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• Unconfined aquifer transient flow is solved using PINN.4

• PINNs accurately compute the time-varying phreatic surface and piezometric heads.5

• PINNs have proven to be very effective in data-scarce environments.6

• PINNs are a promising alternative to classical numerical methods in hydrogeology.7
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Neural networks excel in various machine learning applications; however, they lack the physical17

interpretability and constraints crucial for numerous scientific and engineering problems. This18

limitation hinders their ability to accurately capture and predict complex physical systems’ be-19

havior, potentially yielding inaccurate or unreliable results. Physics-Informed Neural Networks20

(PINNs) are a class of machine learning models that integrate the power of neural networks with21

the physical laws governing natural phenomena. PINNs provide an effective tool for solving22

intricate physical problems, ranging from fluid dynamics to materials science, by incorporating23

physical constraints into the neural network architecture. PINNs can substantially enhance the24

accuracy and efficiency of model predictions, even in data-limited situations. This work offers in-25

sight into recent developments in the PINN field, including their mathematical formulation and26

training algorithms, and emphasizes their application in solving transient unconfined ground-27

water flow. In this context, the phreatic surface acts as a spatiotemporally varying boundary28

condition, and properly accounting for its position is vital for precise predictions of unconfined29

groundwater flow and related environmental and engineering applications. The study’s objective30

is to develop a reliable model for estimating the phreatic surface and the spatiotemporal distri-31

bution of piezometric heads in a vertical cross-section of an unconfined aquifer. Two cases are32

examined: the first involves a homogeneous and isotropic aquifer, while the second comprises33

a mildly heterogeneous and anisotropic one. The challenges and opportunities arising from this34

emerging research area are also explored, and essential directions for future research are under-35

scored.36
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1. Introduction42

Understanding unconfined groundwater flow is crucial for managing water resources, safeguarding water quality,43

and mitigating environmental impacts such as land subsidence and saltwater intrusion in coastal aquifers. However,44

solving unconfined groundwater flow is not trivial, as it necessitates considering spatially and temporally varying45

boundary conditions. To simplify the problem, Dupuit and Forchheimer introduced some assumptions (Bear, 2012,46

Eq. 4-64), which Boussinesq later generalized (Bear, 2012, Eq. 5-76). Although the Boussinesq equation serves as a47

helpful but simplified model, it overlooks some complex physical processes that can occur in unconfined groundwater48

flow, such as vertical flows and high hydraulic gradients. Consequently, it may not be accurate in certain scenarios,49

such as near pumping wells, discharge points in coastal aquifers, or areas with steep topography. Researchers have been50
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actively seeking optimal solutions to the simplified unconfined groundwater flow equation for some time (Meenal and51

Eldho, 2011; Pulido-Velazquez et al., 2007; Taigbenu and Nyirenda, 2010).52

Addressing the phreatic surface as a spatiotemporal-variant boundary condition poses challenges due to its com-53

plexity and high computational cost (Guo, 1997). This paper investigates the possibility of solving the groundwater54

flow equation in an unconfined aquifer using Artificial Neural Networks (ANNs). ANNs have become increasingly55

popular in environmental and water resource studies, owing to their ability to process large amounts of data quickly56

and accurately (Sit et al., 2020; Tahmasebi and Sahimi, 2021; Mariethoz and Gómez-Hernández, 2021). ANNs are57

data-driven models that are more cost-effective than process-based models and may capture features that elude the lat-58

ter. However, ANNs require a significant amount of data to achieve accurate results and lack the physical interpretation59

offered by process-based models. While some applications of ANNs such as surrogate models for the groundwater60

flow equation exist in the literature (Asher et al., 2015), their application to unconfined flow, particularly for forecasting61

purposes, remains limited.62

Raissi et al. (2019) recently introduced Physics-Informed Neural Networks (PINNs) to enhance the physical inter-63

pretability of classical ANNs and improve their forecasting capabilities. PINNs offer several advantages over traditional64

physics-based models. By integrating physics-based constraints into the ANN architecture, they enable the model to65

better capture the underlying physics of the system being modeled. This integration can result in more accurate and66

reliable predictions, especially in scenarios where traditional models may struggle due to high complexity or data67

scarcity. PINNs provide flexibility and generalizability, as they can be trained on limited or noisy data, and can handle68

complex geometries and boundary conditions without implementing a specific mesh. This versatility makes PINNs a69

powerful tool for solving a wide range of physical problems, including unconfined groundwater flow, without requiring70

an in-depth understanding of the underlying physics. Computational efficiency is a key feature of PINNs. Once trained,71

they can be evaluated rapidly, making them an efficient tool for real-time decision-making or optimization problems.72

Moreover, PINNs can be parallelized and run on GPUs, allowing for faster simulations and higher throughput.73

This physics-informed approach has been applied to various fields, including fluid dynamics, materials science,74

geophysics, and others (bin Waheed et al., 2021; Bajracharya and Jain, 2022; Cai et al., 2021; Mao et al., 2020; Lv75

et al., 2021; Zheng and Wu, 2023). For further information on the state of the art of PINNs, readers are referred to the76

recent publication by Lawal et al. (2022).77

The ability of PINNs to incorporate physical constraints into neural networks, manage intricate geometries and78

boundary conditions, and work with limited data make them suitable for simulating unconfined groundwater flow.79

However, their use for this purpose has been seldom explored (Shadab et al., 2021; Zhang et al., 2022).80

