W) Check for updates

Wiley

Journal of Advanced Transportation
Volume 2024, Article ID 7967141, 27 pages
https://doi.org/10.1155/2024/7967141

WILEY

Research Article

Spatial Modeling of Travel Demand Accounting for
Multicollinearity and Different Sampling
Strategies: A Stop-Level Case Study

Samuel de Franca Marques ,! Cira Souza Pitombo ©,! and J. Jaime Gémez-Hernandez

'Department of Transportation Engineering, Sdo Carlos School of Engineering, University of Sdo Paulo, Sio Carlos, Brazil
2Institute of Water and Environmental Engineering, Universitat Politécnica de Valéncia, Valencia, Spain

Correspondence should be addressed to Samuel de Franga Marques; samuelmarques@usp.br
Received 4 February 2024; Revised 7 April 2024; Accepted 22 June 2024
Academic Editor: Socrates Basbas

Copyright © 2024 Samuel de Franca Marques et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Stop-level ridership data serve as a basis for various studies toward increasing bus patronage and promoting sustainable land use
planning. To address limitations found in previous studies, this study proposes a novel approach based on Geographically
Weighted Principal Component Analysis (GWPCA) and Ordinary Kriging to predict the stop-level boarding or alighting data
along bus lines in Sao Paulo (Brazil), considering four different sampling methods. The main contributions are as follows: by
accounting for the spatial heterogeneity of the predictor dataset, the GWPCA can identify the most important factor affecting
transit ridership even in bus stops with no information on boarding and alighting; the spatial modeling of stop-level ridership data
using GWPCA components as explanatory variables allows visualizing the spatially varying effects from predictors on ridership,
supporting the land use planning at a local level; GWPCA coupled with kriging simultaneously addresses the multicollinearity of
predictor data, its spatial heterogeneity, and the spatial dependence of the stop-level ridership variable, thus enhancing the
goodness-of-fit measures of the transit ridership prediction in unsampled stops; and a balanced sample on predictor data and well-
spread in the geographic space might be preferred to accurately estimate missing stop-level ridership data. In addition to solve the
lack of stop-level ridership data, supporting a reliable bus system planning, the proposed method indicates what predictors should
be addressed by policymakers to stimulate a transit-oriented development. The method can be successfully applied to other travel
demand variables facing a lack of data such as traffic volume in road segments and mode choice at the household level.

1. Introduction

Stop-level boarding and alighting data are important pieces
of information for decisions regarding land use and bus
network planning. Decisions on selecting the best location to
place a new bus stop, which bus stop could be removed along
a bus line and adjustments in the bus routes often rely on
stop-level ridership data [1]. In addition, optimal fleet sizing
can be achieved based on the route-segment-level loading
information, which is obtained from boarding and alighting
data [2]. Stop-level ridership data have also been used to
analyze stops’ level of service and sizing [3], as an exposure

variable for crime research [4, 5], and to support decisions
on where amenities, such as shelter, for example, should be
installed [6].

However, previous studies reveal that municipalities
often face limitations when collecting boarding and alighting
data [7-9]. To solve this problem, authors have relied on
various modeling approaches, but only a few of them
assessed the model performance when predicting the rid-
ership data in a nonsampled point [10-12]. Unlike some
travel demand information, data on explanatory variables
may be not so difficult to obtain, given the gradual advances
in geographic information systems and the relatively easy
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access to it. However, in addition to the low representativity
of missing data evaluations in stop-level research, these
studies face another problem: predictor data multi-
collinearity. The potential presence of high-correlated in-
dependent variables has been a matter of concern in most
ridership studies at the bus stop level [6-11, 13-18].
Detecting the existence of multicollinearity in predictor
datasets has also been carried out in the context of road
segments [19-21], traffic analysis zones [22, 23], rail stations
[24-26], and pedestrians [27].

Multicollinearity is often disclosed by analyzing the
variance inflation factor or the Pearson linear correlation
coefficient. Given a specified threshold, one of the variables
in a pair of high-correlated variables is eliminated from the
model [10, 11, 14-17, 23, 26]. Maintaining pairs of correlated
predictors can result in misleading interpretations of the
estimated parameters. For example, Kerkman et al. [9] re-
ported the effect from population in their case study to be
underestimated probably because of a high correlation be-
tween population and residential areas. In turn, Mucci and
Erhardt [28] found a potentially overestimated effect from
frequency on the ridership, which could be due to the
correlation between frequency and other predictors, such as
employment. At the same time, excluding a predictor that
has proven to affect the variable of interest may not be a wise
solution. When dealing with a lack of stop-level ridership
data, using all information available to predict boarding and
alighting at an unsampled point is fundamental to achieve
reliable estimates.

The main goal of this study is to perform the spatial
modeling and prediction of a stop-level ridership variable,
which has proven to be spatially dependent in previous
studies [10, 12, 15, 16, 29], accounting for multicollinearity
and the influence of the sampling strategy. As the predictor
data may present multicollinearity and spatial variation of
effects simultaneously, we propose a conjoint approach
based on Geographically Weighted Principal Component
Analysis (GWPCA) and Ordinary Kriging to improve the
ridership prediction. To the best of our knowledge, this is the
first paper applying GWPCA coupled with Ordinary
Kriging. In the literature, we have already found the com-
bination between the standard PCA and kriging [30], and
GWPCA as a single model or combined with other tech-
niques, such as clustering [31-36]. However, we have not yet
found the combined approach between GWPCA and Or-
dinary Kriging.

This study has five sections. The bibliographic review
that supported the main goal of the study is presented in
Section 2. Section 3 provides a detailed description of the
database used as a case study and the method steps applied.
Results are discussed in Section 4. Section 5 summarizes the
conclusions, some practical recommendations, limitations,
and topics for future research.

2. Research Background

Among the methods for collecting stop-level ridership data,
three can be cited: Automatic Passenger Counter (APC),
smart cart data, and boarding and alighting count survey.
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Table 1 summarizes stop-level ridership studies found in the
literature which have reported the collection method used.
Some limitations described by the authors regarding the
collection methods are also presented.

The collection method most available among published
studies is the APC. Limitations regarding this technology
refer mainly to the APC coverage and accuracy. As the APC
is not commonly installed in all buses at the same time,
authors have reported working with a sample of trips, with
extrapolated data (not accounting for the spatial dependence
of ridership data), or with data coming from a short period
of days, in which the APCs were assigned to all bus routes.
Regarding accuracy, the APC device is more efficient in
counting alightings than boardings, as some passengers may
bunch when entering the bus [13].

Smart card data, coupled with a Global Positioning
System (GPS) in the vehicles, can provide information of
interest at a lower cost. However, in this case, the accuracy
problem is inverted. If the passengers do not tap the card
when leaving the bus, assumptions have to be made to
estimate the alighting stop. Moreover, users that do not have
the card are not counted in either way.

Together with the smart card method, the boarding and
alighting survey had only one representative among the
cities used as a case study (Sdo Paulo, Brazil). As the col-
lection is performed manually, the accuracy may not be
a problem in the case of the boarding and alighting survey.
Conversely, the need for a qualified team of researchers, and
the high cost and time required for performing the survey
are the main problems faced by this type of collection. In Sdo
Paulo, only 8 lines out of more than 1 thousand routes were
visited.

From the limitations faced by municipalities in gath-
ering a comprehensive stop-level ridership dataset, the
boarding and alighting modeling has been used as a solu-
tion to predict missing ridership data. However, only a few
studies [11, 12, 28] have carried out a validation analysis,
using a validation sample aside from the calibration one.
Even when the research performs a missing data evalua-
tion, it tests only one type of sampling approach, ignoring
the effect that the selection of the calibration/validation
samples may have on the models’ prediction power. Table 2
summarizes a bibliographic review on validation analyses
over several studies addressing the spatial modeling of
a travel demand variable. Geographic units other than the
bus stop were also included. Stop-level studies shown in
Table 1 that have not performed a validation analysis are
omitted in Table 2.

