves the iterative 80 

assimilation of the same data multiple times, enhancing the applicability and efficacy of the 81 

ensemble smoother (Todaro et al. 2019, 2021, 2023; D’Oria et. al, 2021; Xu et al., 2021; Godoy et 82 

al. 2022; Chen et al. 2023). 83 

Several works have shown how hydrogeophysics inverse modeling can be used in conjunction with 84 

ERT measurements to estimate hydraulic properties such as hydraulic conductivity (Irving et al., 85 

2010; Pollock and Cirpka, 2010, 2012), including the use of Kalman-based techniques (Kang et al., 86 

2019; Camporese et al., 2011, 2015; Crestani et al., 2015). However, few studies have focused on 87 

utilizing ERT measurements to predict groundwater contamination. Kang et al. (2018) employed 88 

the ensemble Kalman filter to simultaneously estimate the distribution of dense non-aqueous phase 89 

liquid (DNAPL) saturation and aquifer heterogeneous parameter field using time-lapse ERT data. 90 

Tso et al. (2020) employed ES-MDA to detect contaminant leaks utilizing time-lapse ERT 91 

measurements. Chen et al. (2023) utilized the ES-MDA to jointly identify contaminant source 92 

information and the hydraulic conductivity field by assimilating ERT data in a synthetic 93 

heterogeneous aquifer with a time-varying release history. The results underscored the capability of 94 

the ES-MDA data assimilation framework to provide a robust inversion of both time-varying 95 

release history and hydraulic conductivity estimation. 96 

The aforementioned research findings demonstrated hydrogeophysics' ability to identify pollutant 97 

sources and aquifer characteristics. However, one major challenge in inverse modeling is the 98 

complexity of the underlying forward models, which are often computationally expensive or 99 

analytically unsolvable. Surrogate models present a viable solution to overcome these issues (e.g., 100 

Asher et al. 2015; Jamshidi et al., 2020; Secci et al., 2022, 2024). In recent years, neural networks 101 
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have emerged as a promising tool for replacing full forward models and reducing computational 102 

demand. A well-known neural network is the convolutional neural network (CNN) introduced by 103 

LeCun et al. (1998). CNNs specialize in processing grid-based data, such as images, exhibiting an 104 

inherent capacity to capture and hierarchically represent spatial features in data. For this reason, 105 

CNN is a technology widely employed in various fields, including groundwater spatial modeling 106 

(e.g., Hong and Liu, 2020; Panahi et al., 2020; Lähivaara et al., 2019). 107 

In the literature, only a few studies have explored the potential of coupling CNN with ES-MDA. 108 

Tang et al. (2021) combined convolutional post-processing of principal component analysis 109 

parameterization and ES-MDA to estimate both a channelized permeability and oil/water rate in 110 

petroleum engineering. Zhou et al. (2022) integrated convolutional adversarial autoencoder and ES-111 

MDA to parameterize a non-Gaussian conductivity field and to identify the spatiotemporal extended 112 

source of contamination. In this work, the ES-MDA and CNN are coupled to unlock the potential of 113 

hydrogeophysics in addressing environmental pollution problems while lowering the computational 114 

cost of the inversion procedure. The primary objective is to combine hydrological and ERT data to 115 

accurately estimate the spatial distribution of a contaminant within a groundwater system. 116 

The ES-MDA inverse procedure is applied to estimate the plume distribution by employing a well-117 

established geophysical forward model and assimilating both ERT data and sparse concentration 118 

values from monitoring points. To enhance efficiency, a CNN is used to replace the part of the 119 

forward model that transforms the electrical resistivity of the investigated material into the apparent 120 

electrical resistivity that would be deduced from an ERT survey. The proposed methodology is 121 

tested by means of a two-dimensional synthetic case study that mimics a tracer test in an unconfined 122 

aquifer. Different scenarios are investigated exploring the effect of combining multiple data sources 123 

and their abundance. 124 

The structure of this paper is outlined as follows. Section 2 provides a comprehensive overview of 125 

the material and methods employed in the proposed inverse approach. Section 3 details the test case 126 

set up, the configuration of the CNN end the ES-MDA, as well as the investigated scenarios. 127 
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Section 4 delves into the presentation and analysis of results. Finally, Section 5 presents discussions 128 

and conclusions. 129 

 130 

2. Material and Methods 131 

2.1 Forward model 132 

The forward model has two components. The first is a petrophysical model used to spatially predict 133 

the resistivity field associated with a given contaminant plume. The second is a geophysical model 134 

utilized to calculate the apparent resistivity (i.e., pseudo-electrical resistivity) that would be observed 135 

during an Electrical Resistivity Tomography (ERT) survey associated with a given subsurface 136 

electrical resistivity field. In this work, the geophysical model is replaced by a convolutional neural 137 

network. The following sections describe the entire forward model in detail. 138 

 139 

2.1.1 Petrophysical relationship 140 

Petrophysical models are needed to link geophysical imaging techniques and hydrological models 141 

(Vereecken et al. 2006). In this case, the model proposed by Pollock and Cirpka (2012) is used to 142 

transform concentration into electrical conductivity (EC) using 143 

σ(t, 𝐱) = σ!(𝐱) + σ"(t, 𝐱)          (1) 144 

where σ(t,x) is the bulk electrical conductivity at specific time t and location x, σ0(x) is the 145 

background bulk electrical conductivity (constant through time), and σ’(t,x) is a perturbation 146 

resulting from a change in solute concentration c(t,x).	σ’(t,x) can be derived from Archie’s law 147 

(Archie 1942) 148 

σ"(t, 𝐱) = #!

