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Abstract

Contaminant source and aquifer characterization (CSAC) is critical in groundwater pollu-

tion evaluation and remediation. The ensemble smoother with multiple data assimilation

(ES-MDA) is utilized to jointly identify contaminant source information and hydraulic con-

ductivities by assimilating time-lapse electrical resistivity tomography (ERT) data. In a

synthetic profile with a time-varying release history in a heterogenous aquifer, we verify the

performance of the proposed data assimilation framework. The results show that the CSAC

problem could be handled by the proposed approach. The time-varying release history and

the high permeability area can be identified with adequate time-lapse ERT measurements.

Further reproduction of the evolution of the plume after CSAC also shows consistency with

the reference plume. The poor conditioning inversion caused by the filter inbreeding is

analyzed by comparing four scenarios with different apparent resistivity measurements. Fur-

thermore, we also evaluate the impact of uncertainties in the petrophysical properties and

geophysical observations on our data assimilation framework. The results show that the

proposed ES-MDA data assimilation framework could provide a convincing inversion of the

time-varying release history and hydraulic conductivities.
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1. Introduction1

Groundwater is a fundamental component of the hydrologic cycle, crucial for water sup-2

ply and with many dependent ecosystems. Unfortunately, they can be easily polluted by3

anthropogenic activities, such as landfill operations, industry leakages, urban sewage, and4

others. Groundwater contamination is an important issue that has drawn the attention5

of researchers in the past decades (Gómez-Hernández and Wen, 1994; Gómez-Hernández6

et al., 2003; Feyen et al., 2003; Li et al., 2011a,b; Megdal, 2018). A critical issue in ground-7

water contamination is the identification of the source of contamination together with the8

characterization of aquifer properties, mainly hydraulic conductivity. Inverse problems in9

hydrogeology have been the focus of many researchers, who have found it to be an ill-posed10

problem with different solutions (Carrera and Neuman, 1986; Capilla et al., 1998, 1999; Wen11

et al., 1999; Franssen and Gómez-Hernández, 2002; Bagtzoglou and Atmadja, 2005; Hanea12

et al., 2015).13

To date, several methods have been developed for contaminant source identification and14

there are several good reviews available (Atmadja and Bagtzoglou, 2001; Michalak and Ki-15

tanidis, 2004; Gómez-Hernández and Xu, 2021). The methods summarized in these reviews16

could be classified into three main categories: optimization, probabilistic, and backward-17

in-time simulation methods. The optimization approaches build an objective function and18

attempt to minimize the discrepancies between simulated and observed measurements (Gore-19

lick et al., 1983; Sun et al., 2006; Mirghani et al., 2009; Ayvaz, 2010; Li et al., 2012); the20

probabilistic approaches handle the problem with a stochastic framework and try to approx-21

imate the posterior probabilities of the simulated measurements conditioned on the observed22

ones (Woodbury and Ulrych, 1996; Zeng et al., 2012; Butera et al., 2013; Cupola et al.,23
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2015; Pirot et al., 2019; Jiang et al., 2021); backward-in-time simulation methods solve the24

solute transport equations backward to identify the most likely contaminant release loca-25

tions (Bagtzoglou et al., 1992; Neupauer and Wilson, 1999; Bagtzoglou and Atmadja, 2003;26

Ababou et al., 2010).27

For the past few years, data assimilation methods have become increasingly prominent28

for their versatile and efficient features. The ensemble Kalman filter (EnKF) proposed by29

Evensen (2003) and the ensemble smoother with multiple data assimilation (ES-MDA) pro-30

posed by Emerick and Reynolds (2013) have been progressively employed for contaminant31

source identification. Xu and Gómez-Hernández (2016) first proposed the restart normal-32

score EnKF to handle the contaminant source identification problem and then extended this33

method to recognize contaminant source information and heterogeneous hydraulic conduc-34

tivity jointly(Xu and Gómez-Hernández, 2018). Li et al. (2019) employed a mixed integer35

nonlinear programming optimization model together with Kalman filter to deduce contam-36

inant source information. Panjehfouladgaran and Rajabi (2022) combined artificial neural37

networks and constrained the restart EnKF to characterize the pollutant source in a coastal38

aquifer and then moved one step further to identify aquifer heterogeneity in a tide-influenced39

coastal aquifer (Dodangeh et al., 2022). The ES-MDA method has been coupled with genera-40

tive adversarial networks by Bao et al. (2020) to handle a channelized aquifer characterization41

problem. Todaro et al. (2021) applied the ES-MDA method to recognize pollutant source42

location and release history. Furthermore, Xu et al. (2022) handled the non-point source43

identification puzzle via ES-MDA.44

The aforementioned research findings are proof of the capacity of data assimilation meth-45

ods for the joint identification of pollutant sources and aquifer heterogeneity, however, despite46

a few applications in sandbox experiments, there is still a lack of verification in field cases.47