In general, a validation step is found only at the bus stop,
road segment, and household levels. In the road segment
case, the traffic volume is only obtained directly in segments
provided with counting devices (sensors, radar), survey
stations, tolls, cameras, and others. The household level is
mostly related to mode choice issues. However, as
household-based surveys usually cover only a predefined
sample, these studies often face a lack of data on the variable
of interest. In short, the availability of travel demand data at
the bus stop, road segment, and household levels is defined
by budget constraints.
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In Table 2, there is a clear predominance of a single
sampling method: the random sampling. However, this type
of sampling may not be the best representation of the
phenomenon under analysis as the spatial distribution of
travel demand cannot be considered as purely random.
Often, higher passenger flows are concentrated around some
points in the spatial field considered [10, 44, 46]. The spatial
distribution of bus stops and sampled road segments, for
collecting travel demand data, is also concentrated
[22, 39, 41, 42, 46], following the main activity centers.
However, the selection of a sample for validation using
a random method may overlook the spatial distribution of
the geographic units under analysis.

Efforts to account for the spatial variation of collected
data can be found in Table 2. Eom et al. [39] used a sys-
tematic sampling method based on a 10-mile squared grid
system to select counting locations in a traffic volume case.
Marques et al. [46] and Marques and Pitombo [10] applied
a sampling method based on the density of points in the
original dataset to selecting traffic counting locations and
bus stops, respectively. Both methods were able to reproduce
the spatial concentration of data in the original dataset. In
addition, the method based on density of points does not
require dividing the spatial field into regular areas and is
more convenient to point-based data than the systematic
sampling.

Moreover, Wang and Kockelman [40] reported that
installing a counting device in a road segment can be
influenced, among other features, by level of congestion and
road design, which are intervening factors of traffic volume
[19, 20, 39, 41, 42]. In this case, a more accurate repre-
sentation of the phenomenon under analysis would be
a sampling method accounting for the spatial distribution of
both counted points and predictors of the travel demand
variable of interest. Another situation emerges when the
collected data are used to calculate a travel demand variable
in points outside the original spatial field; that is, the initial
data are extrapolated. Zhang and Wang [54], for example,
modeled the transit ridership data from one metro line in
New York and estimated this variable for another line to be
implemented. However, as real transit ridership data on the
new line were still not available, the authors could not assess
the prediction accuracy of the extrapolation carried out
by them.

The representativity and prediction power of the sam-
pling conditions discussed above have not been addressed in
the transportation engineering area so far. Another issue
related to travel demand modeling, but which has been given
little attention in the stop-level literature is the spatial
heterogeneity of predictors’ effects, discussed in
Subsection 2.1.

2.1. Spatial Heterogeneity of Predictors’ Effects. Spatially
varying impacts of predictors on travel demand variables
have already been explored in various spatial scales: traffic
volume in road segments [19, 41], passenger demand at the
TAZ level [22, 23, 49], stations [25, 26, 51], pedestrian [27],

and bus stop [10, 15]. Explanatory variables such as road
density [19, 22, 23, 26], residential land use [22, 27], com-
mercial land use [22, 26, 27], income [15, 23, 49], em-
ployment [22, 23], population [15, 19], trip frequency
[10, 15, 49], station distance [15, 22, 26, 27], and land use mix
[23, 27] have shown both positive and negative impacts in
more than one spatial scale. Although only a few authors
provided results on the statistical significance of the esti-
mated parameters [10, 15, 49], there are studies that tested
whether or not a great spatial variation of coefficients was
detected in the geographically weighted models
[10, 22, 23, 26, 27]. These authors consistently reported
a great variability in the effects from intervening factors,
indicating that spatial heterogeneity is, in fact, an important
feature of travel demand predictors.

Regarding the bus stop level, Marques and Pitombo [10]
found a statistically significant spatial variation in two
(overlapping bus stops and frequency) of the five predictors
used by them to model a transit ridership variable. A sig-
nificant spatial variation was detected even in a predictor
showing only negative effects, pointing out that spatial
heterogeneity does not necessarily mean the presence of
reverse signs.

2.2. Research Gaps. Based on the literature review con-
ducted, the following research gaps can be enumerated: (1)
in the scope of our literature review, no study was found
addressing the potential effect of the sampling method when
predicting a travel demand variable in a missing data point;
(2) only a few stop-level studies perform a validation
analysis, making it difficult to assess the performance of
proposed models when predicting the transit ridership in
a nonsampled stop; (3) the spatial variation of predictors’
effects on stop-level ridership has been little explored; and
(4) no method has been proposed to treat multicollinearity
of spatial predictor data without having to exclude highly
correlated predictors.

This study tackles all cited research gaps by proposing
the application of a Geographically Weighted Principal
Component Analysis (GWPCA) on transit ridership pre-
dictor data and using its components as predictors to stop-
level boardings and alightings. Four different sampling
strategies are considered, and the model performance is
assessed in both calibration (available data) and validation
(missing data) samples. The convenience of GWPCA in the
transportation engineering area relies on the fact that it
incorporates not only the predictor data multicollinearity
but also its spatial heterogeneity into the modeling. By doing
so, a novel contribution of GWPCA is to identify the most
important predictor to the travel demand variable of interest
at each point of the database, even the nonsampled ones.

3. Materials and Method

Figure 1 illustrates the research workflow followed in this
study. Except for the literature review, the remainder text
details each one of the highlighted blocks.
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FiGUre 1: Research workflow.

The case study takes place in Sdo Paulo (Brazil), the most
populous city in South America [55] and main economic
center of Brazil. Although there is a high representativity of
the individual motorized travel mode in Sdo Paulo, bus
transit remains as the most used public travel mode in the
city [56].

Two datasets compose the analyses carried out in the
study: First, a database containing 19,900 bus stops in Sdo
Paulo, and second, a database comprising 207 stops of four
bus lines in Sdo Paulo for which information on boarding
and alighting was available. SPTrans, the administrator of the
S3ao Paulo bus service, made available the 2017 results of
a boarding and alighting count survey along 8 lines of Sdo
Paulo, which, separated by direction, comprise 16 unidi-
rectional lines. Among them, four lines were selected for
a case study: line 6045-10-2 with 49 bus stops, line 6913-10-1
with 52 bus stops, line 809L-10-2 with 45 bus stops, and line
577T-10-1 with 61 bus stops. Two main criteria guided the
line selection: availability of data regarding all independent
variables and a reasonable number of bus stops. Figure 2
shows the location map of Sao Paulo, the lines visited by the
survey, and the lines chosen for our case study.

3.1. Dependent Variables. For each bus line, the original
variable of interest was the number of boardings or
alightings at its bus stops from 5h to 23h59 in a typical day
(Tuesday, 2017-11-07). After verifying that boardings and
alightings had a right-skewed distribution, a Box-Cox
transformation [57] was applied to their raw data. Thus, for
modeling purposes, the dependent variable was the
Box-Cox-transformed number of boardings, for some lines,
and alightings, for others (more details in Subsection 3.5).

3.2. Independent Variables. Based on a thorough biblio-
graphic review by Marques and Pitombo [10], we collected
predictor data from each bus stop in Sao Paulo using, as

a catchment area, the region defined by a radius of 400 m
centered in the bus stops [58]. Table 3 summarizes the
independent variables collected, their source, and some
descriptive measures.