In this paper, we employ PINNs to compute the phreatic surface and piezometric heads in a synthetic unconfined81

aquifer. Unlike previous researchers (Shadab et al., 2021; Zhang et al., 2022), we consider the phreatic surface as a82
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spatiotemporal-varying boundary condition with unknown geometry, which must satisfy the condition that piezometric83

head equals elevation at the phreatic surface. We use the groundwater flow partial differential equation (PDE) in84

a transient unconfined aquifer as the underlying model, without simplifications. We demonstrate the application of85

PINNs in two scenarios —an isotropic and homogeneous aquifer, and an anisotropic and heterogeneous one— and86

compare the results with the finite difference numerical solution provided by a numerical model implemented with87

MODFLOW 2005 (Harbaugh, 2005)88

2. Material and Methods89

In the next sections, we will briefly explore the basics of ANNs, the PDE that describes the groundwater flow in90

an unconfined aquifer, followed by the fundamentals of PINNs.91

2.1. Artificial neural networks92

ANNs are a powerful class of machine learning algorithms that have gained popularity in recent years due to their93

ability to model complex patterns in data. Inspired by the structure and function of the human brain and nervous system,94

ANNs have a rich history dating back several decades. The concept of ANNs can be traced to the work of McCulloch95

and Pitts (1943), who proposed a mathematical model of a neuron. This model laid the foundation for the first ANNs,96

which were used for pattern recognition and classification. Initially hindered by computational resource limitations,97

ANNs have now been applied to a wide range of problems across various fields (Fang et al., 2023; Naghipour et al.,98

2023; Juan and Valdecantos, 2022; Wang et al., 2022; Dimitriadou and Nikolakopoulos, 2022).99

An ANN comprises a collection of interconnected processing units called artificial neurons, which can receive100

and transmit signals to one another. Each artificial neuron possesses a set of weights determining the influence of101

incoming signals on its output. Typically, the output of an artificial neuron is a nonlinear function of the weighted sum102

of its inputs plus a bias term, such as the sigmoid or rectified linear unit (ReLU) function. The output of one artificial103

neuron can serve as input for another artificial neuron in the subsequent layer, forming a multilayer network. The input104

layer receives external data, the output layer produces the desired response, and the hidden layers perform intermediate105

computations. This process is represented as follows106

𝑎𝑜 = 𝑔(𝒘𝑇𝒂 + 𝑏), (1)

where 𝑎𝑜 is the (scalar) neuron output, 𝒂 is the input vector of all neurons from the previous layer connecting to this107

one, 𝒘 is a weight vector, 𝑇 stands for transpose, 𝑏 is a bias term , and 𝑔 is a non-linear activation function. (The term108

𝒘𝑇𝒂 + 𝑏 is generally represented with symbol 𝑧.)109
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An ANN can learn from data by adjusting its weights using a learning algorithm, such as backpropagation or110

gradient descent. The algorithm compares the network output with the desired output and computes an error measure;111

then, the weights and biases are modified with the aim of reducing the error.112

2.2. Partial differential equation for unconfined groundwater flow113

The PDE that describes unconfined flow in a two-dimensional (in the vertical plane 𝑋𝑍) and heterogeneous aquifer114

under transient conditions is:115

𝜕
𝜕𝑥

(

𝐾𝑥𝑥(𝑥, 𝑧)
𝜕ℎ
𝜕𝑥

(𝑥, 𝑧, 𝑡)
)

+ 𝜕
𝜕𝑧

(

𝐾𝑧𝑧(𝑥, 𝑧)
𝜕ℎ
𝜕𝑧

(𝑥, 𝑧, 𝑡)
))

= 𝑆(𝑥, 𝑧)𝜕ℎ
𝜕𝑡

(𝑥, 𝑧, 𝑡) +𝑊 (𝑥, 𝑧, 𝑡)
(2)

where 𝐾𝑥𝑥(𝑥, 𝑧) and 𝐾𝑧𝑧(𝑥, 𝑧) [𝐿𝑇 −1] are the principal values of the hydraulic conductivity tensor, assuming that the116

principal directions are parallel to axes 𝑥 and 𝑧, 𝑡 [𝑇 ] is time, ℎ(𝑥, 𝑧, 𝑡) [𝐿] is piezometric head, 𝑊 [𝑇 −1] is an external117

flow extraction rate per unit volume, and 𝑆 [𝐿−1] is specific storage.118

Subject to the initial condition ℎ(𝑥, 𝑧, 0) = ℎ0(𝑥, 𝑧), with ℎ0 being a known function, and boundary conditions.119

The boundary conditions can be the standard ones in groundwater flow modeling, such as prescribed head, prescribed120

flow, or prescribed linear combination of head and flow. However, there is a specific boundary condition for unconfined121

aquifers that renders the solution of the above partial differential equation particularly challenging: the phreatic surface122

is the top boundary condition and must satisfy123

ℎ(𝑥, 𝑧) = 𝑧 ∀(𝑥, 𝑧) along the phreatic surface, (3)

with the complication that the phreatic surface position is not known a priori and that it will change over time.124

2.3. Physics-informed neural networks (PINNs)125

PINNs are a type of ANNs designed to include constraints during its training to ensure that it abides by certain126

fundamental relationships (Raissi et al., 2019), such as the conservation of mass. This type of ANNs has proven ex-127

tremely effective in solving complex PDEs in a meshless domain, outperforming, in some cases, standard numerical128

methods (Raissi et al., 2019; Yang et al., 2021; He and Tartakovsky, 2021; Rezaei et al., 2022; Zhang et al., 2022).129

