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Abstract

Space-temporal distribution of the contaminant plumes and aquifer properties is critical for

groundwater management. However, most previous studies have focused on point source

identification, barely exploring the identification of non-point sources. Xu et al. (2022) pro-

posed to identify non-point sources but did not consider uncertainties in aquifer properties

and release mass loading. In this work, we have implemented an application of the local-

ized ensemble smoother with multiple data assimilation (LES-MDA) for the simultaneous

identification of Gaussian hydraulic conductivities and non-point source parameters includ-

ing Gaussian release mass-loading by assimilating both piezometric head and concentration

observations in a synthetic confined aquifer. The results prove that the LES-MDA is not

only capable of providing accurate identification of the spatial architecture of non-point

contaminant sources and related release parameters (such as initial release time, and release

duration) but also spatially heterogeneous release mass-loading and hydraulic conductivities.
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1. Introduction1

Accurate prediction of contaminant plumes in time is critical for groundwater contam-2

ination remediation and management. When contaminant sources and other hydrologic3

information are known, contaminant plumes can be predicted based on a solute transport4

equation calculation (Gómez-Hernández and Wen, 1994; Li et al., 2011a,b). However, in5

reality, due to scarce measurement data, technological limitations, and the nature of con-6

cealment and lag of contaminant transport (Russell and Shogren, 2012), it is a huge challenge7

to figure out contaminant source information (e.g., location, shape, release concentration,8

release duration) and aquifer properties.9

In the past, source identification studies mainly focused on contaminant source parame-10

ters and rarely considered uncertainties in aquifer properties simultaneously due to compu-11

tational burdens and technical limitations (Gorelick et al., 1983; Aral et al., 2001; Sun et al.,12

2006; Dokou and Pinder, 2009; Yeh et al., 2014; Xu and Gómez-Hernández, 2016; Cupola13

et al., 2015; Ayvaz, 2016). However, uncertainties in aquifer properties are widespread in14

reality and well-identified (Xu et al., 2013a,b; Xu and Gómez-Hernández, 2015; Zhan et al.,15

2022), and they should be taken into account in the identification of source information. Re-16

cently, with the development of computational techniques and inverse modeling approaches17

(Wen et al., 1999; Zhou et al., 2014), considerable research has sprung up on the topic of18

simultaneous identification of source and aquifer parameters. For example, Wagner (1992)19

uses nonlinear optimization to simultaneously estimate groundwater flow model parameters20

and single point source properties in a two-zone aquifer; Datta et al. (2009) developed an21

optimization algorithm for simultaneous pollution source identification and parameter es-22

timation in groundwater systems; Koch and Nowak (2016) proposed an inverse Bayesian23

methodology to determine the permeability and the DNAPL contaminant architecture en-24
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sembles generated from a stochastic multiphase model in a 3D aquifer; Xu and Gómez-25

Hernández (2018) proposed a variant of ensemble Kalman filter (EnKF), restart-EnKF, to26

simultaneously estimate the source information and hydraulic conductivities in a synthetic27

aquifer, and later, Chen et al. (2018) and Chen et al. (2021) applied it for the joint identifica-28

tion of contaminant source, aquifer geometry and aquifer properties in sandbox experiment;29

Mo et al. (2019) proposed to use a deep neural network (DNN) coupled with a version of30

the ensemble smoother algorithm to estimate source information and high-dimensional con-31

ductivities. later, Zhang et al. (2020) developed a variant of the above method for the joint32

estimation of multi-component reactive parameters and contaminant transport information;33