Although the original dataset contained 19,900 bus
stops, 571 of them did not have information related to some
of the predictors listed in Table 3. Therefore, the method
steps described as follows were carried out using the
remaining 19,329 bus stops. The predictor data for these
19,329 stops can be accessed through the file provided in the
supplementary material section.

3.3. Principal Component Analysis. Before proceeding to
the data dimensionality reduction, two tests were
applied to confirm the suitability of the predictor dataset
(Table 3) to the principal component analysis: the Kai-
ser—Meyer-Olkin (KMO) measure of sampling adequacy
[60] and the Bartlett test of sphericity [61]. A good ad-
equacy of the dataset is achieved when the independence
hypothesis of Bartlett’s test is rejected [62] and the KMO
measure reaches a value close to 1 [63]. After confirming
that a data dimensionality reduction technique would be
useful to the predictor dataset, a traditional PCA [64] was
applied to it, and only components with eigenvalue
greater than 1 were retained.

3.4. Geographically Weighted Principal Component Analysis:
Addressing the Multicollinearity of Spatial Data. The Geo-
graphically Weighted Principal Component Analysis
(GWPCA) corresponds to a local version of the traditional
PCA [65]. In this case, a different PCA is carried out at each
point of the database, using weighted neighbor data. An
underlying assumption is that the principal component
structure follows a spatial pattern, as closer points are more
similar than distant ones [66]. Therefore, the loading values
vary from one geographic coordinate to another, and it is
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FIGURE 2: Case study databases.

possible to map the predictor having the highest absolute
loading value for all PCs, commonly called the winning
variable.

In the GWPCA (local PCA), the variance-covariance matrix
> of a dataset X varies as a function of the location i, with
coordinates (1,v), as shown in the following equation [65]:

Z(u, v) = X'W(u,v)X, (1)

where W (u,v) is a weight matrix representing the spatial
interaction between the database points. In this study, the
elements of W are given by the bisquare kernel (2) [65].

1-d2b?)’, ifd; <b,
( ij ) b dy j=1,2,...n, (2)

Wj(i) =
0, if d; >,

where d;; is the Euclidean distance between the neighbors i
and j and b is the bandwidth. The bandwidth can be thought
as the region in space within which the points are spatially
dependent. In our case study, this bandwidth is the number
of nearest neighbors. Using the same number of components
retained in the traditional PCA, the bandwidth was opti-
mized by a cross-validation goodness-of-fit measure as
described by Harris et al. [65].

Finally, the geographically weighted PCs can be written
as (3), in which each location i has its own loading L and
variance values V for the defined principal components [65].

Both spatial and nonspatial PCAs were based on correlation
matrices.

LVL' | (u;,v;) = Z(”i’ V;). (3)

Comparisons between GWPCA and PCA in this study
were based on the percentage of variance extracted by the
retained PCs and the bandwidth obtained in the GWPCA. If
the database spatial pattern yields a large bandwidth (e.g.,
close to the total number of points minus 1), results from
both approaches will be similar. Therefore, using GWPCA
may not be justified in this case. Conversely, a smaller
bandwidth would indicate the presence of a clear spatial/
local structure in the predictor dataset.

3.5. Modeling. In the modeling step, the GWPCs retained
from GWPCA and the Box-Cox-transformed boarding
and alighting variables went through a linear correlation
analysis using the Pearson correlation coefficient. Ini-
tially, a correlation analysis was conducted on all possible
combinations of dependent variable (boarding or
alighting) and geographically weighted principal com-
ponents (scores) using the complete line databases. Based
on an inspection of the highest correlations in the
complete line databases, only one interest variable
(boarding or alighting) was adopted for each bus line.
However, the most correlated GWPC could vary from one
sampling method to another as the GWPC most corre-
lated to each specific sample was always selected.
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Preliminary results including other correlated compo-
nents did not show a significant improvement in the
prediction accuracy. Therefore, only one component was
used for each case.

Having found the pairs of dependent variable and most
correlated GWPC, a Transformed Liner Regression (TLR)
was calibrated for each bus line. Afterward, spatial de-
pendence on the transformed regression was disclosed by
applying the Moran index [67] on its residuals. To calculate
Moran’s I, we adopted a weight matrix based on the distance
between points along the bus line, which is termed “network
distance.” Spatial dependence on residuals from the trans-
formed linear regression was addressed by a spatial in-
terpolator called Ordinary Kriging (OK) [68-70], in which
the data spatial variance was modeled using network dis-
tances and the exponential model [71]. The final estimates of
the conjoint approach between GWPCA and OK were
obtained through the following equation:

n

Z, =a+fS+ ZA,» e(x;), (4)
i=1

where « and f are parameters from the transformed re-
gression, S represents the scores of the most correlated
component, A are the OK optimum weights, e (x;) is the TLR
residual for the neighbor x;, and # is the number of sampled
neighbor points. Predictions from the nonspatial model
include only the first two terms on the right side of (4)
Coupling a regression model with the kriging interpolation
of residuals has been referred by some authors as “Re-
gression Kriging (RK)” [72, 73]. This is the term we use
hereby to refer to the estimates from (4).

3.6. Validation and Cross-Validation. The calibration
sample of previous studies varied from a minimum of 10% up
to 99% of the total data (Table 2). Percentages between 60%
and 90% represent half of the case studies. Based on this, we
selected a percentage of 70% for the calibration samples and
the remaining 30% for the missing data. Ridership estimates
were obtained for both calibration and validation samples.

Estimated values were back-transformed, so they could
return to the same scale as the observed values. Then, we
compared the performance of the transformed regression
with the Regression Kriging approach using three goodness-
of-fit measures: Root mean squared error, median of ab-
solute percentage error, and mean absolute error [74]. The
modeling and cross-validation/validation steps were re-
peated for different types of sample collection, which are
detailed in Subsection 3.7.

3.7. Sampling Strategies. Four sampling methods were
considered in the validation step: simple random sampling,
density of points, balanced sampling with geographical
spreading, and sample for extrapolation. They are described
as follows.

3.7.1. Simple Random Sampling. Considering a simple
random sampling, all points in the dataset have the same
probability of being chosen [75].

3.7.2. Density of Points. In the sampling strategy based on
the density of points, bus stops located in regions with a high
density of bus stops have a higher probability of being se-
lected [76]. An assumption underlying this method is that
areas with a high concentration of bus stops are also richly
served by bus lines. The higher the number of lines, the
higher the chance of having information on boarding and/or
alighting available.

3.7.3. Balanced Sampling with Geographical Spreading.
This method involves two concepts: balanced and well-
spread sampling. Knowing the population mean of a co-
variate that is related to the variable of interest, a balanced
sample on this covariate will choose points whose mean is
equal to the population mean [75]. Therefore, points are
selected in such a way that the variation of the covariate is
well-represented by the sample.

However, a balanced sample can result in a poor geo-
graphical spreading. To avoid clustering of points and assure
a good balancing on both the covariate values and geographic
coordinates, the balanced sampling with geographical spreading
accounts for these two factors simultaneously. This sampling
method was performed using, as a covariate, the principal
component most correlated to the Box—Cox transit ridership
variable. As it is required to know which component is the most
correlated prior to generating the sample, we initially used the
component most correlated to the transformed ridership data in
the complete line dataset. If the ridership data in the resulting
sample had a weak correlation with the component considered
(absolute value of Pearson correlation coeflicient lower than 0.3
[77]), another sample was generated using the component most
correlated to the ridership data in the sample based on the
density of points or the simple random sample, which are
methods more usual in practice than the extrapolation one.