$
S%σ&	c(t, 𝐱)	          (2) 149 

with φ being the porosity, S being the water saturation, σw being the water EC, m and n being two 150 

empirical parameters referred to as cementation and saturation exponent, respectively. a is a 151 

proportionality constant of the order of 1. 152 
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Electrical resistivity (ρ) is the reciprocal of EC 153 

ρ = '
(
	             (3) 154 

 155 

2.1.2 Electrical Resistivity Tomography (ERT): governing equations 156 

A common ERT survey considers four electrodes and consists of injecting electrical current into the 157 

ground through two current electrodes (C1 and C2) and measuring the resulting voltage difference 158 

at two potential electrodes (P1 and P2). Afterward, the current and voltage measurements are 159 

transformed into apparent electrical resistivity, which represents a weighted average resistance of 160 

earth materials to electrical current propagation (Loke et al. 2013). 161 

Poisson’s equation can be used to describe the electric potential field generated by a couple of 162 

electrodes 163 

−∇ ∙ σ(x, y, z)∇ϕ(x, y, z) = I;δ(r − r)) − δ(r − r*)>      (4) 164 

in which ф represents the potential field; I is the input current; r+ and r– are the locations of the 165 

positive and negative electrodes, respectively, and δ(⋅) is the Dirac delta function. Following 166 

Pidliskey and Knight (2008), the solution to Eq. 4 yields a vector of electric potential values for 167 

each grid location within the considered model. Then, for a given electrode array, the apparent 168 

electrical resistivity at a location in the xz plane that is specific to such configuration is computed as 169 

ρ$++ = ΔϕB ∙ K            (5) 170 

where ΔϕB  is the difference of potential recorded between the electrodes P1 and P2, and K is a 171 

geometric factor, which is a function of the distance among the four electrodes calculated as follows 172 

when the effects of the topography are ignored 173 

K = ,-
"
#"
* "
#$
* "
#%
) "
#&

           (6) 174 

where d' is the distance between the current electrode C1 and the potential electrode P1, d, is the 175 

distance between the current electrode C1 and the potential electrode P2, d. is the distance between 176 
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the current electrode C2 and the potential electrode P1, d/ is the distance between the current 177 

electrode C2 and the potential electrode P2. 178 

The apparent electrical resistivity values are then visualized in a 2D "pseudo-section" plot, 179 

providing a comprehensive view of both horizontal and vertical changes. The horizontal position of 180 

each data point corresponds to the midpoint of the electrode set used for measurement, while its 181 

vertical position represents a proportionate distance based on electrode separation. For further 182 

insight into the specific array configuration, readers are directed to Edwards (1977). 183 

According to Pidliskey and Knight (2008) and assuming no variation along the y-axis 184 

( 0
01
σ(x, y, z) = 0), a 2.5D forward ERT model, is used to calculate the apparent electrical resistivity 185 

from an electrical resistivity model. The forward geophysical problem is solved using SimPEG 186 

(Cockett et al., 2015), an open-source geophysical library. 187 

 188 

2.1.3 Surrogate model: Convolutional Neural Network (CNN) 189 

Convolutional Neural Networks (CNNs), first developed by LeCun et al. (1998), represent a class 190 

of machine learning models designed for processing and analyzing visual data, making them 191 

particularly effective for tasks involving images or spatially structured data. At their core, CNNs 192 

leverage convolutional filters: small learnable matrices that slide over the input image, capturing 193 

spatial hierarchies and local patterns. This allows CNNs to efficiently recognize complex patterns 194 

and spatial relationships within the data. Several review papers have been presented in the last few 195 

years, offering comprehensive overviews of the CNN advancements and applications (see e.g., Gu 196 

et al. 2018; Khan et al, 2020; Alzubaidi et al., 2021). Within the geophysical inversion context, 197 

CCNs have been utilized in studies such as Das et al. (2019) and Puzyrev (2019). A CNN comprises 198 

an input layer, several hidden layers, and an output layer. The input layer receives the raw input 199 

data in the form of images or other grid-like data. Typically, CNN hidden layers consist of 200 

convolutional layers, activation functions, pooling layers, and possibly batch normalization. 201 
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Convolutional layers apply filters to capture local features. The use of activation functions, such as 202 

rectified linear units (ReLU), introduces non-linearity to the model, enhancing its ability to capture 203 

intricate patterns. Pooling layers with specified pool sizes and strides downsample the spatial 204 

dimensions, reducing computational complexity. Batch normalization may be included to normalize 205 

the input activations, enhancing training stability. The CNN architecture typically concludes with a 206 

fully connected (dense) layer, which takes the features learned by the convolutional layers and 207 

combines them to make predictions. Dropout layers can also be included to mitigate overfitting by 208 

randomly deactivating a fraction of neurons during training. Ultimately, the output layer produces 209 

the final prediction. The training process involves iteratively adjusting the weights of the network 210 

using optimization algorithms, such as Adam optimizer (Zhang 2018), to minimize the difference 211 

between predicted and target values. 212 

In this study, a CNN is employed to replace the electrical resistivity forward model described in the 213 

previous section. The input layer comprises a resistivity map, and the output layer yields apparent 214 

resistivity data. The details of the CNN’s architecture employed for this particular application are 215 

outlined in the Section 3.3. 216 

 217 

2.2 ES-MDA inversion approach 218 

The method applied to solve the hydrogeophysical inverse problem is the ensemble smoother with 219 

multiple data assimilation (ES-MDA). The ES-MDA is an iterative data assimilation approach that 220 

allows the estimation of model parameters using a set of observed measurements and a known 221 

relationship between parameters and observations, given by a forward model. A brief description of 222 

the method is provided next. For a more detailed description, the reader is referred to Emerick and 223 