Wang et al. (2022) constructed a kriging surrogate model algorithm to simultaneously iden-34

tify source characteristics and sub-zone aquifer parameters; Dodangeh et al. (2022) combined35

artificial neural networks (ANN) with a variant of the EnKF for the identification of source36

properties with anisotropic conductivities in a 3D coastal aquifer. The reader is referred to a37

recent review paper by Gómez-Hernández and Xu (2022), which analyzed nearly 160 papers38

published since 1981 on contaminant source identification (Sonnenborg et al., 1996; Duffy39

and Brandes, 2001; Michalak and Kitanidis, 2002, 2003, 2004a,b).40

Note that, in terms of the discharge scale of the contaminant source, the source can be41

classified into point and non-point. Point contaminant sources are small in scale and normally42

emit through a fixed pipeline, while non-point sources are relatively large in scale and have a43

random release (Ice, 2004). However, as mentioned above, most studies focus on point source44

information identification, while only a few studies have been done on non-point source iden-45

tification. Even so, in these studies, the non-point sources are simply treated with a regular46

spatial architecture. For instance, both Jin et al. (2009) and Mahinthakumar and Sayeed47

(2005) estimated an areal source, which was assumed to be a rectangular prism with uniform48

concentration, using a genetic algorithm-local search algorithm; Mirghani et al. (2009) char-49

acterized a rectangular non-point source by identifying centroids, whose sizes were assumed50
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to be known, using a parallel simulation-optimization approach; Ayvaz (2016) estimated a51

non-point source using a hybrid simulation-optimization approach, where the spatial archi-52

tecture was randomly generated by the juxtaposition of a few aquifer discretization cells;53

Xu et al. (2022) simultaneously characterized a non-point source approximated by an ellipse54

and its relative release information using the ensemble smoother with multiple data assim-55

ilation (ES-MDA); Pan et al. (2021) simultaneously identified release intensities in three56

potential non-point sources and a hydraulic conductivity field containing four homogeneous57

zones using a deep regularization neural network-hybrid heuristic algorithm.58

However, unlike the point source identification, the studies on the non-point source identi-59

fication still only remain on the source location, homogeneous release intensities and spatial60

architecture (treated as homogenous or divided into several homogeneous subzones (Pan61

et al., 2021)). To the best of our knowledge, no study has considered the uncertainty in62

the spatial distribution of both the non-point source release mass-loading and the hydraulic63

conductivities. Delineating both parameters at high resolution provides valuable insights64

into the distribution and extent of contamination. It helps us understand the distribution of65

contamination and its extent, enabling us to allocate resources more efficiently and effectively66

and is crucial for further effective remediation planning and decision-making. Moreover, once67

the number of required updated unknown parameters is large, it leads to an increased com-68

putational cost, which can be mitigated by reducing the ensemble size. However, employing69

a smaller ensemble size in ensemble-based data assimilation algorithms brings about certain70

disadvantages and raises concerns (e.g., filter inbreeding and spurious correlation), which can71

be solved by the localization technique (Xu et al., 2013b). Therefore, in this work, we further72

demonstrate the applicability of the localized ensemble smoother with multiple data assimi-73

lation (LES-MDA) for the simultaneous identification of spatial architecture of an elliptical74

non-point source contaminant source and both spatially heterogeneous release mass-loading75

and hydraulic conductivities by assimilating piezometric heads and concentrations with a76
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small ensemble size.77

The remainder of the paper is organized as follows: Section 2 presents the groundwater78

flow and solute transport equations and the algorithmic description of the LES-MDA. The79

test and analysis of the method in a synthetic case are shown in Section 3 and Section 4,80

respectively. Finally, the paper concludes with the discussion presented in Section 5 and a81

comprehensive summary provided in Section 6.82

2. Methodology83

2.1. Groundwater flow and solute transport84

In this work, we assume that inert contaminants spread under a transient groundwater85

flow, only attributed to advection and dispersion transport mechanisms. Hence, the gov-86

erning equations for the state forecast include the three-dimensional transient groundwater87

flow and contaminant transport shown in Eq. (1) (Bear, 1972) and Eq. (2) (Zheng, 2010),88

respectively:89

Ss
∂H

∂t
= ∇ · (K∇H) +W, (1)

where Ss is the specific storage [L−1]; t is the simulation time [T]; K is the hydraulic con-90

ductivity [LT−1]; ∇· is the divergence operator; ∇ is the gradient operator; W is sources and91

sinks per unit volume [T−1]; and H is the hydraulic head [L] generating the flow velocity92

vector through v = (−K∇H)/θ in time, and it is treated as an input to the solute transport93

equation:94

∂(θC)