3.7.4. Extrapolation. The sample for extrapolation seeks to
reproduce an extreme scenario in which the ridership data
from one line are intended to be used in the ridership
prediction for points from neighboring lines. In our case
study, the calibration sample in the extrapolation strategy
was generated as follows: 15% of points in the beginning and
15% of points in the end of each line were regarded as the
validation sample (missing data); the remaining 70% of bus
stops, belonging to the more internal segments of the case
study lines, were used as a calibration sample. The sequence
of method steps is illustrated in Figure 3.

3.8. Computational Tools. Table 4 summarizes the compu-
tational tools that supported each method step. Most of the
procedures were carried out in the open-source software R,
making it easier for the method to be replicated in other
databases.

4. Results and Discussion

This section is divided into five subsections: results from the
traditional and the geographically weighted PCA are pre-
sented in Subsection 4.1; afterward, we discuss the spatial
and nonspatial modeling outcomes. Subsection 4.3
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Ficure 3: Flowchart of method steps.

illustrates an example of how coeflicients from a geo-
graphically weighted principal component can be inter-
preted. Subsection 4.4 provides insights into the best
modeling approach and sampling strategy. A comparison
between results from this study and previous studies is
presented in Section 4.5.

4.1. Global and Local PCA. As shown in Table 5, the KMO
measure and Bartlett’s test confirmed the adequacy of the
predictor dataset to the principal component analysis.

In the PCA, 10 components were retained, which had an
eigenvalue greater than 1. These 10 PCs extracted 62.52% of
the variance in the original database. Nonrotated loading
values are presented in Table 6, highlighting the highest
absolute values of the loadings for each component.

PC1 contrasts high accessibility bus stops. Negative
loading values for the distances to the center, to the nearest
bus terminal, train, and metro stations, reveal that the higher
the distance between the bus stops and these elements is, the
lower the PC1 score will be. The educational level and in-
come are also important variables composing PC1. In turn,
PC2 represents commercial areas, with large amounts of jobs
and transport infrastructure, from both motorized and
active modes. Therefore, PC1 and PC2 could be named as
intra/intermodal proximity and central areas, respectively.
In short, PC3, PC4, PC5, PC6, PC7, PC8, PC9, and PC10 are
measures of population, industrial land use, age, bus net-
work spatial coverage, bus network temporal coverage, in-
stitutional areas (or areas with a low occupation density),
lower-income female population, and bus stop facilities,
respectively.

Although maximum loadings in Table 6 assume only
moderate values, this is not rare in PCA (see, for example,
Jolliffe [64]). Loading values depend on factors such as the
restriction adopted for maximizing the variance extracted by
each component and rotation [64]. Rules for discriminating
maximum loadings among moderate loading values, as the
one applied in Table 6, can be consulted in Jolliffe [64].

Figure 4 shows the winning variables for the first and
second principal components in the GWPCA. The winning
variable is the predictor with the highest absolute value in
the local PCA. All 19,900 stops have information on the
highest loading value and respective winning variable.
Loading values for each variable in the ten retained com-
ponents have been provided as supplementary material (see
supplementary material section).

In the global PCA, the first component was mainly
represented by eight variables (Table 6). This number in-
creases to 14 in the local PCA. While most variables
comprising PC1 are measures of intramodal and intermodal
integration, 20% of bus stops had the number of jobs as the
winning variable of GWPCI1. An interesting result is that
these stops are concentrated in the center of Sdo Paulo
(orange), which shows the highest employment densities in
the city.

Three other variables represented 10% or more of the bus
stops in GWPCI: the educational level, low standard hor-
izontal residential area, and entropy index. The education
level is highlighted in bus stops from the northwest and
southeast regions (green), while low standard horizontal
residential areas characterize stops in the south of Sdo Paulo
(light blue). Bus stops in the extreme south had a higher
importance of the variable entropy, probably because they
refer to areas with a high variation in the land use mix index.

In the GWPC2, 54.39% of the bus stops were mainly
characterized by a land use category (low standard vertical
residential area, or commercial, services, industrial, and
warehouse area) or by a variable related to the bus system
(number of bus stop shelters or bus lane length). Of these
predictors, only the length of bus lanes appears as one of the
main features composing the second component of the
global PCA. Figure 5 presents the percent of variance
extracted by GWPC1 and GWPCI plus GWPC2.

The first two components were able to account for more
than 30% of the variance in the original dataset for some bus
stops in the center and extreme south of Sao Paulo. GWPCl1
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TABLE 5: Suitability of the dataset for PCA.

Measure Value

Kaiser-Meyer-Olkin measure of sampling adequacy 0.776

Approx. x° 257281.195
Bartlett test of sphericity df 496

Sig. 0
TABLE 6: Principal component analysis on stop-level ridership predictor data (N=19,329).

Predictor PC1 PC2 PC3 PC5 PCé6 PC7 PC8 PC9 PC10
tot_lines 0.09 0.22 —-0.02 -0.21 0.38 -0.43 0.05 0.06 -0.09
headway 0.03 -0.07 -0.22 -0.13 -0.05 -0.09 -0.31 0.23 -0.02 -0.14
pop -0.02 0.03 0.43 0.32 0.02 0.06 0.04 0.08 0.06
low_standard_h_res -0.24 0.05 0.20 0.11 0.04 -0.05 —-0.03 -0.03 0.22
medhigh_standard_h_res 0.08 -0.39 0.15 -0.28 -0.01 -0.06 -0.05 -0.28 -0.03
low_standard_v_res -0.07 0.05 0.13 0.09 0.29 0.23 -0.18 0.41 0.02
medhigh_standard_v_res 0.21 -0.17 -0.09 0.33 0.02 0.01 0.20 0.22 -0.10
com_serv 0.12 0.32 -0.02 0.02 -0.18 -0.12 0.00 -0.19 0.09
res_com_serv 0.15 0.14 0.14 -0.02 -0.16 —0.08 0.11 0.02 -0.20
res_ind_wareh 0.07 -0.04 0.22 -0.27 -0.25 0.09 0.2 0.21 0.05 -0.37
comserv_indwareh 0.09 0.13 0.03 -0.41 -0.19 0.07 0.16 0.17 0.25 -0.03
institutional 0.10 0.08 —0.16 -0.06 —0.01 0.18 0.14 -0.47 —-0.01 0.16
no_predominancy 0.09 0.13 0.01 -0.13 0.05 0.06 -0.07 -0.32 0.10 0.08
entropy 0.19 0.10 0.35 -0.18 0.21 0.21 -0.04 0.11 -0.09
employment 0.18 0.27 -0.01 0.17 -0.24 —0.08 0.15 0.03 0.04
fem 0.01 —-0.05 0.07 -0.10 -0.24 -0.29 -0.12 0.40 -0.13
educ_level 0.28 -0.14 -0.22 0.10 0.07 0.02 0.05 0.05 —0.03
youth -0.16 0.11 0.07 -0.26 0.27 0.23 -0.04 0.21 -0.13 —0.08
older_adults 0.13 -0.14 -0.03 -0.43 -0.29 0.03 -0.23 0.20 0.09
perc_noveh -0.15 0.24 0.20 -0.14 0.03 -0.34 -0.20 -0.10 0.11 0.10
income 0.24 -0.19 -0.25 0.1 0.18 0.05 0.06 -0.02 0.01
bus_dist -0.29 0.11 -0.16 -0.17 0.02 0.16 0.11 0.03 -0.09
metro_dist -0.33 0.09 -0.16 -0.17 0.01 0.08 0.10 0.02 -0.07
train_dist -0.32 0.09 -0.13 -0.09 0.02 0.11 0.05 0.03 -0.09
center_dist -0.33 0.05 -0.14 -0.11 0.07 -0.02 0.06 0.06 -0.04
buslanes_length 0.18 0.36 -0.04 -0.13 0.00 0.14 -0.02 -0.14 -0.13
bikenet_length 0.18 0.23 -0.06 0.01 —-0.08 0.22 0.04 -0.13 -0.11
arterial_length 0.22 0.34 —-0.08 -0.12 0.03 0.09 0.03 -0.18 0.09
park_area -0.10 0.07 -0.23 —0.09 0.13 0.10 -0.03 -0.38 —0.21 -0.17
intersections —-0.01 -0.13 0.31 -0.19 0.10 -0.03 0.12 -0.39 0.35
sameline_overlap —0.01 0.02 0.20 0.01 0.23 -0.39 -0.26 -0.13 -0.46
n_shelters 0.07 0.12 -0.09 -0.17 0.34 -0.30 0.20 0.22 0.46
Proportion of variance (%) 20.89 7.48 6.57 4.40 4.05 3.72 3.53 3.45 317