PINNs combine supervised learning and physics-based constraints. The supervised learning component involves min-130

imizing a loss function that represents the error between predicted and observed labels, according to a classic ANN.131

The physics-based constraints are encoded as additional loss terms that penalize the model for violating physical laws,132
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such as the PDE in (2). This hybrid approach allows PINNs to learn complex relationships between variables while133

also respecting physical constraints, with the ability to handle problems that are difficult to model using traditional134

physics-based approaches and work in data-scarce scenarios (He et al., 2020). They have also proven their ability to135

make good extrapolations (either in space or time), where traditional ANNs fail, thanks to the physics embedded in136

their training (Rezaei et al., 2022; Almajid and Abu-Al-Saud, 2022).137

The goal of a PINN is to satisfy the governing PDE as well as the boundary and initial conditions such that its loss
function is defined as the sum of the mean squared errors for the prediction residual, PDE residual, boundary residual,
and initial conditions residual (Raissi et al., 2019)

Loss = Loss PRED + Loss PDE + Loss BC + Loss IC. (4)

3. PINN to solve the unconfined groundwater flow: synthetic examples138

In this section, we explain the architecture of the PINN using synthetic examples for easier reference. The key139

component of the PINN is the loss function defined above (4); how its terms are computed is presented further down.140

3.1. Definition of the domain141

A two-dimensional, heterogeneous, and unconfined aquifer is built on the domain (𝑥, 𝑧) ∈ [0, 1] × [0, 1] (all param-142

eters and simulation results will be given without units, the results remain valid as long as the units used are consistent).143

For a general case with arbitrary sizes and parameters, an appropriate normalization would transform the original case144

into this one, and the results should be brought back into the original space by a proper transformation. This pro-145

cedure may appear non-trivial for complex domains, nevertheless, even when dealing with intricate geometries, it is146

feasible to scale both coordinates and parameters to a specific range. When working with ANNs in general, the initial147

step often involves normalizing input variables to a standardized range, typically between 0 and 1. This normaliza-148

tion plays a pivotal role in stabilizing the training of neural networks by mitigating issues such as vanishing gradients149

and expediting model convergence. Furthermore, by employing this normalized range in the synthetic example, the150

model acquires the ability to discern patterns and relationships that transcend the specific magnitudes and units of151

the input variables. This adaptability becomes crucial when applying the model to scenarios featuring diverse sizes152

and parameters. Additionally, the success of this approach hinges on the reversibility of the normalization process. By153

meticulously recording the scaling factors and means utilized for normalization, it becomes straightforward to apply an154

inverse transformation to the model’s predictions, effectively reintroducing them into the original variable space. This155

ensures that the results maintain their interpretability and relevance within the original problem domain. In summary,156

the utilization of a normalized synthetic example in conjunction with subsequent normalization and transformation157
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procedures for general cases not only bolsters model stability and generalization but also equips the model to address158

a wide spectrum of scenarios, thereby enhancing its versatility and adaptability.159

Transient groundwater flow is simulated with time (𝑡) ranging from 0 to 1. Four specific times are analyzed:160

𝑡 = 0.01, 𝑡 = 0.25, 𝑡 = 0.5 and 𝑡 = 1. The bottom boundary is impermeable throughout the simulation. The follow-161

ing transient behavior is modeled. At time 0, the left and right boundary conditions correspond with reservoirs that162

prescribe heads equal to 1, and the initial heads correspond to the steady-state solution for these conditions, that is,163

ℎ(𝑥, 𝑧) = 1, with the phreatic surface coinciding with the top boundary. Suddenly, at time 0, the left reservoir lowers its164

level down to 0.4 and the right one down to 0.6. The new boundary conditions are, for the left boundary ℎ(0, 𝑧) = 0.4165

for 𝑧 ∈ [0, 0.4], undefined for 𝑧 > 0.4, and for the right boundary, ℎ(1, 𝑧) = 0.6 for 𝑧 ∈ [0, 0.6], undefined for 𝑧 > 0.6.166

This sudden change in the boundary conditions induces a transient behavior that we aim to model with the PINN.167

Two synthetic aquifers are analyzed: a homogeneous and isotropic unconfined aquifer (SC1), and a heterogeneous168

and anisotropic unconfined aquifer (SC2). Tab. 1 presents the geometric and hydraulic characteristics of these two169

cases. For the purposes of benchmarking, the MODFLOW solution is computed. While the PINN solution is meshless170

(as it will be explained below), MODFLOW needs the domain to be discretized, and a discretization into 20 by 20 cells171

in space and 1440 steps in time are chosen. Fig. 1 shows the discretization used, the spatial distribution of conductivity172

for the heterogeneous case, and the boundary conditions as implemented in MODFLOW after time 0.173

For the purpose of training the artificial network, a number of observations within the saturated zone of the aquifer174

are considered. Specifically, 40 locations in the 𝑋𝑍 plane were sampled from the MODFLOW solution for each175

of the four time steps considered, discarding some locations when they lie above the phreatic surface. In total, 130176

observations were used. This way of choosing the observations may seem arbitrary, but its purpose is to have a few177

control points inside the domain for better training of the network. To ensure that the network also satisfies the PDE178