∂t
= ∇ · [θ(Dm + αv) · ∇C]−∇ · (θvC)− qsCs, (2)

where C is the contaminant source concentration [ML−3], regarded as the state variable95

together with H for subsequent assimilations in this study; t is the simulation time [T]; θ96

is the effective porosity [-]; Dm is the molecular diffusion coefficient [L2T−1]; α denotes the97

dispersivity tensor [L]; qs denotes the volumetric flow rate per unit volume [T−1]; and Cs98
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denotes the concentration of the sources or sinks [ML−3].99

In particular, the transient groundwater flow equation is solved numerically using the100

MODFLOW code with finite differences (McDonald and Harbaugh, 1988); and the contam-101

inant transport equation is solved using the MT3DMS code (Zheng, 2010).102

2.2. The localized ensemble smoother with multiple data assimilation103

The ensemble smoother (ES) proposed by Van Leeuwen and Evensen (1996) is proven104

to be optimal to address linear state-transfer equations with Gaussian error statistics by105

assimilating all observations for all time steps at once, however, it is failed for non-linear106

problems (e.g., Evensen and Van Leeuwen, 2000; Crestani et al., 2013). To deal with this107

problem, the ES-MDA proposed by Emerick and Reynolds (2013) is developed by combining108

an iterative scheme with the ES. It also contains two main steps in nature to the ES algorithm:109

forecast and update. In the forecast step, the forecast equation is essentially the same as110

the ES, where the forecast state variables at the jth assimilation iteration U f
j are forecasted111

based on initial state variables U0 and parameters obtained from the last iteration P a
j−1 by112

the state forecast equations ψ(·) involving groundwater flow equation and solute transport113

equation introduced above:114

U f
j = ψ(U0, P

a
j−1), (3)

.115

In the update step, the updated parameters at the jth assimilation iteration P a
j are refined116

based on the parameters at the last assimilation iteration P a
j−1 and the discrepancy between117

forecasted state variables U f,o
j and observations at observation locations U o +

√
ajεj.118

P a
j = P a

j−1 +Kj(U
o +

√
ajεj − U f,o

j ), (4)
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with119

Kj = GPU,j (GUU,j + ajR)
−1. (5)

where Kj is the Kalman gain, a function of the cross-covariance between parameters and120

state variables GPU,j at the observation locations at all time steps GPU,j, and the covariance121

between state variable observations at all time steps GUU,j. εj denotes the observation error122

with observation error covariance R, being magnified by a sequence of inflation coefficient aj123

due to the multiple data assimilation iterations. Note that the sum of one over the inflation124

coefficient should be equal to 1, and the inflation coefficients for observation error will be125

equal to the number of iterations, following the recommendations by Emerick and Reynolds126

(2013). They have shown that using decreasing inflation coefficients only leads to marginal127

improvements compared to using the inflation coefficients equal to the number of iterations.128

Na∑
j=1

1

aj
= 1 (6)

where Na is the number of the iteration steps. As mentioned, the objective of this work is129

to simultaneously identify continuous heterogeneous hydraulic conductivities and non-point130

contaminant source parameters, including initial release time, release duration, source spatial131

architecture, and heterogeneous spatial distribution of release mass-loading by assimilating132

piezometric heads and concentrations, besides, the source spatial architecture is approxi-133

mated by an ellipse. Therefore, the augmented state variable vector U is built containing134

both piezometric heads H and concentrations C; and the augmented parameter vector P is135

built containing the x and y coordinates of the ellipse’s center point Xs [L] and Y s [L], the136

semi-major and semi-minor axes Ra [L] and Rb [L], the clockwise rotation angle B [◦], the137

initial release time Ti [T], the release duration ∆T [T], the heterogenous log mass-loading138

rate lnM [MT−1] and log-conductivities lnK [LT−1]:139
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U =