Bold values highlight the highest values in each column.

alone could extract a portion of variance higher than 22% for
stops in the extreme south of the city. Recall that the da-
tabase with 32 predictors was collected based on a thorough
bibliographic review on factors affecting the stop-level
transit ridership. Therefore, overall, the winning variables
shown in Figure 4 may represent the most important fea-
tures influencing the bus patronage at each stop of Sdo
Paulo. Although information on boarding and alighting is
available only for a few bus stops, decisions regarding the
land use and bus network planning toward increasing the
number of passengers might benefit from the GWPCA
results.

Together, the 10 retained GWPCs managed to extract
from 64.94% to 76.36% of the variance in the original da-
tabase, surpassing the unique value of 62.50% obtained for
all bus stops in the traditional PCA. In addition, the

bandwidth of GWPCA covered the nearest 5,830 neighbors,
which means that only 30%, approximately, of all points
were used to calculate the local PCs at each bus stop. This
result confirms the existence of a spatial structure in the
predictor dataset and suggests the better adequacy of
GWPCA over PCA for addressing the multicollinear nature
of stop-level ridership predictors.

4.2. Nonspatial and Spatial Modeling. One major concern
addressed by this study is whether the sampling strategy
affects the spatial prediction of a transit ridership variable at
the bus stop level. The modeling step was carried out for four
different lines, separately, and considering calibration
samples based on four sampling methods. Figures 6, 7, 8, and
9 present the spatial variation of the transit ridership variable
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: A
°® N

GWPC1 winning variable o intersections (2)
o arterial_length (417) @ low_standard_h_res (3110)
o bikenet_length (148) e low_standard_v_res (768)
o buslanes_length (1978) @ medhigh_standard_h_res (650)
o educ_level (3183) @ metro_dist (117)
o employment (3983) o n_shelters (25)
@ entropy (1990) @ train_dist (1720)

5
@ income (1809)
[ Jkm o
(<]
°g

GWPC2 winning variable e institutional (339)
o arterial_length (332) @ low_standard_h_res (719)
@ bikenet_length (195) o low_standard_v_res (3235)
o buslanes_length (2143) e medhigh_standard_h_res (678)
o comserv_indwareh (2992) o medhigh_standard_v_res (1413)
@ educ_level (141) @ n_shelters (2453)
@ older_adults (222) @ no_predominancy (1007)

5 o employment (328) o pop (1013)
[ Jkm 4 ° o headway (558) o res_ind_wareh (372)
o income (1622) o youth (138)
FiGUre 4: GWPC1 and GWPC2 winning variables (N =19,900).
selected for modeling along calibration and validation Calibration samples of lines 6045-10-2, 6913-10-1, 809L-

samples of lines 6045-10-2, 6913-10-1, 809L-10-2, and 577T- 10-2, and 577T-10-1 had 35, 36, 31, and 43 bus stops, re-
10-1, respectively. Calibration samples are shown on the left ~ spectively. On the other hand, validation samples covered
and validation samples on the right. 14, 16, 14, and 18 stops, respectively. Based on a linear
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Variance accounted for
GWPC1 (%)

0 13.01 - 16.98 (8373)
0 16.99 - 22.16 (10825)
® 22.17 - 30.78 (702)

Journal of Advanced Transportation

Variance accounted
for GWPC1 and
GWPC2 (%)

0 23.49 - 27.45 (8297)
© 27.46 - 31.45 (9563)
® 31.46 - 39.87 (2040)

FiGURE 5: Local percent of variance (N =19,900).

correlation analysis, the number of alightings was the var-
iable of interest for lines 6045-10-2 and 809L-10-2, whereas
lines 6913-10-1 and 577T-10-1 had the number of boardings
as the dependent variable. As both boardings and alightings
correspond to data from an entire day (from 05 h to 23 h59),
higher passenger flows occur near activity centers and
densely populated areas. However, activity centers usually
have a higher concentration of the transit system, that is,
higher bus stop and bus line densities than residential areas.

It can be observed that each sampling method repro-
duced, in fact, their main objective, as described in Sub-
section 3.7. Table 7 summarizes the results from the
modeling step.

As the kriging interpolation was applied only on the
residuals from the Transformed Linear Regression, the
parameters of intercept and the GWPCs are identical for
both TLR and RK. These two parameters were statistically
significant in all scenarios analyzed (p value <0.05). The
GWPCs comprise information on 32 scaled predictors.
Therefore, interpretation of their effect on the corresponding
ridership variable is not straightforward. Subsection 4.3
discusses what insights can be drawn from a GWPC co-
efficient using the line 6045-10-2 results as an example.

4.3. Interpreting the Effect of a Geographically Weighted
Principal Component on Stop-Level Transit Ridership. To
assist the interpretation of the GWPCS5 effects on alightings,
Figure 10 presents the variable of interest along line 6045-10-
2, the scores, and the first and second winning variables of
GWPCS5. The spatial pattern of GWPC1, GWPC3, GWPC7,

and GWPC9 along the remaining case study lines is pro-
vided in Figures 11, 12, and 13. Score values for the 19,329
bus stops used in the case study were provided in the
supplementary material section.

A negative value for the parameter associated with
GWPCS5 (Table 7) reveals that stops with lower values of the
GWPC5 scores show higher volumes of alightings. The
number of alightings along line 6045-10-2 is low at its first
bus stops and increases as the bus travels the itinerary (from
northeast to southwest) until reaching a maximum value of
746 passengers in the last stop. A clear spatial dependence
can be visualized in this variable of interest. This pattern is
inverted when it comes to the GWPCS5 scores, which show
negative values in points with high passenger demand and
positive values in stops with a lower number of users.
Therefore, a negative parameter for GWPC5 is
understandable.

Four predictors appear as the winning variable of
GWPCS5 along line 6045-10-2, with a high representativity of
the no predominant land use feature. The second winning
variable (i.e., the variable with the second highest absolute
loading value) was more diverse than the first. This time,
three predictors prevailed: intersections, low standard ver-
tical residential area, and population. Given the negative
parameter obtained for GWPC5, predictors having a nega-
tive loading probably exert a positive effect on alightings,
while those showing a positive loading are likely to decrease
the number of alightings. Intersections and sameline_o-
verlap showed negative loading values in both first and
second winning variables. The number of intersections
characterizes walkable neighborhoods, while higher
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A

Simple random calib
alightings (pass)
00-19(7)
031-75(9)

© 86-129(8)

@ 154 -201 (4)

@ 229-313(7)

1
C— km

Density of points calib
alightings (pass)
00-22(7)
031-61(9)
© 76 - 129 (8)
@ 169 - 249 (6)
® 263 - 344 (5)

1
C— km

Balanced_spread calib
alightings (pass)

0 0-43(14)

O 52-100 (6)

0 114- 189 (7)

@ 201 -290 (7)

® 746 (1)