Reynolds (2013). 224 

The method workflow consists of an initialization phase and an iterative phase; in which each 225 

iteration is made up of two steps: a forecast step and an update step. The initialization phase 226 

involves the generation of an initial ensemble of parameter realizations 𝐗	∈	ℜ	Np×Ne, where Np is the 227 
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number of parameters to be estimated and Ne	is the ensemble size, together with an ensemble of 228 

observation errors ε	∈	ℜ	m×Ne,	where	m	is the number of observations. Moreover, the procedure 229 

requires the definition of a priori number of iterations N	and a vector of inflation coefficients {αi,	i	230 

=	1,…,N}. Several schemes can be used to define the set of α, but they must satisfy the condition 231 

∑ '
2'

3
45' = 1            (7) 232 

After the initialization step, iterations start. During the forecast step, at each iteration i, for each 233 

realization j of the ensemble of parameters Xj,i	∈	ℜ	Np, the forward model is run to obtain the model 234 

predictions, of which a subset Yj,i	∈	ℜm is extracted coinciding with the same locations and times as 235 

the observations 𝐃	∈	ℜm 236 

𝐘6,4 = g;𝐗6,4>            (8) 237 

where g	(⋅) is an operator that incorporates the forward model as well as a filtering function used to 238 

extract the predictions at the m	locations where observations have been collected. Next, the 239 

ensemble of parameters is updated during the update step according to the equation 240 

𝐗6,4)' = 𝐗6,4 + 𝐐𝐗𝐘4 ;𝐐𝐘𝐘4 + α4𝐑>
*';𝐃 + √α4𝛆6 − 𝐘6,4>       (9) 241 

where 𝐐𝐗𝐘4 ∈	ℜ	Np×m is the cross-covariance matrix between parameters and predictions, 𝐐𝐘𝐘4 	∈	ℜ	242 

m×m is the auto-covariance matrix of predictions and 𝐑	∈	ℜ	m×m is the auto-covariance matrix of the 243 

measurement errors, which are assumed to be uncorrelated. εj	∈	ℜ	m is the vector of measurement 244 

errors for realization j. 𝐐𝐗𝐘4  and 𝐐𝐘𝐘4  are computed, from the ensemble of realizations, at each 245 

iteration i as 246 

𝐐𝐗𝐘4 = '
3(*'

∑ ;𝐗6,4 − 𝐗\:>;𝐘6,4 − 𝐘\:>
;3(

65'          (10) 247 

𝐐𝐘𝐘4 = '
3(*'

∑ ;𝐘6,4 − 𝐘\:>;𝐘6,4 − 𝐘\:>
;3(

65'          (11) 248 

where 𝐗\: and 𝐘\: are the ensemble means, at iteration 𝑖, of 𝐗 and 𝐘, respectively. 249 

The iteration index then advances, and the algorithm returns to the forecast step until the final 250 

iteration. 251 
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To minimize the number of parameter realizations, since computation time depends on it, 252 

covariance and inflation techniques are employed. These methods help prevent issues stemming  253 

from small ensemble sizes. The covariance localization involves an element-wise multiplication of 254 

the original covariance matrices with selected tapering functions that diminish correlations between 255 

points as the distance increases, effectively eliminating spurious long-range spurious correlations 256 

beyond a specified threshold. Covariance inflation is additionally taken into account to address 257 

issues related to under sampling. At each iteration, it modifies the ensemble of updated parameters 258 

by adjusting the ensemble spread, preventing the spread from becoming too narrow with the 259 

consequence of collapse and divergence. 260 

The software package genES-MDA developed by Todaro et al. (2022) is used to apply the ES-261 

MDA procedure.  262 

 263 

2.3 Coupled hydrogeophysical inverse model 264 

This section summarizes the scheme of the proposed coupled hydrogeophysical inversion, which 265 

seeks to estimate the spatial distribution of a tracer plume by integrating available observations (e.g. 266 

observed ERT data and concentration values at monitoring points). The methodology comprises 267 

several steps detailed below (Fig. 1). 268 
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 269 

Fig. 1 Flowchart of the coupled hydrogeophysical inverse model 270 

 271 

Step 1. Initialization 272 

The first step involves the generation of the initial parameter realizations. These realizations 273 

correspond to different concentration fields, aiming to incorporate available a priori information and 274 

adequately represent the specific problem under consideration. The initial concentration maps can be 275 

systematically generated through various approaches, ensuring a comprehensive exploration of the 276 

subsurface conditions, one can: 277 

i) Assume homogeneity across all parameters. In this scenario, each realization exhibits a 278 

distinct constant value drawn from a uniform distribution. This method is straightforward 279 

and feasible in situations where no prior information is available. 280 



13 
 

ii) Run stochastic sequential simulations to generate fields using a semi-variogram model. 281 