[
H C

]⊺
. (7)

P =

[
Xs Y s Ra Rb B Ti ∆T lnM lnK

]⊺
. (8)

Xu et al. (2021, 2022) have demonstrated that the ES-MDA bears the ability to identify140

Gaussian distributed conductivities or simple non-point source information. However, since141

ES-MDA is an ensemble-based data assimilation algorithm, it suffers from the same drawback142

when the ensemble size is considerably smaller than the number of measurements to be143

assimilated, that is, the ensemble covariance emerges as an unreal correlation (Chen and144

Oliver, 2010). The spurious correlations enlarge the update region by using observations145

that would not be correlated with the updates, and although the analysis error decreases in146

the vicinity of the observations, the harm of the increased error across the whole domain is147

much greater than the weak benefit (Lorenc, 2003). To remove the spurious correlations, the148

localization is applied in the covariance derived from the Kalman gain, which controls the149

extent of correlations in the empirical cross-covariance between model parameters and state150

variables, or between state variables. Thus, Eq.5 can be replaced by:151

Kj = γPU,j ◦GPU,j(γUU,j ◦GUU,j + ajR)
−1, (9)

with152

γPU(e) = γUU(e) =


−1

4
( e
f
)5 + 1

2
( e
f
)4 + 5

8
( e
f
)3 − 5

3
( e
f
)2 + 1 for 0 ⩽ e ⩽ f ;

1
12
( e
f
)5 − 1

2
( e
f
)4 + 5

8
( e
f
)3 + 5

3
( e
f
)2 − 5( e

f
) + 4− 2

3
( e
f
)−1, for f < e ⩽ 2f ;

0 for e > 2f.

(10)

where γPU,j and γUU,j denote the localization functions; ◦ denotes the Schur product; e153
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denotes the Euclidean distance, and f denotes a distance parameter. In current applications154

of the localization, the fifth-order distance-dependent localization function of Gaspari and155

Cohn (1999) (see Eq.10) is widely used to remove spurious correlations with respect to the156

updates of continuity (e.g., Hamill et al., 2001; Houtekamer and Mitchell, 2001; Houtekamer157

et al., 2005).158

2.3. Testing Criteria159

As testing criteria, first, we evaluate the degree of uncertainty of the updated range of160

non-point sources using the probability of the source location, which is a fraction of the161

cumulative value of the indicator function. When the probability is getting close to one, this162

indicates that the uncertainty is getting vanishing, and vice versa.163

Pi =
1

Nr

Nr∑
j=1

Ij,i, (11)

where Pi is the probability of source location at cell i; Nr is the number of the realizations;164

Ij,i is the indicator function at cell i for the jth realization, with a value equal to 1 if the165

source is present, and 0 otherwise.166

Second, we use the average absolute bias (AAB) to measure the accuracy of the updated167

source parameters reproducing the reference one by calculating the average absolute misfit168

between the updated source parameters and the reference value, for each of the source169

parameters of interest except for lnM and lnK as:170

AAB =
1

Nr

Nr∑
j=1

|Sj − Sref | , (12)

where Sj is the source parameter value (except for lnM and lnK) for the jth realization;171

Sref is the corresponding reference source parameter value. Specifically, the calculation of172
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the AAB for lnM and lnK can be written as:173

AABi =
1

Nr

Nr∑
j=1

|Sj,i − Sref,i| , (13)

where Sj,i is the value of lnM and lnK at cell i for the jth realization; Sref,i is the value of174

the reference lnM and lnK at cell i.175

Third, we use the ensemble spread (ESp) to evaluate the degree of variability of the176

updated source parameters by calculating the square root of the variance of updated source177

parameters, for each of the source parameters of interest except for lnM and lnK as:178