1
C— km

Extrapolation calib
alightings (pass)
06-24(5)
0 31-62(10)
0 75 - 129 (10)
@ 154 - 237 (6)
® 263-313(4)

1
C— km
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¥ Trip direction

Simple random valid
alightings (pass)
04-24(5)
032-52(3)
0 76-118(2)
@ 189-344(3)
® 746 (1)

1
C— km

Density of points valid
alightings (pass)
0 6-24(5)
038-75(3)
0100 - 121 (2)
@ 154 -201(3)
® 746 (1)

1
C— km

Balanced_spread valid
alightings (pass)
03-14(4)
0 38-42(2)
0 62-86(2)
@ 118-129(3)
® 305 - 344 (3)

1
1 km

Extrapolation valid
alightings (pass)
00-19(7)
061(1)
0 118-201 (3)
@ 249 - 344 (2)
® 746 (1)

1
C— km

FIGURE 6: Alightings along calibration and validation samples of line 6045-10-2.

concentrations of bus stops indicate a higher coverage of the
bus network. Other predictors with negative loadings in the
first winning variable are as follows: no predominant land
use area and low standard vertical residential area, pointing
to the positive contribution of a diverse land use and the low-
income population to the transit ridership.

4.4. Performance Evaluation of the Models and Sampling
Strategies. The decision of adopting a spatial approach was
attested by two methods: Moran’s I and goodness-of-fit
measures. Recalling the results summarized in Table 7,
Moran’s I confirmed the presence of a statistically significant
spatial dependence on residuals from the transformed linear
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Simple random calib
boardings (pass)
00-128(10)
O 144 - 342 (16)
0 381-637(7)
@ 846 - 1039 (2)
® 6232 (1)

4
C— km

Density of points calib
boardings (pass)

0 0-47(6)

0 74 -167 (9)

© 178 - 277 (10)

@ 304 - 422 (6)

® 561 - 637 (5)

4
C— km

Balanced_spread calib
boardings (pass)

0 0-79(6)

0 104 - 178 (8)

0 196 - 271 (11)

@ 304 - 422 (6)

® 477 - 637 (5)

4
C— km

Extrapolation calib
boardings (pass)
09-79(6)
0 104 - 167 (9)
0 188 - 277 (10)
@ 342 - 477 (5)
® 523 - 846 (6)

TN TN TN T T

4
C— km

* Trip direction
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T T T T T T

Simple random valid
boardings (pass)
09(1)
0 127-157 (5)
0 196 - 197 (2)
@ 249 - 304 (4)
® 422 - 607 (4)

4
C— km

Density of points valid
boardings (pass)

O 24-144 (4)

0 197 - 277 (5)

© 381 -523 (4)

@ 846 - 1039 (2)

® 6232 (1)

4
C— km

Balanced_spread valid
boardings (pass)
024-74(3)
0 128 - 188 (4)
© 277 - 437 (4)
@ 588-1039 (4)
® 6232 (1)

4
C—3 km

Extrapolation valid
boardings (pass)
00-4(3)
0 157-330 (9)
0 422-637(2)
@ 1039 (1)
® 6232 (1)

4
C—3 km

FIGURE 7: Boardings along calibration and validation samples of line 6913-10-1.

regression in most combinations of bus lines and sampling Table 8 presents the goodness-of-fit measures results,
strategies. However, after the kriging interpolation, the null ~ which are separated by calibration and validation samples,
hypothesis of no autocorrelation was accepted. sampling strategy, and bus line. The cases where Regression
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A ¥ Trip directio
N
Simple random calib Simple random valid
alightings (pass) alightings (pass)
0 0-40(12) o7(1)
0 43 -83(10) 0 17-31(4)
© 100 - 156 (6) ©39-57(3)
@ 327 - 437 (2) @ 68 -80(4)
@ 1372 (1) ®114-153(2)
2 2
C— km C— km
Density of points calib Density of points valid
alightings (pass) alightings (pass)
00-21(8) 07-23(2)
0 25-39(7) © 40-77(8)
© 57-100 (10) 0107 - 114 (2)
@ 110 - 156 (5) @ 437 (1)
®327(1) ® 1372 (1)
2 2
C— km C— km

Balanced_spread calib Balanced_spread valid

NN
o

alightings (pass) alightings (pass)
00-31(8) 0 17-25(4)
0 35-83(15) 0 27-33(2)
© 100 - 153 (6) 0 57-81(5)
@327(1) @ 152- 156 (2)
® 1372 (1) ® 437 (1)
2 2
C— km C—3 km
Extrapolation calib Extrapolation valid
alightings (pass) alightings (pass)
07-27(7) 00-1(2)
0 31-46(8) 017-23(3)
0 57-83(9) 0 42-77(5)
@ 100 - 153 (5) @ 110- 156 (3)
@ 327 - 437 (2) ® 1372 (1)
2 2
C—km C—km

FIGURE 8: Alightings along calibration and validation samples of line 809L-10-2.

Kriging performed better than the Transformed Linear Considering the three goodness-of-fit measures
Regression are highlighted in bold. Blank spaces in the RK  (MedAPE, RMSE, and MAE), there are 78 pairs of com-
columns refer to the cases where no spatial dependence was  parison between TLR and RK, as not all cases involved the
detected in the TLR model. application of RK. RK performed better than TLR in more
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Simple random calib
boardings (pass)
07-31(7)
0 36-57(11)
© 64-85(8)
@ 92 - 143 (12)
® 161 - 233 (5)

2
C—3 km

Density of points calib
boardings (pass)

0 8-32(6)

0 38-56(9)

© 66 -96 (11)

@ 99 - 143 (10)

® 161 -238(7)

2
C—3 km

Balanced_spread calib
boardings (pass)
00-31(7)
0 36-56(11)
© 64 -85 (10)
@ 94 -135(7)
® 165 - 238 (8)

2
C— km

Extrapolation calib
boardings (pass)
07-32(7)
0 36 - 56 (13)
0 69 - 85 (7)
@92-117(9)
® 161-238(7)

2
C—3 km

0 Trip direction
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Simple random valid
boardings (pass)
00-41(5)
O 56 -85 (4)
© 103 - 135 (4)
@ 177 - 188 (2)
® 222 -238 (3)

2
C—3 km

Density of points valid
boardings (pass)
00-19(3)
0 36-41(3)
© 53 -74(6)
@ 85-108 (3)
® 188 -233 (3)

2
C—3 km

Balanced_spread valid
boardings (pass)
0 7-41(5)
0 57-74(2)
©92-117(8)
@ 143 -161 (2)
® 223 (1)

2
C— km

Extrapolation valid
boardings (pass)
0 0-38(3)
057-72(5)
092-112(5)
@ 135-177 (4)
® 223 (1)

2
C—3 km

A A N A VPN S

FIGURE 9: Boardings along calibration and validation samples of line 577T-10-1.

than half of these 78 cases. The improvements of RK over
TLR, measured as the reduction in the error provided by
RK compared to TRL, vary from 0.27% (MAE of the line
577T-10-1 calibration sample in the extrapolation case) to

48.59% (MedAPE of the line 6045-10-2 validation sample
in the balanced and well-spread case). Improvements
provided by RK reach higher values in the validation
samples.
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v Trip direction

alightings
0 0-52(21)
0 53-129 (13)
© 130-237(8)
@ 238 - 344 (6)
® 345-746 (1)

GWPC5 winning variable
O intersections (4)
O low_standard_v_res (1)

O no_predominancy (42)

O sameline_overlap (2)

GWPC5 2nd winning ©
O intersections (16)

O low_standard_v_res (13)

O pop (11)
O res_ind_wareh (2)

O sameline_overlap (1)

O medhigh_standard_h_res (5)
O medhigh_standard_v_res (1)
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score GWPC5
@ -2.38--0.94(14)
O -0.93-0.00 (10)
O 0.01 - 1.53(15)
O 1.54-3.24(7)
@ 3.25-6.70 (3)

loading winning variable
@ -0.81-0.00 (8)
© 0.01-0.53 (14)
0 0.54-0.72 (16)
@ 0.73-0.83 (11)

loading 2nd winning
@ -0.41--0.29 (18)
0 -0.28 - 0.00 (14)
@ 0.01-0.39(17)

C— km

F1GURE 10: Spatial pattern of alightings and GWPC5 along line 6045-10-2.