(2) with its initial and boundary conditions, we need to identify a number of points were the PDE verification must179

be done. For this purpose, 1000 points along the left boundary, chosen randomly in the segment [0, 0] × [0, 0.4], and180

similarly 1000 points are chosen along the right boundary in the segment [1, 0]× [1, 0.6]. These two sets of points will181

be used to enforce that the trained network satisfies the prescribed head boundary conditions. Likewise, 1000 points182

are chosen randomly along the bottom boundary in the segment [0, 0] × [1, 0] to be used to enforce the network to183

satisfy the bottom impermeable condition. For the initial conditions, 500 point locations are chosen randomly from184

the simulation domain at time 0; these locations will serve to enforce the initial conditions. And finally, 25,000 points185

for SC1 and 35,000 points for SC2 were chosen randomly within the simulation domain [0, 0] × [1, 1] to be used as186

collocation points to enforce the reproduction of the PDE.187
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Table 1
Hydraulic and geometry characteristics of the study domain

Parameters SC1 SC2
Specific yield 10−3 10−3

Horizontal hydraulic conductivity,𝐾𝑥𝑥 10−3 𝐾1 = 4 ⋅ 10−3, 𝐾2 = 10−3, 𝐾3 = 2 ⋅ 10−3, 𝐾4 = 3 ⋅ 10−3
Vertical hydraulic conductivity, 𝐾𝑧𝑧 10−3 𝐾1 = 4 ⋅ 10−4, 𝐾2 = 10−4, 𝐾3 = 2 ⋅ 10−4, 𝐾4 = 3 ⋅ 10−4
Grid spacing in the x direction, Δ𝑥 0.05 0.05
Grid spacing in the z direction,Δ𝑧 0.05 0.05
Length of the stress periods, Δ𝑡 1 1

Total time steps 1440 1440

3.2. Artificial Neural Network Design188

The basic design of an ANN is composed of input, output and hidden layers, number of neurons per layer, batch189

size, number of epochs, a loss function and the learning and decay rates. As the loss function is the key component of190

the PINNs its definition will be detailed in the next subsection.191

In this work, two structurally identical neural networks (Fig. 2), with the only difference being their input and192

output layers, are used. The first network (ANN1) is trained to compute the piezometric head value (output) using the193

point coordinates (𝑥, 𝑧) and the time (𝑡) as inputs. The second network (ANN2), which takes the 𝑥 coordinate and the194

time as input values, returns the 𝑧𝑠 coordinate value (output) that indicates the position of the free surface at a specific195

time. Although both networks could be trained simultaneously from the beginning using a single loss function, we196

found that it is more efficient if there is a preliminary iteration in which ANN1 is trained first, and then ANN2 is trained197

next (with ANN1 fixed). The weights and biases found in this preliminary iteration are used as the starting values for198

the joint training of the two networks.199

Each artificial network consists of an input layer, seven hidden layers (each comprising 20 neurons), and an output
layer. Functionally, the ANN can be viewed as a differentiable system, consisting of a series of multivariable vector-
valued functions, which include affine transformations and linear or nonlinear functions (the activation functions),
mapping from ℝ𝑑1 to ℝ𝑑3

ℝ𝑑1 ⇒ ℝ𝑑2 ⇒ ℝ𝑑2 ⇒ ℝ𝑑2 ⇒ ℝ𝑑2 ⇒ ℝ𝑑2 ⇒ ℝ𝑑2 ⇒ ℝ𝑑2 ⇒ ℝ𝑑3 . (5)

where 𝑑1 and 𝑑3 represent the dimensions of the input and the output layers, respectively. In this study, 𝑑1 is three for200

ANN1 and two for ANN2, 𝑑2 is the number of neurons in the hidden layer (20 in this case for ANN1 and ANN2) and201

𝑑3 is one for ANN1 and ANN2.202

The choice of the number of hidden layers, the number of points where the evaluations of the performance of203

the network should be done, the choice of the activation function, and the rest of the hyperparameters needed for the204

definition of the networks were chosen after some initial tests. These initial tests were carried out manually and aimed205
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to identify configurations that optimize the performance of the ANN in terms of minimizing errors while also ensuring206

efficient processing times. Specifically, the activation function is the hyperbolic tangent (tanh), the number of epochs207

is 200, the mini-batch size is 128, the initial learning rate is 0.01, and the decay rate is 0.005.208

The signal moves from one layer to the next following (1) applied to all neurons in the layer

𝒂𝒅 = 𝑔(𝑾 ⋅ 𝒂𝒖 + 𝒃) (6)

where subscripts 𝑑 and 𝑢 refer to downstream and upstream, respectively, 𝒂 is the output vector of a given layer, matrix209

𝑾 , with dimensions 𝑑𝑑 × 𝑑𝑢, contains all the weights applying to the current layer and 𝒃, with dimensions 𝑑𝑑 × 1,210

contains all the bias terms. During the training phase, these weights and biases are optimized to minimize the loss211

functions using the Adam algorithm (Kingma and Ba, 2015), not only because of its robustness and popularity in deep212

learning but also due to its capacity to accelerate convergence by using adaptive learning rates for different parameters213

based on estimates derived from both the first and second moments of the gradients.214

3.2.1. First neural network (ANN1)215

The ANN1 (Fig. 3) is responsible for predicting the piezometric head as a function of three input parameters: the216

spatial coordinates (𝑥, 𝑧) and the temporal variable (𝑡). These spatiotemporal coordinates do not have to lie on a mesh,217

and therefore, once the network is trained, it provides a solution detached from any space-time discretization: it is a218

meshless solution.219

The training of the network is based on the minimization of a loss function with the following components:220