ESp =
√
σ2
S. (14)

where σS means the ensemble variance of the source parameters (also except for lnM and179

lnK). Specifically, the calculation of the (ESp) for lnM and lnK can be written as:180

ESpi =
√
σ2
Si
. (15)

where σSi
means the ensemble variance of lnM and lnK at cell i.181

Notice that if the ratio ESp/AAB is close to 1, it indicates the performance of the method182

without filter inbreeding (Xu et al., 2013b, 2022).183

3. Application184

A two-dimensional synthetic confined aquifer is constructed on a grid of 80 × 80 × 1 cells185

and the size of each cell is 10 [L] × 10 [L] × 80 [L]. A sequence multivariate multi-Gaussian186

simulation code —the GCOSIM3D program (Gómez-Hernández and Journel, 1993) is used187

to generate the reference lnK field (see Figure 1), following a multiGaussian distribution188

with the parameters given in Table 1.189
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Figure 1: Reference lnK with boundary conditions and suspect contaminant area. The black line indicates
the suspect contaminant area for S1 and S2. The red line indicates the suspect contaminant area for S3.

Table 1: Parameters of the random functions used to generate the lnK field.

Mean Std.dev. Variogram λmax λmin Angle
lnK -2 1 Spherical 300 200 135
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In the simulation of transient groundwater flow and solute transport, the east and west190

boundaries are set as prescribed heads with constant values of 80 [L] and 200 [L], respec-191

tively; and the north and south boundaries of the aquifer are impermeable. The initial192

piezometric head, excluding both the east and west boundaries, is set to 120 [L], and the193

initial concentration is 0 [MT−3] throughout the domain. Additional parameters for the194

solute transport are set to be homogeneous: porosity of 0.3 [-], longitudinal dispersivity of195

3.0 [L], and transverse dispersivity of 1.5 [L]. The shape of the reference non-point source196

(see Figure 2) is treated as an ellipse generated with the parameters shown in Table 2. We197

can also learn from this that the contaminants start to release at time 1381.5 [T] and the198

duration of the release is 3223.5 [T]. The release mass-loading rates in the source area follow199

a multiGaussian distribution and are also generated using the GCOSIM3D program with200

the parameters in Table 3. We deploy 30 observation wells to record the observations of201

both piezometric heads and concentrations and 2 verification wells for prediction verification202

(see Figure 2). The observational errors are set to zero mean and 0.01 variance. The total203

simulation time for both groundwater flow and contaminant transport is set to 15350 [T],204

and evenly discretized into 100 time steps. Notice that the observations of both piezometric205

head and concentration are only recorded at the first 50 time steps (at time 7675 [T]).206

In this work, to evaluate how well LES-MDA performs for non-point source identification207

compared to the Localization-Free, we have designed three scenarios for the evaluation, as208

shown in Table 2. The ensemble size is the same for scenarios S1-S2, with a value of 130; the209

ensemble size for scenario S3, however, is 500 for comparison. Scenarios S1-S2 differ in that210

in scenario S1 a localization technique is employed to avoid the effect of spurious correlations211

induced by the small ensemble size (Xu et al., 2013b), and the distance parameter f is treated212

as 140 [L] for lnM and 470 [L] for lnK. Note that the localization technique is only used213

for the lnM and lnK update. Three different numbers of assimilation iterations (0, 1, and214

7) for all scenarios are tested. Note that iteration 0 indicates ES without multiple data215
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Figure 2: Reference lnM field of contaminant source and well locations. The observation wells correspond
to red triangles and two verification wells correspond to black squares.

Table 2: Definition of scenarios

Scenario S1 S2 S3
Number of realizations 130 130 500
Localization

√

Number of assimilation
iterations [l]

0,1,7 0,1,7 0,1,7

Contaminant source shape Ellipse
x-coordinate of center point
of source[Xs]

200

y-coordinate of center point
of source[Y s]

560

Semi-major axis of source[Ra] 150
Semi-minor axis of source[Rb] 80
Clockwise rotation angle[B] 30
Initial release time[Ti] 1381.5
Release duration time[∆T ] 3223.5

Table 3: Parameters of the random functions used to generate the lnM field.