The semi-variogram can be fitted to existing field data if available, or alternatively, 282 

variogram parameters can be selected randomly from a range defined based on prior 283 

knowledge. This approach considers the spatial correlations present in the reference 284 

dataset, ensuring that the initial ensemble captures the expected patterns of the actual 285 

concentration map. 286 

iii) Utilize a numerical transport model to generate diverse realizations by simulating the 287 

injection from different locations within the model domain as well as various tracer 288 

concentrations, both randomly selected from predefined tailored ranges. This ensures that 289 

each realisation considers realistic representation of contaminant distribution in the 290 

subsurface. 291 

This step also involves the definition of the number of iterations N, the observation errors, the 292 

coefficients 𝛼𝑖	and the training of the CNN. 293 

Step 2. Forecast: CNN-based forward model 294 

For each iteration and for every realization, the petrophysical relationship, described in Section 295 

2.1.1 is used to transform the concentration maps into electrical resistivity maps. Subsequently, 296 

these maps undergo forward modelling with the trained CNN, resulting in apparent electrical 297 

resistivity values. A filtering function is employed to extract the subset of prediction data at the 298 

observation locations. 299 

Step 3. Update 300 

At each iteration, the prediction vector is used to update the concentration map following Eqs. 9-11. 301 

Upon completing the concentration update, the subsequent iteration starts with the updated 302 

ensemble of parameters. Step 2 and Step 3 are repeated until the last iteration. 303 

Step 4. Analysis and interpretation of the results 304 

The results are analyzed in terms of mean and standard deviation computed from the ensemble, 305 

allowing to associate the parameter estimation with their uncertainty. 306 
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If a reference solution is available, as is common in synthetic case studies, a thorough comparison is 307 

made between the estimated and actual concentration values. The assessment of results employs well-308 

established metrics, specifically, the mean error (ME), the mean absolute error (MAE), the root mean 309 

squared error (RMSE) and the determination coefficient (R2) as given by 310 

ME = '
3)
∑ ;Cb< − C<>
3)
<5'           (12) 311 

MAE = '
3)
∑ dCb< − C<d
3)
<5'           (13) 312 

RMSE = f '
3)
∑ ;Cb< − C<>

,3)
<5'          (14) 313 

R, = 	1 −
∑ >?@**?*A

$+)
*,"

∑ (?**?*CCCC)$
+)
',"

          (15) 314 

where N+ is the number of parameters (in this case is the number of grid nodes), C< is the actual 315 

concentration, Cb< is the estimated ensemble-mean concentration and C<ggg is mean actual 316 

concentration. 317 

 318 

3. Application 319 

3.1 Set up of the Test Case 320 

The validity of the proposed methodology is demonstrated by its application to a two-dimensional 321 

synthetic model representing the vertical cross section of a heterogeneous unconfined aquifer under 322 

fully saturated conditions, where a contaminant plume is present. This model resembles the sandbox 323 

developed at the University of Parma’s Hydraulic Laboratory, which has been extensively used in 324 

experimental and computational studies (Citarella et al. 2015; Cupola et al. 2015; Chen et al. 2018, 325 

2021; Todaro et al. 2021, 2023; Pereira et al. 2023). 326 

Fig. 2 offers a schematic depiction of the synthetic model being discussed. It is discretized into 96 327 

by 1 by 20 cells, each measuring 1 by 10 by 1 cm. The hydraulic conductivity varies in space with 328 

three well-defined homogeneous zones differing by two orders of magnitude (Figure 2 and Table 329 
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1), and a uniform porosity equal to 0.37. The boundary conditions are impermeable at the bottom, 330 

phreatic surface at the top, and fixed heads at the left and right sides. This setup generates a head 331 

loss of 1 cm that induces flow from left to right. The initial condition is zero concentration 332 

everywhere. A continuous injection of a conservative non-reactive tracer, with a concentration of 20 333 

mg/L, is introduced into the model from a designated injector point at location (X=12.5 cm, Z =10.5 334 

cm). Longitudinal and transverse dispersivity values are assumed to be 0.16 cm and 0.016 cm, 335 

respectively. The reference solution is derived from a simulation conducted using MODFLOW 336 

(Harbaugh 2005) and MT3DMS (Zheng and Wang 1999) to model the groundwater flow and mass 337 

transport process, respectively. Table 1 summarizes the model parameters. The simulation extends 338 

for a total duration of 3600 seconds to achieve a well-developed plume, with the concentration map 339 

at the final time step serving as the reference map. The parameters to be estimated correspond to the 340 

concentration at each model grid cell (Np=1920). 341 

 342 

 343 

Fig. 2 Hydraulic conductivity and concentration reference maps. The red grid cells represent the left 344 
and right boundary conditions. The cross indicates the injector position 345 

Table 1 Flow and transport model parameters 346 

Hydraulic Conductivity 1 (cm/s) 0.17 
Hydraulic Conductivity 2 (cm/s) 3.00 
Hydraulic Conductivity 3 (cm/s) 10.40 
Porosity 0.37 
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Longitudinal dispersivity (cm) 0.16 
Transverse dispersivity (cm) 0.016 
Injected concentration (mg/L) 20 