1. Loss associated with the error in reproducing the observed values, which equals the average of the squared221

differences between observations and predictions at the chosen locations and times.222

𝐿𝐼𝐶 =
∑

Γ

(

ℎpredicted − ℎobserved
)2 (7)

where:223

- the summation symbol ∑Γ represents the summation over space corresponding to the observed values.224

- ℎpredicted is the predicted hydraulic head.225

- ℎobserved is the observed hydraulic head as a function of space and time.226

2. Loss associated with the error in reproducing the initial conditions, which equals the sum of the squared differ-227

ences between the network prediction at time zero and the known initial values at the sampled locations228
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𝐿𝑂𝐵𝑆 =
∑

Γ

(

ℎpredicted − ℎinitial
)2 (8)

where:229

- the summation symbol ∑Γ represents the summation over space corresponding to the initial conditions.230

- ℎpredicted is the predicted hydraulic head.231

- ℎinitial is the initial hydraulic head as a function of space.232

3. Loss associated with the error in reproducing the known heads at the prescribed head boundaries, which equals233

the average of the squared differences between the network prediction and the known prescribed heads at the234

four chosen time steps235

𝐿𝐵𝐶 =
∑

Γ

(

ℎpredicted − ℎspecified
)2 (9)

where:236

- the summation symbol ∑Γ represents the summation over spatial and temporal regions corresponding to the237

boundary conditions.238

- ℎpredicted is the predicted hydraulic head.239

- ℎspecified is the initial hydraulic head as a function of space and time.240

4. Loss associated with the error in reproducing the no flow boundary. Using automatic differentiation (Griewank,241

1998), it is possible to evaluate any partial derivative of the artificial network output (ℎ) with respect to the242

input variables (𝑥, 𝑧, 𝑡); therefore, 𝜕ℎ
𝜕𝑧 can be evaluated at the selected points along the bottom boundary, and the243

average squared difference with respect to its known value of zero computed for each of the chosen time steps.244

𝐿noflow =
∑

Ω

(

𝑓 (𝑥, 𝑧, 𝑡, ℎ, 𝜕ℎ
𝜕𝑥

, 𝜕ℎ
𝜕𝑧

)
)2 (10)

In this expression:245

- Ω represents the spatial and temporal domain over which the no flow boundary conditions is solved.246

- ℎ is the predicted solution by the neural network.247

- 𝑓 (𝑥, 𝑧, 𝑡, ℎ, 𝜕ℎ𝜕𝑥 , 𝜕ℎ𝜕𝑧 ) is the no flow residual, which depends on the predicted solution ℎ and its derivatives with248

respect to 𝑥 and 𝑧.249
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5. Loss associated with the error in reproducing the PDE. Again, thanks to automatic differentiation, and as dis-250

played in Fig. 3, the partial derivatives involved in (2) can be computed at the collocation points selected. After251

rearranging all terms in (2) so that they equal zero, the average squared sum of the PDE values computed with252

the heads provided as output from the neural network at the collocation points and the four selected times will253

represent the associated error.254

𝐿residual =
∑

Ω

(

𝑓 (𝑥, 𝑧, 𝑡, ℎ, 𝜕ℎ
𝜕𝑥

, 𝜕ℎ
𝜕𝑧

, 𝜕ℎ
𝜕𝑡

)
)2 (11)

In this expression:255

- Ω represents the spatial and temporal domain over which the PDE is solved.256

- ℎ is the predicted solution by the neural network.257

- 𝑓 (𝑥, 𝑧, 𝑡, ℎ, 𝜕ℎ𝜕𝑥 , 𝜕ℎ𝜕𝑧 , 𝜕ℎ𝜕𝑡 ) is the PDE residual, which depends on the predicted solution ℎ and its derivatives with258

respect to 𝑥, 𝑧, and 𝑡.259

3.2.2. Second neural network (ANN2)260

The objective of the ANN2 network (Fig. 4) is to identify the spatial coordinate (𝑧𝑠) that corresponds to the phreatic261

surface, by taking (𝑥, 𝑡) as input variables. The loss function is now defined as the sum of squared differences between262

the value of the elevation 𝑧𝑠 given as output and the piezometric head predicted at that location by ANN1, which should263

equal the elevation. This sum is computed for 2500 points (SC1) and 3500 points (SC2) randomly distributed in [0,1]264

and the four times chosen.265

The training of the ANN2 is based on the minimization of a loss function with two components:266

1. Loss associated with the error in reproducing the phreatic surface, which equals the sum of the squared difference267

between the ANN2 predictions and the piezometric head predicted by ANN1.268

𝐿𝐵𝐶 =
∑

Γ

(

𝑧𝑠predicted − ℎpredicted
)2 (12)

where:269

- the summation symbol ∑Γ represents the summation over spatial and temporal regions corresponding to the270

phreatic surface prediction.271

- 𝑧𝑠predicted is the predicted elevation of the phreatic surface by ANN2.272

- ℎpredicted is the predicted hydraulic head by ANN1.273
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2. Loss associated with the error in reproducing the initial conditions, which equals the sum of the squared differ-274

ences between the network predictions and the known initial values for the phreatic surface.275