Mean Std.dev. Variogram λmax λmin Angle
lnM 4.605 1 Spherical 300 200 135
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Table 4: Suspect range of contaminant source parameters

Parameters Suspect Range
Xs 160-260
Y s 480-580
Ra 110-210
Rb 50-120
B 0-90
Ti 0-4451.5
∆T 1688.5-9363.5

assimilation. The suspect parameters related to the non-point source are listed in Table 4.216

The initial ensemble consists of 130 realizations in scenarios S1-S2 and 500 realizations217

in scenario S3, generated from a uniform distribution (see Table 4). Xs is randomly chosen218

from the uniform distribution u[160, 260], Y s from u[480, 580], Ra from u[110, 210], Rb from219

u[50, 120], B from u[0, 90], Ti from u[0, 4451.5], and ∆T from u[1688.5, 9363.5]. Note that220

the initial ensembles of parameter realizations for scenarios S1-S2 are the same. These initial221

geometric parameters generate an initial ensemble of the elliptical source area and the suspect222

contaminant source area shown in Figure 1. Note that after generating the initial ensemble223

of the elliptical source area, the initial ensemble of lnM is subsequently generated using the224

same procedure employed for the reference lnM . Additionally, the initial ensemble of lnK225

is generated using the same procedure employed for the reference lnK.226

4. Results227

Figure 3 shows the evolution of the probability of the source location and the underlying228

potential source area as the number of assimilation iterations increases. In all scenarios, the229

initial ensemble of probabilities exhibits significant uncertainty. However, the uncertainty230

decreases with increasing data assimilation and eventually vanishes almost completely by231

the seventh iteration, where the probabilities are equal to 1 for most of the potential source232

areas. In addition, we can notice that the potential source areas for scenarios S1 and S3 are233
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closer to the reference source area than those for S2, indicating that the LES-MDA is more234

efficient and outperforms the ES-MDA when for a small ensemble size in the context of the235

source area identification.236

Figures 4, 5, and 6 show the ensemble mean, AAB and ESp of lnM released from the237

source for all three scenarios, before and after assimilating the observations at iterations 0,238

1 and 7, respectively. When comparing Figure 4 to Figure 2, it becomes apparent that the239

identification of lnM improves as the number of data assimilation iterations increases, espe-240

cially for S1 and S3, and the updates are close to the reference lnM at iteration 7, although241

the lnM for S1 is more concentrated toward the southwest than that for S3. In contrast,242

the update of lnM for S2 is underestimated due to the numerical nature of the covariance243

calculation due to the small ensemble size. Figure 5 reveals that the updates in S1 more244

accurately reproduce the reference lnM compared to those in S2. This improvement in accu-245

racy in S1 is attributed to the implementation of the localization technique, which effectively246

eliminates spurious correlations induced by the small ensemble size. Although the updates247

for S1 are not as good as those for S3, the computational burden is substantially reduced.248

Figure 6 demonstrates that the underestimation of the uncertainty in S2 is removed by the249

localization employed in S1. However, the uncertainties of the updates in S1 remain slightly250

larger than those in S3. This discrepancy arises from the application of the localization in251

the calculation of the cross-covariance.252

Figure 7 shows the evolution of the AAB and ESp/AAB of the ensemble values of source253

parameters including the geometrical parameters (Xs, Y s, Ra, Rb, B) and the release tem-254

poral parameters (Ti, ∆T ) for all scenarios. For all source parameters, we can see how, for255

S1 and S3, the AAB of the source parameters decreases as the number of data assimilation256

iterations increases, while for S2 the AAB of most of the source parameters becomes larger.257