 347 

The reference electrical resistivity map (Fig. 3) is obtained by applying the petrophysical model 348 

described in Section 2.1.2. Then, the SimPEG package processes the resulting map to derive the 349 

apparent resistivity at 225 locations, representing the observations to be used in the inverse 350 

procedure. This estimate is made using Eqs 4-6 and taking into account a Wenner-Schlumberger 351 

acquisition array, which consists of 32 electrodes spaced at 3 cm intervals. 352 

Table 2 summarizes the geophysical and petrophysical parameters used. 353 

Table 2 Geophysical and petrophysical parameters 354 

Number of electrodes 32 
Electrode spacing (cm) 3 
m  1.3* 
n 2 
a 1 
Sw 1 
σw (μS/cm) 357 

* (Mavko et al. 2009) 355 

 356 

Fig. 3 Reference resistivity model and observed pseudo-section. The cross indicates the position of 357 
the injector 358 

 359 

3.2 Investigated scenarios 360 
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The idea of the work rises from the necessity to visualize the plume spread into aquifers. One 361 

possibility is the interpolation of observed concentrations in the field if they are available. Normally 362 

these data are few and spatially sparse. Therefore, the introduction of ERT measurements, which 363 

are spatially exhaustive, is considered. In order to assess the capabilities of the proposed approach, 364 

five distinct scenarios considering different datasets are developed. Each dataset aimed to 365 

emphasize the advantages of employing specific combinations of apparent resistivity measurements 366 

(m1) and concentration measurements (m2). 367 

Three monitoring wells are placed along the vertical at x = 23.5, 47.5, and 71.5 cm, each with five 368 

equidistant observation points spaced at 3 cm interval, for a total of 15 observation points. In 369 

Scenario 1, a limited dataset, comprising only the 15 concentration values, is used to interpolate the 370 

concentration map. This map is generated using a kriging-based interpolation method, with the 371 

variogram model computed using the 15 concentration observations (m1 = 0, m2=15). The intent is 372 

to demonstrate how difficult is to obtain a good estimate using a spatially sparse data set. In the 373 

other scenarios, parameters are estimated in each cell of the model grid using the ES-MDA 374 

hydrogeophysical inversion, with the number of observations varying according to the specific case 375 

under examination. In Scenario 2 (m1 = 225, m2 = 0) only ERT data are employed. In Scenario 3 376 

(m1 = 225, m2 = 15) the ERT data are combined with 15 concentration values. In Scenario 4 (m1 = 377 

225, m2 = 9) the ERT data are combined with 9 concentration values. And, in Scenario 5 (m1 = 378 

225, m2 = 3), the ERT data are combined with only 3 concentration values. A summary of the five 379 

scenarios is provided in Table 3. 380 

Table 3 Summary of the scenarios. Number of observations used. 381 

Scenario 1 2 3 4 5 
ERT data - 225 225 225 225 
Concentration data 15 - 15 9 3 

 382 

3.3 CNN’s set up 383 
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To speed up the execution of the forward model, a CNN is implemented to replace the SimPEG 384 

package that converts electrical resistivity into apparent electrical resistivity data (i.e., pseudo- 385 

electrical resistivity sections). To train the network, a dataset including 7000 realizations obtained 386 

with SimPEG, is considered. This input dataset undergoes preprocessing involving the 387 

normalization of input and output data and is then split into training (70%), validation (15%), and 388 

test (15%) sets. The CNN architecture is outlined in Table 4. The model is optimized using the 389 

Adam optimizer with a learning rate of 0.001, and the mean squared error between predicted and 390 

target apparent resistivity values is used as the loss function. The training is performed with a batch 391 

size of 18 over 300 epochs. After training, the model is evaluated on the validation set, and 392 

predictions are inverse transformed to the original scale. The complete CNN training and validation 393 

process tooks approximately 3 hours utilizing a computer equipped with Intel i9-10920X CPU 394 

3.5GHz, 32 GB RAM. 395 

 396 

Table 4 CNN architecture 397 

Layer Number 
of filters 

Size of 
each filter Stride Padding Batch 

Normalization Activation Output 
size 

Input image        20x96x1 
Convolutional  8 5x5x1 1x1 Same True ReLU 20x96x8 

Pooling 
(Average) - 2x2 2x2 0 False None 10x48x8 

Convolutional  16 5x5x8 1x1 Same True ReLU 10x48x16 
Pooling 

(Average) - 2x2 2x2 0 False None 5x24x16 

Convolutional  32 5x5x16 1x1 Same True ReLU 5x24x32 
Convolutional  64 5x5x32 1x1 Same True ReLU 5x24x64 
Dropout (50%) - - - - False None 5x24x64 
Fully connected - - - - False Linear 1x225 

 398 

Fig. 4 reports the results of the validation set. It is clear the good agreement between the true and 399 

computed apparent resistivities. 400 
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 401 

Fig. 4 CNN Validation, the dashed line is the 1:1 line 402 

The computational time of the CNN was compared to that of the 2.5D forward ERT model, 403 

showing a substantial reduction for each realization from 2.3 seconds to approximately 20 404 

milliseconds using the computational infrastructure described above. 405 

Furthermore, to validate the reliability of the presented approach, the inverse problem in Scenario 3 406 

is solved by using both the CNN model and the full forward model (SimPEG), comparing their 407 

performance. 408 

 409 

3.4 Inverse model set up 410 

For Scenarios 2-5, the ES-MA is performed with six iterations and an ensemble size of 500. In this 411 

study, the initial ensemble of parameters is generated following approach ii) described in Section 2.3 412 