𝐿𝑂𝐵𝑆 =
∑

Γ

(

𝑧𝑠predicted − 𝑧𝑠initial

)2 (13)

where:276

- the summation symbol ∑Γ represents the summation over space corresponding to the initial position of the277

phreatic surface.278

- 𝑧𝑠predicted is the predicted phreatic surface elevation at time 𝑡 = 0.279

- 𝑧𝑠initial is the initial phreatic surface elevation as a function of space.280

As already mentioned, ANN1 is trained first, then ANN2 is trained using the output from ANN1; afterwards, both281

networks are trained simultaneously using as loss function the sum of the functions described for each network. We282

found this approach more efficient than trying to train both networks simultaneously from the beginning. Given the283

interdependence between the elevation of the free surface, denoted as the output of ANN2, and the hydraulic head,284

represented as the output of ANN1, within an unconfined aquifer, it was more efficient to predict the phreatic surface285

elevation using ANN2 subsequent to the training of ANN1. This approach optimizes computational processes by286

leveraging the information acquired from the initial neural network, thus enhancing predictive accuracy and efficiency287

with smaller values of the final loss function.288

3.3. Performance evaluation289

The solution of the PDE given by MODFLOW will be used to assess the performance of the implemented PINN.290

The Root Mean Squared Error (RMSE) is used to compare the results obtained by the fully trained PINN and the291

numerical model292

𝑅𝑀𝑆𝐸 =

√

√

√

√

𝑁
∑

𝑖=1

(ℎ̂𝑖 − ℎ𝑖)2

𝑁
(14)

where 𝑁 is the number of verification points (in space and time), ℎ𝑖 is the MODFLOW predicted value and ℎ̂𝑖 is the293

PINN predicted value.294

Also the Mean Absolute Error (MAE) is selected as reference metric, since the RMSE could be sensitive to outliers.295
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𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|ℎ̂𝑖 − ℎ𝑖| (15)

Furthermore, the Nash-Sutcliffe Efficiency (NSE) is used to add a goodness-of-fit measure296

𝑁𝑆𝐸 = 1 −
∑𝑛

𝑖=1(ℎ𝑖 − ℎ̂𝑖)2
∑𝑛

𝑖=1(ℎ𝑖 − ℎ̄)2
(16)

where ℎ̄ is the mean of the MODFLOW predicted values.297

In evaluating this comparison, one should not forget that the numerical solution is already based on an approxi-298

mation of the PDE and may not be exact. This can be noticed, for instance, in the resolution with which the phreatic299

surface is represented in MODFLOW versus its representation by the PINN approximation, which is meshless and,300

therefore, can provide a much smoother result.301

4. Results302

4.1. Training phase303

As already mentioned, we found that the most efficient way to train both neural networks was to train ANN1 first for304

200 epochs, then train ANN2 for 200 epochs freezing ANN1, and then train both jointly for another 200 epochs. The305

evolution of the loss functions for the two case studies can be seen in Figs. 5 and 6, where the loss function values and306

the elapsed times on an Intel(R) Core(TM) i9-10920X CPU 3.50GHz RAM 32GB are displayed. In both scenarios,307

the final loss is around 10−5, which represents a reduction of at least three orders of magnitude with respect to the308

initial loss computed with a random initialization of the weights and biases.309

It is important to emphasize that the available data primarily consists of physics-based information, leaving only310

a limited amount of prior knowledge for training the model. As a result, the risk of encountering overfitting issues,311

where the PINN memorizes the limited training data instead of generalizing well, is significantly reduced. Moreover,312

by allocating most of the loss function’s effort to enforcing physical constraints and using a smaller portion of the data313

for training, we prioritize the model’s ability to capture the underlying physics while maintaining robust and reliable314

performance on unseen data, avoiding underfitting. This approach aligns with the inherent characteristics of PINNs315

and their effectiveness in tackling intricate, physics-driven problems. Consequently, we opted to incorporate all the316

available prior information into the training data, without creating a separate validation dataset.317
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Table 2
Homogeneous aquifer: RMSE of the estimated solution by the PINN compared to the one obtained by the numerical model

Time RMSE
0.01 0.0423
0.25 0.0098
0.50 0.0093
1.00 0.0099

Table 3
Homogeneous aquifer: MAE of the estimated solution by the PINN compared to the one obtained by the numerical model

Time MAE
0.01 0.0239
0.25 0.0070
0.50 0.0064
1.00 0.0053

Table 4
Homogeneous aquifer: NSE of the goodness-of-fit between the PINN solution compared to the one obtained by the
numerical model

Time NSE
0.01 0.90
0.25 0.0099
0.50 0.0099
1.00 0.0098

4.2. Testing phase318

Once the networks have been trained, they are validated by comparing the network predictions with the results319

obtained by MODFLOW. The RMSE and the MAE are computed for the piezometric heads at the center points of320

the discretization grid and the elevation of the phreatic surface at times 0.01, 0.25. 0.5 and 1. The values predicted321

by the neural networks are obtained by feeding the coordinates (𝑥, 𝑧, 𝑡) to ANN1 and (𝑥, 𝑡) to ANN2. Also, a visual322

comparison of the piezometric head maps and phreatic surfaces is carried out.323

4.3. Unconfined homogeneous isotropic aquifer (SC1)324

Fig. 7 shows the discrepancy between the network predictions and the MODFLOW predictions at the four selected325

times, while Tables 2 and 3 show the RMSE and the MAE computed at the center of the active discretization cells.326