In addition, the ratio ESp/AAB for the source parameters is too small for S2, indicating258

small filter inbreeding, while for S1 and S3 the ratio ESp/AAB is closer to 1 than for S2. It259
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eters updated after the 0th, 1st, and 7th assimilation iterations. Note that the initial ensembles of parameter
realizations for scenarios S1-S2 are the same.
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Figure 4: Scenarios S1-S3. Ensemble mean of lnM for the initial and updated ensemble of realizations after
the 0th, 1st, and 7th assimilation iterations.
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Figure 5: Scenarios S1-S3. AAB computed with the initial and updated ensemble of lnM realizations after
the 0th, 1st, and 7th data assimilation iterations.
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Figure 6: Scenarios S1-S3. ESp computed with the initial and updated ensemble of lnM realizations after
the 0th, 1st, and 7th data assimilation iterations.
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is shown that LES-MDA can reduce filter inbreeding for small ensemble sizes.260

Figures 8 shows the boxplots of the source parameters for all scenarios. We can see that261

the uncertainty is significant before the update and decreases with increasing iterations.262

In the final iteration, the ensemble median almost coincides with the true value for all263

parameters in both S1 and S3, whereas a clear misfit occurs in S2, which is induced by264

filter inbreeding. However, in scenario S1, the updates for Xs, Ra, and Rb are slightly265

overestimated, while the updates for Y s are slightly underestimated. Besides, At the cost of266

time consumption due to the large ensemble size, S3 performs the best, with all parameters267

close to the true values except for Ra and Rb, which are also slightly overestimated.268

Figures 9, 10 and 11 show, sequentially from left to right columns, the ensemble mean,269

AAB and ESp of lnK computed with the initial and updated ensembles for all scenarios.270

We can find that the updates of lnK are able to retrieve the main features of the refer-271

ence, and the AAB and ESp decrease significantly across the entire domain after iterative272

data assimilation for all three scenarios. When comparing the ensemble mean, AAB, and273

ESp among the three scenarios, we can see that both S1 and S3 perform more smoothly274

and accurately than S2. In addition, the ESp values for S2 are very close to zero across275

the entire domain when compared to those for S1, indicating an underestimation of the276

uncertainty. This underestimation has been effectively addressed through the use of the277

localization technique. These findings demonstrate the effectiveness of the localization in278

dealing with spurious correlations due to the small ensemble size.279

To evaluate how well the flow and transport processes reproduced by the methods, we280

have shown the evolution of the predicted piezometric heads and concentrations in two val-281

idation wells (#1, #2), computed based on the initial and updated source parameters and282

lnK for all scenarios, in Figures 12 and 13, respectively. The uncertainties in the predicted283

piezometric heads and concentrations are large when computed from the initial source and284

lnK parameters, and decrease with increasing data assimilation. Specifically, after iteration285
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Figure 9: Scenario S1. Ensemble mean(left column), AAB (center column) and ESp (right column) computed
with the initial and updated ensemble of lnK after the 0th, 1st, and 7th data assimilation iterations.
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Figure 10: Scenario S2. Ensemble mean(left column), AAB (center column) and ESp (right column) com-
puted with the initial and updated ensemble of lnK after the 0th, 1st, and 7th data assimilation iterations.
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Figure 11: Scenario S3. Ensemble mean(left column), AAB (center column) and ESp (right column) com-
puted with the initial and updated ensemble of lnK after the 0th, 1st, and 7th data assimilation iterations.
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7, the piezometric heads of S2 and S3 exhibit similar results with less uncertainty but lower286

accuracy than S1, where median values of S1 is reproduced almost perfectly and almost coin-287

cides with the reference. In contrast, the reference values for S2 and S3 are lower than those288

of the piezometric heads corresponding to the 5 percentiles of all realizations. Specifically,289

when comparing S1 with S2, we can find that with the help of the localization, the updates290

for S1 are not only closer to the true value but also have a smaller underestimation of the291

uncertainty. However, the reproduced concentration for S2 is significantly underestimated,292