(Step 1) using the Python package GeostatsPy (Pyrcz et al. 2021), which interfaces the Geostatistical 413 

Software Library (GSLIB) with Python. It is employed to generate Gaussian random fields in 414 

logarithmic space to prevent negative values, which are subsequently back-transformed into the 415 

concentration space. Each realization is based on an anisotropic exponential variogram, with an 416 

azimuth for the largest continuity set at 90 degrees. The mean log-concentration is randomly selected 417 
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from a uniform distribution within the interval [-2, 2], while the standard deviation is equal to 1.1. 418 

The correlation range in the vertical direction is randomly selected from a uniform distribution with 419 

ranges [10, 20] (cm), while the anisotropy ratio is sampled within the range [7, 10] (cm).  420 

The observation errors are normally distributed with zero mean and variance equal to 10-4 (Ω m)2 for 421 

the apparent electrical resistivity and 0.01 (mg/L)2 for the concentrations. A decreasing α set with 422 

values equal to [ 364.0; 121.3; 40.4; 13.5; 4.5; 1.5] is used. A spatial covariance localization is applied 423 

considering a space correlation length of 30 cm. A covariance inflation is applied with a factor equal 424 

to 1.01 (refer to Todaro et al., (2023) for a detailed explanation of ES-MDA set up). 425 

4. Results 426 

The comparative analysis of the five scenarios reveals different insights into the efficacy of ES-MDA 427 

in estimating the distribution and values of the concentration plume for a given release history. The 428 

results are depicted in Fig. 5, where the estimated concentration for Scenarios 2-5 is given by the 429 

ensemble mean. Table 5 provides the evaluation metrics, assessed using Eqs. 12-15, alongside the 430 

maximum estimated concentration for comparison with the actual value of 20 mg/L. Additionally, it 431 

encompasses an assessment of estimate uncertainty as indicated by the standard deviation. 432 

In the first scenario (Fig. 5.a), the concentration map is obtained through kriging interpolation using 433 

15 concentration values; this result provides a baseline for performance evaluation. Moving on to 434 

Scenario 2 (Fig. 5.b), where ES-MDA is utilized with only apparent resistivity as observations, the 435 

results exhibit poorer accuracy in the estimation of the concentration map, compared to the previous 436 

one (Fig. 2). While the estimation of the contaminant distribution is satisfactory and the RMSE of 437 

3.69 mg/L is comparable to that of Scenario 1, there is a significant overestimation of the injected 438 

concentration, resulting in higher mean error (-0.48 mg/L) and mean absolute error (2.64 mg/L). In 439 

particular, the maximum estimated concentration reaches around 32 mg/L, whereas the actual 440 

concentration is 20 mg/L. The absence of concentration data highlights the significance of 441 

incorporating such information for a more robust estimation. In comparison, the third scenario (Fig. 442 
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5.c), which combines apparent resistivity data and the 15 concentration values, emerges as the best 443 

result in terms of observation estimation and field distribution. When compared to the other scenarios, 444 

this integrated approach outperforms the previous ones with a ME = 0.06 mg/L; MAE = 1.56 mg/L; 445 

RMSE = 2.74 mg/L; R2 = 0.82, and the best estimate of the maximum concentration of 22 mg/L, 446 

which is close to the actual injected. The combination of geophysical data and concentration values 447 

improves the model's ability to capture plume distribution. Scenario 4 (Fig. 5.d), which is similar to 448 

Scenario 3 but considers only 9 concentration observations, reveals a subtle trade-off between data 449 

quantity and model accuracy. Although the reduction in concentration data slightly affects accuracy, 450 

the overall performance remains good (ME = -0.01 mg/L; MAE = 1.97 mg/L; RMSE = 3.01 mg/L; 451 

R2 = 0.79). The limitations of the sparse concentration information become more pronounced in the 452 

final scenario (Fig. 5.e), where only three concentration data points are used in conjunction with 453 

apparent resistivity data. Despite the model's adaptability, the reduced data set compromises the 454 

accuracy of the estimated concentration map, as indicated by ME of -0.38 mg/L, MAE of 2.21 mg/L, 455 

RMSE of 3.17 mg/L, Max Concentration of 28.62 mg/L, and R2 of 0.76. 456 

Fig. 6 shows the scatterplot between true and estimated concentrations at each model grid cell 457 

(Np=1920) for all investigated scenarios. The dispersion  data points indicates that there is not a 458 

perfect agreement between the estimated and true values. Despite this dispersion, the best linear fit, 459 

illustrated by the red line in Fig.6, indicates that the model's overall predictive ability is good, with 460 

slopes ranging from 0.71 (Scenario 4) to 0.80 (Scenario 1). This is also supported by a high R2 value 461 

(Table 5). The results of the inversion procedure effectively capture a significant portion of the 462 

variation in the true concentration field. However, as highlighted in Fig. 6, the methodology 463 

encounters difficulties, particularly in identifying the lower and higher concentration values in some 464 

scenarios, pointing out the limits of each application.. The interpolation in Scenario 1 faces a 465 

challenge in accurately estimating lower values, while maximum values are quite well represented. 466 