Overall, the errors are small, with the largest errors occurring at 𝑡 = 0.01 when both models are simulating the327

sudden drop of the prescribed heads along the boundaries. Then, the error decreases as the simulation approaches328

the stationary condition, as indicated by the decreasing value of the RMSE and the MAE. Table 4 depict the NSE329

highlighting the good fit between the PINN prediction and the numerical solution.330

Fig. 8 shows the piezometric head maps at the selected time 𝑡 = 0.01 as derived from the MODFLOW simulation331
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Table 5
Heterogeneous aquifer: RMSE of the estimated solution by the PINN compared to the one obtained by the numerical
model

Time RMSE
0.01 0.0437
0.25 0.0136
0.50 0.0122
1.00 0.0047

Table 6
Heterogeneous aquifer: MAE of the estimated solution by the PINN compared to the one obtained by the numerical model

Time MAE
0.01 0.0231
0.25 0.0109
0.50 0.0103
1.00 0.0039

Table 7
Heterogeneous aquifer: NSE of the goodness-of-fit between the PINN solution compared to the one obtained by the
numerical model

Time NSE
0.01 0.87
0.25 0.95
0.50 0.96
1.00 0.99

and from the PINN prediction. It should be noticed that the MODFLOW maps are pixel maps based on the discretiza-332

tion used to solve the equation, whereas the PINN maps have been built with a denser discretization, taking advantage333

of the meshless nature of the neural network. This is particularly noticeable in Fig. 9 where the delineation of the334

phreatic surface, for the other three investigated times, is quite jaggy in the MODFLOW solution but smooth in the335

PINN one.336

4.4. Unconfined heterogeneous anisotropic aquifer (SC2)337

Fig. 10 shows the discrepancy between the network predictions and the MODFLOW predictions at the four selected338

times, while Table 5 and 6 show the RMSE and the MAE computed at the center of the active discretization cells.339

The RMSE and the MAE errors between the PINN and numerical model predictions for all investigated times340

are reported in Tables 5 and 6, with generally small errors observed. Again, the largest error occurred at the initial341

starting time, which is expected, as both models are simulating a sudden drop along the boundaries at time zero. As342

the simulation approaches the stationary condition, the errors decrease. Table 7 depict the NSE highlighting the good343

fit between the PINN prediction and the numerical solution.344

Fig. 11 and Fig. 12 show the piezometric head maps at the selected time 𝑡 = 0.01 and 𝑡 = 0.25, 𝑡 = 0.5, 𝑡 = 1, as345
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derived from the MODFLOW simulation and from the PINN prediction. As for the homogeneous case, the piezometric346

heads obtained by the PINN and the numerical model display similar overall behavior and patterns.347

4.4.1. Heterogeneous aquifer: PINN vs conventional ANN348

Comparing the performance of PINNs to that of a conventional neural network is of interest. Conventional neu-349

ral networks only rely on the utilization of a priori information, specifically, known data. In this particular case, to350

train a conventional neural network effectively, a substantial amount of groundwater level data over time would be351

required to serve as target data during network training. In this specific case study, the known data consists of assigned352

boundary head conditions, initial conditions, and only a sparse set of data within the domain (10% of active cells from353

the MODFLOW simulation, referencing only four specific time steps). Even the impermeable boundary condition is354

incorporated into the loss function as physics constrain through automatic differentiation. Furthermore, it is essential355

to note that, albeit synthetic, the treated case study is physically complex. The drastic change in boundary conditions356

initiates a transient flow behavior far from trivial. With the limited data used for PINN training, excluding the underly-357

ing physics, the network lacks the necessary information for effective training and achieving high-performance results,358

as observed in the metrics reported in Tables 5, 6 and 7. Moreover, training the network with sparse data within the359

domain is inadequate for describing an appropriate training range to represent the spatial extent of the domain itself. As360

thoroughly examined by literature, conventional neural networks are unable to extrapolate beyond the training range.361

Therefore, the use of PINNs, leveraging the underlying physics, enables the creation of a network capable of extrapola-362

tion based on physical knowledge, facilitating the development of a meshless model that yields reliable and functional363

results compared to a conventional neural network. In the accompanying Fig. 13, it is evident that the output of the364

conventional neural network, trained solely with available a priori information, is incapable of reproducing the flow365

field.366

5. Discussion and Conclusions367

This study demonstrates the successful application of Physics-Informed Neural Networks (PINNs) for solving for-368

ward groundwater flow problems in unconfined aquifers, both for homogeneous isotropic and heterogeneous anisotropic369

aquifers, keeping in mind that the partial differential equation controlling flow in unconfined aquifers has a spacetime-370

varying boundary condition associated to the position of the phreatic surface that makes it a specially difficult problem371

to handle. The following discussion emphasizes the major conclusions and implications of this research.372

Firstly, our findings confirm the ability of PINNs to accurately compute piezometric head values in unconfined373

aquifer systems, as demonstrated by the small errors between the PINN and numerical model predictions (see Tables374

2 and 5). The errors are notably smaller for later times when the simulation approaches a stationary condition. This375
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corroborates previous research that has shown the effectiveness of PINNs in solving complex problems across various376

fields, such as fluid mechanics and geosciences (bin Waheed et al., 2021; Bajracharya and Jain, 2022; Cai et al., 2021;377