which can be attributed to the poor estimation of the source parameters.293

Figure 12: Scenarios S1, S2 and S3. Time evolution of the piezometric heads at the two verification wells
#1 and #2 computed with the initial and updated ensembles of lnK after the 0th, 1st, 7th data assimilation.
The red line corresponds to the reference field. The black lines correspond to the 5 and 95 percentiles of all
realizations, and the green line corresponds to the median. The vertical dashed lines mark the end of the
assimilation period.
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Figure 13: Scenarios S1, S2 and S3. Time evolution of the contaminant concentrations at the two verification
wells #1 and #2 computed with the initial and updated ensembles of lnM and source parameters after the
0th, 1st, 7th data assimilation. The red line corresponds to the reference field. The black lines correspond
to the 5 and 95 percentiles of all realizations, and the green line corresponds to the median. The vertical
dashed lines mark the end of the assimilation period.
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5. Discussion294

The aforementioned findings have demonstrated that the LES-MDA is capable of si-295

multaneously characterizing the spatial configuration of an elliptical non-point contaminant296

source and both spatially variable release mass-loading and hydraulic conductivities within297

a synthetic confined aquifer. However, the current work is still in its early stages. For future298

applications in real-world settings, the following aspects will be considered:299

(1) The identification of complex spatial architecture of non-point contaminant sources:300

This study employs the LES-MDA to identify the spatial architecture of non-point contami-301

nant sources with an ellipse shape. However, it remains a challenge to accurately identify the302

complex spatial architecture of non-point contaminant sources. Our future work will propose303

a novel method suitable for the identification of complex spatial architecture of non-point304

contaminant sources.305

(2) Performance comparison between homogeneous and heterogeneous release: In this306

study, the Gaussian release mass-loading may impose a potential computational burden307

relative to the homogeneous release. Consequently, our future research aims to evaluate308

the time consumption and efficiency between the homogeneous and heterogeneous release309

methods for non-point source identification.310

(3) The optimization of observation well site layouts: Practical constraints, such as ge-311

ological features and economic limitations, often dictate the arrangement of observation312

networks. In our future research, we aim to overcome these limitations by developing a multi-313

objective optimal well network algorithm, combined with an inverse simulation method, to314

solve complex non-point source estimation problems at minimal cost.315

6. Summary316

In this paper, we analyze the capability of the LES-MDA in the joint identification of317

a heterogeneous conductivity field and a non-point field with spatially heterogeneous mass318
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loading. Our results demonstrate that the LES-MDA is capable of identifying Gaussian319

distributed hydraulic conductivity fields and elliptical source parameters including position,320

shape, initial release time, release duration, and Gaussian distributed mass loading. Based321

on those updated parameters, we are able to give accurate predictions of groundwater flow322

and contaminant transport.323

We also demonstrate that the LES-MDA can effectively eliminate spurious correlations324

and reduce filter inbreeding when the ensemble size is small compared to the ES-MDA.325

Furthermore, the LES-MDA is able to give a proper identification of the source parameters326

with a small ensemble size, whereas the ES-MDA fails and requires a larger ensemble size to327

obtain proper identification.328

Compared to the work by Xu et al. (2022), we further consider the uncertainties of329

the spatial distribution of the aquifer properties and mass-loading. This is much closer330

to the real environment. In the next step, we will further investigate how to develop and331

employ methods in a real-world setting and identify more complex and irregular non-point332

contaminant sources. Besides, it will be interesting and meaningful to further analyze the333

sensitivity of the parameters, the impact of different types of ellipse plumes and the effect334

of different well site layouts in our next work.335
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Xu, T., Gómez-Hernández, J.J., 2015. Inverse sequential simulation: Performance and im-458

plementation details. Advances in Water Resources 86, 311–326.459

Xu, T., Gómez-Hernández, J.J., 2016. Joint identification of contaminant source location,460

initial release time, and initial solute concentration in an aquifer via ensemble kalman461

filtering. Water Resources Research 52, 6587–6595.462
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