Comparing the true contaminant distribution (Fig. 2) and the estimated one (Fig.5a) it can be noticed 467 

that the concentrations in the area upstream of the source location are overestimated, mainly due to 468 
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the extrapolation by the kriging estimator beyond the position of the available data. In Scenarios 2 to 469 

5 the proposed procedure better estimates the lower values whereas it presents large uncertainty on 470 

the maximum concentration (see Fig. 6). In particular, comparing the true concentration map with the 471 

estimated one in Scenarios 2 to 5 (Fig. 5b-e), it is evident that most of the underestimated values are 472 

located upstream of the source location. This discrepancy is mainly due to the lack of information in 473 

this portion of the field. Moreover, some concentration values are overestimated particularly in 474 

Scenario 2, as a result of the assimilation of only apparent resistivity data and the absence of 475 

concentration data. Adding concentration information mitigates this issue, as evidenced by the 476 

improved estimation of maximum concentration in Scenario 3. 477 

Following a thorough examination of the results and associated metrics, the third scenario, which 478 

employs both apparent resistivity data and concentration values, is the best configuration in terms of 479 

estimation values and pattern distribution. This comprehensive evaluation emphasizes the importance 480 

of integrating different datasets in hydrological studies to achieve a more accurate and reliable 481 

estimation of contaminant plume distribution. 482 

 483 

Table 5 Performance of the proposed approach evaluated for each scenario  484 

Scenario 1 2 3 4 5 
ME (mg/L) -0.08 -0.48 0.06 -0.01 -0.38 
MAE (mg/L) 1.99 2.64 1.56 1.97 2.21 
RMSE (mg/L) 3.69 3.69 2.74 3.01 3.17 
Max Concentration (mg/L) 22.34 32.59 22.00 24.04 28.62 
R2 0.69 0.68 0.82 0.79 0.76 
Mean standard deviation (mg/L) 12.51 2.42 1.16 1.43 2.10 
Max standard deviation (mg/L) 25.82 13.62 6.18 6.59 13.21 
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 485 

 486 

 487 

Fig. 5 Estimated concentration distribution for the five scenarios. The injector is marked by a cross. 488 
Red circles represent the locations of observation wells 489 
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 490 

 491 

Fig 6 Scatterplot of the estimated vs. observed concentration for all scenarios. The red line is the 492 
best linear fit and the black dashed line is the 1:1 line 493 

 494 
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Fig. 7 represents the agreement between observed values and the corresponding predictions, given 495 

by the ensemble mean of the last iteration, for Scenario 2 to Scenario 5. The inclusion of a 45° line 496 

serves as a visual benchmark, indicating a perfect fit between the observed and estimated apparent 497 

resistivities and concentrations. The proximity of data points to this line signifies the accuracy of 498 

the model in reproducing the measured values. The results for Scenario 1 are not explicitly shown 499 

as all the points align along the 45° line, since kriging is an exact estimator. 500 

 501 

Fig. 7 Observed-Estimated apparent resisitivity and concentration for scenarios 2-5 502 
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 503 

The uncertainty assessment in the estimation of the concentration map is crucial for a comprehensive 504 

understanding of the reliability and robustness of the proposed approach. In this study, the standard 505 

deviation serves as a key indicator of the dispersion, or variability, of the estimated concentration 506 

maps around their mean (Fig. 8 and Table 5). In Scenario 1, the kriging standard deviation is zero at 507 

the observation points and it increases with distance from these points, reaching a maximum of 25.82 508 

mg/L at the borders of the model and the mean of the standard deviation map is 12.51 mg/L. In the 509 

remaining scenarios, the standard deviation is computed from the ensemble of the concentration 510 

maps. In Scenarios 2 and 5, the standard deviation is high close to the source location where no 511 

concentration values are available. Scenario 2 presents a mean value of 2.42 mg/L and a maximum 512 

one of 13.62 mg/L. These values are comparable to those in Scenario 5, where the mean and 513 

maximum value are 2.10 mg/L and 13.21 mg/L, respectively. Scenario 3 shows the smallest standard 514 

deviations with an average value of 1.16 mg/L and a maximum one of 6.18 mg/L. Scenario 4 has a 515 

mean (1.43 mg/L) and maximum (6.59 mg/L) values close to those of Scenario 3. The scenario color 516 

bar is the same for easy comparison of standard deviation values but is limited to 15 mg/l to optimize 517 

the display of Scenarios 3 and 4. In particular, the maximum standard deviation value achieved in 518 

Scenario 1 exceeds 25 mg/l, while Scenarios 3 and 4 have values below 7 mg/l. This discrepancy is 519 

attributed to Scenario 1 having significantly higher values in the border area, where no concentration 520 

information was available. 521 

These results confirm that the combination of ERT and concentration data provides a reliable 522 

estimation of the concentration distribution in aquifer. Obviously, the more concentration data there 523 

is, the better the result, but even just 3 observations lead to an acceptable result. 524 

 525 
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 526 

 527 

Fig. 4 Standard deviation maps of the estimated concentrations for the five scenarios. The cross 528 
denotes the injector. The observation wells are visually depicted by the red circles 529 