Mao et al., 2020; Lv et al., 2021; Zheng and Wu, 2023).378

Secondly, we show that incorporating physical constraints can dramatically reduce the number of required obser-379

vations for training a simple ANN, emphasizing the PINN’s potential to work in data-scarce environments. ANNs are380

difficult, if not impossible, to train in data-limited scenarios. In contrast, PINNs efficiently leverage available data and381

incorporate physics constraints to address data scarcity. This makes PINNs particularly valuable for situations with382

limited data availability, such as remote or difficult-to-access regions, or cases where data collection is expensive or383

time-consuming.384

Moreover, our findings underscore the potential of PINNs to complement or replace traditional numerical models385

in simulating unconfined aquifer flow problems. With faster computation times and the ability to handle complex386

datasets, PINNs are a promising alternative for modeling and simulation in hydrogeology.387

However, certain limitations should be considered. The accuracy of PINN results can be influenced by the neural388

network architecture and the quality of the training data. Hyperparameters, such as the number of layers, neurons, and389

the learning rate, can significantly impact the results. Although this study aimed to evaluate the effectiveness of PINNs390

for solving the forward flow problems in an unconfined aquifer with manually calibrated hyperparameters, future work391

could explore sensitivity analysis or auto-selection tools for optimizing these parameters. Additionally, PINNs require392

a large number of collocation points in which to evaluate the physical constraints, which can make the training phase393

time-consuming, especially when observation data are limited.394

Another topic worthy of discussion is the impact of data errors on the outcomes of the AI model. In the context395

of neural networks, this specific issue has been extensively scrutinized, corroborating the capacity of neural networks396

to undergo training that accommodates measurement inaccuracies (Coppola et al., 2003; Secci et al., 2022). The es-397

tablished procedure entails the delineation of a plausible range of measurement errors, followed by the specification398

of a corresponding error distribution. Subsequently, each individual data point is subjected to perturbation by an er-399

ror drawn from this distribution a predetermined number of times, with the quantity of perturbations contingent upon400

the complexity of the underlying problem. Furthermore, each perturbed data point maintains a consistent associa-401

tion with the same target value as the "clean" data point. While this approach inherently demands a computationally402

more intensive training process, it furnishes the neural network with the capability to effectively manage and adapt403

to measurement errors. Given that PINNs exhibit a significant reduction in the requisite training data for even basic404

ANN models, forthcoming researches could incorporate this facet to enhance the reliability of models, especially in405

real-world scenarios.406

Furthermore, future research endeavors could focus on the implementation of three-dimensional (3D) unconfined407
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problems to evaluate whether the increased complexity introduced by an additional input dimension (the 𝑦-coordinate)408

imposes limitations on performance or necessitates a significant increase in the volume of data and collocation points409

required for effective training.410

In conclusion, this study showcases the effectiveness of using PINNs to solve unconfined aquifer flow problems,411

with accurate estimates of time-varying phreatic surface and piezometric head values. The use of PINNs offers an412

alternative, efficient approach to addressing complex groundwater flow problems. This research contributes to the413

development of a more accurate and efficient tool for groundwater modeling, with potential applications across envi-414

ronmental management, civil engineering, and hydrogeology. Future research can focus on investigating the potential415

of PINNs for solving other groundwater problems, including contaminant transport, heterogeneity characterization,416

and anisotropy.417
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Figure 1: Synthetic domain.
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Figure 2: Sketch of the implemented neural networks.
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Figure 3: Sketch of ANN1.
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Figure 4: Sketch of ANN2.
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Figure 5: Scenario SC1. Training loss for ANN1 alone (left), ANN2 alone with ANN1 frozen (center) and ANN1 jointly
with ANN2 (right). The iteration axis in the right plot starts at the number of iterations already performed in the previous
training.
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Figure 6: Scenario SC2. Training loss for ANN1 alone (left), ANN2 alone with ANN1 frozen (center) and ANN1 jointly
with ANN2 (right). The iteration axis in the right plot starts at the number of iterations already performed in the previous
training.
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Figure 7: Homogeneous aquifer: Error plot of the estimated piezometric field (PINN minus MODFLOW), using the active
cells in the numerical model.
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Figure 8: Homogeneous aquifer: Estimated piezometric field by the numerical model (left) and PINN (right) for the
selected time 𝑡 = 0.01.
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Figure 9: Homogeneous aquifer: Estimated piezometric field by the numerical model (top) and PINN (bottom) for the
selected time 𝑡 = 0.25, 𝑡 = 0.5, 𝑡 = 1.
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Figure 10: Heterogeneous aquifer: Error plot of the estimated piezometric field (PINN minus MODFLOW), using the
active cells in the numerical model.
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Figure 11: Heterogeneous aquifer: Estimated piezometric field by the numerical model (left) and PINN (right) for the
selected time 𝑡 = 0.01.
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Figure 12: Heterogeneous aquifer: Estimated piezometric field by the numerical model (top) and PINN (bottom) for the
selected time 𝑡 = 0.25, 𝑡 = 0.5, 𝑡 = 1.
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Figure 13: Heterogeneous aquifer. Left: numerical solution of the piezometric field with respect to the active cells at time
𝑡 = 0, 𝑡 = 0.25, 𝑡 = 0.5 and 𝑡 = 1. Right: conventional ANN prediction of the piezometric field with respect to the active
cells at time 𝑡 = 0, 𝑡 = 0.25, 𝑡 = 0.5 and 𝑡 = 1.
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