The reason why RK did not perform better than TLR in
some spatially dependent cases may be the uncertainty in the
calculation of empirical and theoretical semivariograms. As
no optimization procedure was used to obtain the param-
eters from these semivariograms, RK results may not be the
optimum ones. Optimization techniques applied to kriging
with network distances emerge as an interesting topic for
future research.

As an effort to identify the sampling strategy having the
best performance, we initially searched for the smallest error
in each numeric column in Table 8, separated by the type of
sample (calibration and validation). This procedure yielded
24 cases for calibration samples and 24 for validation ones.
However, some of these cases had a number of elements
lower than 4 due to the absence of RK results (blank spaces
in Table 8). The RK modeling was not carried out for cases
with no autocorrelation detected in the residuals from TLR.
Maintaining only the 4-element comparisons, to allow a fair
comparison among cases, 36 comparison groups (18 from

calibration samples and 18 from validation ones) were listed.
Afterward, we identified the sampling strategy corre-
sponding to the smallest error in each group and summed
the number of times each sampling method had the smallest
error. Simple random, density of points, and extrapolation
had the best performance in five calibration cases each, and
the balanced and well-spread sampling stood out in three
cases. Regarding the validation samples, the balanced and
well-spread sampling showed the lowest error values in nine
cases, that is, half of the analyzed cases. The simple random
and extrapolation methods had the best performance in four
cases each, and the density of points in only 1 case. In
general, the balanced and well-spread sampling had con-
sistently good results in both calibration and validation
samples.

Splitting the comparison groups by bus line, it is more
difficult to find a pattern of the best sampling method in both
calibration and validation simultaneously. In most cases,
some sampling strategies performed better in calibration and
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score GWPC1
@ -7.64 - -4.28 (7)
0 -4.27 - -2.03 (12)
0 -2.02-0.00 (12)
© 0.01-3.12(13)
@ 3.13-7.33(8)

GWPC1 winning variables
O arterial_length (1)
O employment (14)
O entropy (11)
O income (12)
O low_standard_h_res (13)
O n_shelters (1)

C— km

loading GWPCI1 winning var
@ -0.61--0.58(7)
0 -0.57-0.00 (17)
© 0.01 - 0.42 (21)
@ 0.43-0.62 (7)
4
C— km
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score GWPC3
@ -8.35--4.25(6)
0 -4.24 - -1.49 (14)
O -1.48 - 0.00 (10)
@ 0.01 - 1.99 (15)
@ 2.00 -4.27 (7)

1 km

GWPC3 winning variables
O income (3)
O institutional (8)
O medhigh_standard_v_res (5)
O n_shelters (28)
O park_area (4)
© pop (3)
O res_ind_wareh (1)

1 km

loading GWPC3 winning var
@ -0.74 - -0.61 (15)
0 -0.60 - 0.00 (16)
© 0.01-0.55(11)
@ 0.56 - 0.70 (10)

4
C—3 km

FIGURE 11: Spatial pattern of GWPCI1 and GWPC3 along line 6913-10-1.

others in validation. However, analyzing the standard de-
viation of goodness-of-fit measures, we found that results
from calibration samples of different sampling methods
tended to show much less variation than validation samples.
This reveals that the sampling strategy had a higher influence
in the prediction accuracy of missing data compared to
calibration data. In line 6045-10-2, the balanced and well-
spread sample had the best validation results. The simple
random sampling stood out in the validation results from
lines 6913-10-1 and 809L-10-2. In line 577T-10-1, the ex-
trapolation and balanced and well-spread sampling were the
best ones in an equal number of times.

Although the sampling based on the density of points
is able to reproduce the spatial concentration of data in the
complete bus line dataset, one issue may arise from it:
missing data points located in regions with a low density
of calibration points will have no or a low number of
sampled neighbors inside the autocorrelation range to be
used in the estimation process (see, for example, Figure 6).

Another problem refers to the spatial variation of transit
ridership data: in our case study, all bus stops with
available data on both independent and dependent var-
iables were used in the analysis, including points repre-
senting bus terminals. Terminals often have a passenger
volume much higher than the adjacent neighbors. In the
sample based on the density of points, this “outlier” point
fell in the validation sample of the first three lines (Fig-
ures 6, 7, and 8), making it difficult for both RK and TLR
to perform well as a large portion of variation in the
dependent variable had not been accounted for when
calibrating the models’ parameters. This problem is also
seen in the extrapolation sample of the first three lines,
which are lines with a clear identification of the bus
terminal, located at the beginning or the end of the route.
However, the extrapolation sample had the best validation
results in the last bus line (Figure 9), probably because
large amounts of transit ridership are distributed along
more than one bus stop on this route.
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score GWPC7
@ -2.36 - -1.47 (5)
O -1.46 - -0.52 (8)
© -0.51 - 0.00 (10)
@ 0.01-0.79(17)
@ 0.80-2.10(5)

GWPC7 winning variables
O comserv_indwareh (1)
O employment (7)
O entropy (1)
O institutional (4)
O medhigh_standard_v_res (1)
O n_shelters (4)
O no_predominancy (19)
O res_ind_wareh (1)
O sameline_overlap (7)

2
C— km

loading GWPC7 winning var
@ -0.60 - -0.49 (18)
0 -0.48 - 0.00 (11)
©0.01-0.37(2)
@ 0.38 - 0.62 (14)

2
C— km
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score GWPC9
@ -1.47 - -0.55(11)
O -0.54 - 0.00 (4)
0 0.01 - 0.66 (14)
@ 0.67 - 1.41 (11)
@ 1.42-2.04(5)

GWPC9 winning variables

O arterial_length.PC9 (1)

O bikenet_length (2)

O buslanes_length (1)

O older_adults (4)

O headway (10)

O income (3)

O institutional (4)

O n_shelters (5)

O no_predominancy (3)

2 O res_com_serv (4)

— km O res_ind_wareh (8)

loading GWPC9 winning var
@ -0.62--0.53 (8)
0 -0.52 - 0.00 (15)
© 0.01-0.45 (11)
@ 0.46 - 0.72 (11)

2
1 km

FIGURE 12: Spatial pattern of GWPC7 and GWPC9 along line 809L-10-2.

4.5. Comparison with Previous Studies. Comparison of this
study with previous research can be done based on three
main topics: dimensionality reduction, spatially varying
effects, and goodness of fit. PC1, PC2, and PC3, from
Lindner et al. [30], gather features from PC3, PC1, and PC2
from the present study, respectively. They used the first
component (low-income population) as a predictor to
model the transit ridership at a TAZ level based on Kriging
with External Drift. However, as only sociodemographic
features were included in the original dataset, the effect of
bus service and transport system variables could not be
accommodated. On the other hand, the winning variables
from GWPCs in Table 7 (Figures 10, 11, 12, and 13) reveal an
important influence of predictors, such as intersections,
headway, and number of bus stop shelters on the transit
ridership at some stops.