 530 

4.1 Full forward model (SimPEG) vs CNN 531 

The validity of the proposed inversion approach is further investigated by solving Scenario 3, 532 

employing the full forward model instead of the CNN. In Fig. 9a, the estimated plume using the 533 

SimPEG forward model is depicted. Fig. 9b illustrates the differences in concentration values 534 
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between the two approaches. Remarkably, differences are negligible except for a small area beneath 535 

the source location. The two forward models demonstrate comparable performance in solving the 536 

inverse problem across several metrics. Both models showcase RMSE values that are close. The full 537 

forward model achieves an RMSE of 2.93 mg/L, while the CNN model slightly outperforms it with 538 

an RMSE of 2.75 mg/L, suggesting near-equivalent accuracy in predicting the target variable. 539 

Furthermore, the full forward model achieves an R2 of 0.81, closely followed by the CNN model 540 

with an R2 of 0.83. Examining the ME and MAE metrics, which gauge the average magnitude of 541 

prediction errors, the full forward model exhibits an ME of 0.32 mg/L and an MAE of 1.68 mg/L, 542 

while the CNN model showcases an ME of 0.07 mg/L and an MAE of 1.56 mg/L. Delving into the 543 

mean and maximum standard deviation, the CNN model marginally outperforms the full model 544 

with slightly lower values for both mean standard deviation (1.11 mg/L vs. 1.68 mg/L) and 545 

maximum standard deviation (11.39 mg/L vs. 16.41 mg/L). Finally, both models show similar 546 

maximum concentration values, with the CNN model slightly higher at 22.35 mg/L compared to 547 

20.37 mg/L for the full forward model. Notably, a significant disparity arises in terms of 548 

computational time: the inverse procedure with the SimPEG forward model takes approximately 2 549 

hours, whereas the one with CNN completes the task in approximately 5 minutes ran with a system 550 

composed of an Intel i9-10920X 3.5GHz equipped with 32 GB RAM. 551 



29 
 

 552 

Fig 9 a) Estimated concentration distribution, Scenario 3 – SimPEG forward model. The injector is 553 
marked by a cross. Red circles represent the locations of observation wells. b) Differences between 554 

estimated concentrations (CNN-SimPEG forward model) 555 

 556 

5. Conclusion 557 

The presented paper investigated the effectiveness of the Ensemble Smoother with Multiple Data 558 

Assimilation (ES-MDA) model in addressing the complex challenge of accurately estimate the 559 

spatial distribution of a concentration plume. This is achieved through the simultaneous assimilation 560 

of observed electrical resistivity tomography (ERT) data and scattered concentration values from 561 

monitoring wells. One of the distinguishing features of this approach was the integration of 562 

convolutional neural network (CNN) to speed up the forward model. 563 

The study compared five different datasets to evaluate the performance of the proposed approach. 564 

These various scenarios enable a thorough examination of the advantages of combining data from 565 

multiple sources (Linde and Doetsch 2016), highlighting the effects of different observation 566 

datasets on the accuracy of plume distribution assessments. The first scenario used a kriging-based 567 

approach to interpolate 15 concentration values, while subsequent scenarios were conducted to 568 

evaluate the capability of the proposed inverse hydrogeophysical approach. The second scenario 569 

used only apparent resistivity data as observations into the ES-MDA; and the third to fifth scenario 570 

combined apparent resistivity data with different subsets of concentration values: 15, 9, and 3, 571 
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respectively. The third scenario, which combines apparent resistivity with 15 concentration values, 572 

emerged as the most promising configuration in terms of accuracy and precision. The least accurate 573 

estimates were observed in the case of kriging interpolation (Scenario 1) and ES-MDA utilizing 574 

only apparent resistivity data (Scenario 2). A pertinent point to mention, based on the comparison of 575 

these results, is the inherent difficulty in relying solely on 15 concentration values derived from a 576 

survey for interpolation purposes. This challenge becomes even more pronounced with the use of 9 577 

or 3 values, which are insufficient for constructing the variogram in the case of kriging. These 578 

findings suggest that such a limited dataset may not provide sufficient information to capture the 579 

spatial variability of subsurface concentration maps accurately, emphasizing the importance of 580 

combining multiple data sources. 581 

In addition, the comparison between the full ERT forward model (i.e., SimPEG) and the CNN 582 

showcased significant enhancements in computational efficiency using the surrogate model while 583 

maintaining robust predictive performance. The overall results demonstrate the efficacy of the 584 

proposed inverse methodology in accurately capturing and predicting the plume concentration’s 585 

distribution and values, providing a quick tool for supporting optimal strategies for contaminated 586 

site remediation. 587 

Considering the factors that influence the accuracy of the results, one must keep in mind the 588 

petrophysical relationships that play a key role in determining the reliability of concentration 589 

estimates. These models may face some uncertainties that might have an impact on the inversion 590 

outcomes (Linde et al., 2017). Furthermore, in this work, simplifications have been made in the 591 

geophysical properties of the electrical model that have to be considered in real cases. Another 592 

factor that could affect the results is the setup of the CNN. For this reason, future researches will 593 

focus on a comprehensive analysis of the influence of CNN parameters and hyperparameters on the 594 

inversion procedure. Additionally, upcoming works will explore the potential application of the 595 

proposed inverse methodology in laboratory experiments. 596 

 597 
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