Varying the most important predictor from one point to
another, as in GWPCA, is like having spatially varying effects
in a geographically weighted regression. Winning variables
in Figure 10, such as population, no predominant land use,
intersections, medium-high standard horizontal residential
area and overlapping, corroborates previous stop-level
studies [10, 15], which have shown that effects from these
predictors on transit ridership can vary spatially. However,
the need to exclude highly correlated predictors resulted in
a MedAPE of 33.72% and 34.45% from geographically
weighted regressions applied to the alighting variable along
line 6045-10-2 [15]. Both values are higher than the one from
the current study (33.20%).

In addition, averaged MedAPE results in validation
samples of the balanced and well-spread cases were lower
than a 30% missing data scenario from Marques and
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N
score GWPC1 score GWPC3
@ -3.92--2.38 (15) @ -4.21 - -3.05 (6)
0 -2.37 - -0.85 (10) 0 -3.04 - -1.46 (9)
0 -0.84 - 0.00 (8) 0 -1.45-0.00 (11)
© 0.01 - 2.20 (16) © 0.01 - 1.59 (25)
@ 2.21-4.10(12) @ 1.60 - 3.92 (10)
2 2
C— km C— km
GWPC1 winning variables GWPC3 winning variables
O educ_level (41) O institutional (42)
O employment (20) O n_shelters (12)
O res_ind_wareh (7)
2 2
C— km C— km
loading GWPCI winning var loading GWPC3 winning var
@ -0.61 - -0.50 (12) @ -0.76 - -0.68 (12)
0 -0.49 - 0.00 (23) 0 -0.67 - -0.61 (21)
©0.01-0.49 (22) 0 -0.60 - 0.00 (4)
@ 0.50-0.61 (4) © 0.01-0.48(3)
@ 0.49-0.76 (21)
2 2
C— km C— 3 km
FIGURE 13: Spatial pattern of GWPCI and GWPC3 along line 577T-10-1.
TaBLE 8: Performance of four sampling methods in predicting transit ridership at the bus stop level.
Line Samoling method Samole MedAPE (%)  MedAPE (%) RMSE RMSE MAE MAE
ping P TLR RK TLR RK TLR RK
Simple Calibration 52.55 51.07 82.83 71.86 65.91 54.67
Simple Validation 91.14 57.89 172.03 159.19 106.07 76.12
Density Calibration 56.96 57.80 89.14 81.73 69.29 56.58
6045-10-2 Density Validation 67.09 50.98 165.66 111.71 97.20 61.04
balanced_spread Calibration 63.29 52.31 118.76 102.86 75.28 55.94
balanced_spread Validation 64.58 33.20 104.03 77.15 77.38 45.94
Extrapolation Calibration 56.63 45.17 82.85 64.53 65.59 45.34
Extrapolation Validation 70.15 61.04 180.10 176.23 107.77 101.94
Simple Calibration 75.03 53.85 1033.96 1216.37 350.30 437.18
Simple Validation 56.36 45.61 175.46 189.76 153.62 146.90
Density Calibration 56.33 164.45 135.01
6913-10-1 Density Validation 52.28 1524.79 576.33
balanced_spread Calibration 47.80 137.34 117.06
balanced_spread Validation 75.61 1521.23 611.19
Extrapolation Calibration 41.16 38.74 173.46 139.97 135.57 112.77
Extrapolation Validation 39.46 51.90 1525.11 1526.19 530.93 542.54
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TasLE 8: Continued.
Line Sampling method Sample MedAPE (%)  MedAPE (%) RMSE RMSE MAE MAE
TLR RK TLR RK TLR RK

Simple Calibration 50.83 72.33 243.47 286.44 90.44 121.80

Simple Validation 75.13 61.48 44.99 82.01 40.55 48.66

Density Calibration 48.94 57.72 62.78 63.09 40.72 38.88

809L-10-2 Density Validation 46.02 63.46 368.53 362.67 147.13 168.35

balanced_spread Calibration 44.79 53.31 240.52 234.03 78.05 79.55
balanced_spread Validation 54.83 48.11 93.73 258.87 51.30 111.64

Extrapolation Calibration 47.11 87.42 44.87
Extrapolation Validation 52.65 350.42 124.44

Simple Calibration 41.18 39.42 51.13 49.34 39.01 36.37

Simple Validation 50.14 40.06 84.96 75.89 71.29 60.38

Density Calibration 34.66 31.00 52.72 49.24 41.54 37.18

577T-10-1 Density Validation 40.83 54.92 60.18 65.66 45.62 45.88

balanced_spread Calibration 38.55 45.73 58.54 55.97 44.74 41.66

balanced_spread Validation 35.79 40.07 47.11 47.25 37.66 39.16

Extrapolation Calibration 43.04 53.10 59.37 60.09 43.74 43.62

Extrapolation Validation 33.55 34.80 48.47 46.67 40.76 39.63

Note. MedAPE, RMSE, MAE, TLR, and RK are, respectively, median of absolute percentage error, root mean squared error, mean absolute error, transformed

linear regression, and regression kriging. The best results are in bold.

Pitombo [10], which used a geographically weighted re-
gression and a sample based on the density of points. These
outcomes were also better than the validation MedAPE
results from one of the 30% missing data scenarios analyzed
by Marques et al. [46], which, again, applied the point-
density sampling method, but used Ordinary Kriging for
prediction. This indicates a good performance of both RK
(GWPCA coupled with OK) and the balanced and well-
spread sampling over other modeling approaches and
sampling methods, respectively.

5. Conclusions and Final Considerations

This study proposed a two-step method based on Geo-
graphically Weighted Principal Component Analysis and
kriging interpolation to predict the number of boardings and
alightings in uncounted bus stops, considering the effect of
the sampling strategy. GWPCA was carried out using all bus
stops in Sao Paulo (Brazil), and the outcomes of it served as
an input to a regression modeling accounting for the spatial
dependence of the stop-level ridership data.

Outcomes from the spatial PCA can be useful to travel
demand modeling in two ways: (1) by highlighting the most
important intervening variables even in points with no
ridership data, and (2) by acting as a predictor to the travel
demand estimation in unsampled points. In our case study,
the contribution of spatial interpolation was higher in the
missing points than in the calibration ones. In addition,
validation results were more sensitive to the sampling
strategy compared to the calibration results. When selecting
the most appropriate sampling design, the spatial pattern of
transit ridership data may play an important role. The
balanced sampling with geographic spreading had the best
validation results in bus lines with different spatial distri-
butions of stop-level passenger volume. The simple random

sampling appears as a possible solution when no knowledge
on the most correlated predictor is available. In turn, ex-
trapolation could be recommended for cases where extreme
data values are not highly concentrated in the spatial field
considered. Although only four lines could be selected to the
case study, they were able to reproduce spatial patterns of
transit ridership common to various bus lines in the city.

The method proposed is not restricted to stop-level
ridership cases. It can successfully support predicting
missing data in other geographic units and travel demand
variables. An advantage of GWPCA is the fact that, once it is
generated, it can be used as a basis for various additional
analyses, such as classification, clustering, and creation of
indexes. Exploring other contributions of GWPCA is rec-
ommended in future research.

Data Availability

The datasets used to support the findings of this study are
included in supplementary materials. The datasets used to
collect the predictors can be found on the GeoSampa website
(https://geosampa.prefeitura.sp.gov.br/PaginasPublicas/_
SBC.aspx), the 2017 Origin and Destination Survey website
(https://transparencia.metrosp.com.br/dataset/pesquisa-
origem-e-destino), and the SPTrans website (https://www.
sptrans.com.br/desenvolvedores/). The transit ridership
dataset analyzed during the current study is not publicly
available due to the fact that the data are held by SPTrans but
can be requested from it through the Electronic Citizen
Information ~ System  (https://esic.prefeitura.sp.gov.br/
Account/Login.aspx).
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