One main reason is that the measurements required are not available; at most, only a few48

sparse and discontinuous pollution data are accessible. One possible solution to the lack of49
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contaminant data could be the use of geophysical surveys. Geophysical methods have been50

extensively utilized in groundwater contamination investigation, especially electrical resis-51

tivity tomography (ERT), which is a cost-efficient and non-intrusive method with a high52

sampling density (Nenna et al., 2011; Seferou et al., 2013; Binley et al., 2015; Mao et al.,53

2016; Shao et al., 2021; Xia et al., 2021). ERT could be the perfect data source for ensemble-54

based contaminant source identification problems. As far as we know, several works have55

already combined data assimilation methods with ERT data to study groundwater movement56

or contamination issues. Crestani et al. (2013) first compared the ensemble Kalman filter57

(EnKF) and the ensemble smoother (ES) capabilities in identifying hydraulic conductivity58

via a tracer test, and then directly using the ERT data to inverse the heterogenous hydraulic59

conductivity in both a synthetic and a real test case (Crestani et al., 2015). Bouzaglou60

et al. (2018) combined the EnKF method and the SUTRA model to update groundwater61

states and soil parameters by using ERT measurements in a seawater intrusion laboratory62

experiment. Kang et al. (2018) first developed an EnKF-based data assimilation algorithm63

to jointly recognize DNAPL saturation together with a hydraulic conductivity field by as-64

similating time-lapse ERT data and later employed the ensemble smoother-direct sampling65

method (ES-DS) to identify a non-Gaussian aquifer by using both time-lapse geophysical66

and geochemical datasets (Kang et al., 2019). Tso et al. (2020) utilised cross-borehole time-67

lapse ERT data to identify contaminant source information through an ensemble-based data68

assimilation framework. The aforementioned study substantiates the efficacy and depend-69

ability of the ERT technique when applied to the examination of groundwater contamination70

problems. However, the majority of these studies confine their focus solely to the identifi-71

cation of heterogenous hydraulic conductivity or contaminant source information, assuming72

the other factor is already known. These assumptions present significant impracticality when73

applied to real-world scenarios, owing to the inherent scarcity of subsurface information and74

the persistent lack of data to detect groundwater pollution.75
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In this paper, we establish a benchmark that employs the ensemble smoother with multi-76

ple data assimilations (ES-MDA) to jointly identify time-varying release history and aquifer77

heterogeneity by using time-lapse ERT data. Besides, we also evaluate the impact of different78

cross-hole configurations on the proposed data assimilation framework. To our knowledge,79

this is the first instance of time-lapse ERT measurements being used for the joint identifica-80

tion of contaminant source information and hydraulic conductivities. The rest of this paper81

is organized as follows: First, we outline the methodology of the proposed data assimilation82

framework in section 2, including the coupling of groundwater flow, solute transport, and83

geophysical modeling into the ES-MDA implementation; then, in sections 3, a benchmark84

case with a time-varying releasing history in a heterogenous aquifer property is built that85

will be used as the reference to test the proposed method; section 4 evaluates the proposed86

approach, and follows a discussion in section 5; finally, in section 6, we summarize the main87

findings of this work and propose some future works need to be done.88

2. Methodology89

2.1. Groundwater flow and solute transport model90

Groundwater flow and solute transport in an aquifer can be described by the following91

partial differential equations (Bear, 1972; Zheng and Wang, 1999)92

∇ · (K∇h) + w = 0, (1)93

94

∂ (θC)

∂t
= ∇ · (θD · ∇C)−∇ · (θvC)− qsCs, (2)95

where K represents hydraulic conductivity [LT−1]; h stands for hydraulic head [L]; ∇· and96

∇ are the divergence and gradient operators, respectively; w stands for additional sources97

and sinks [T−1]; C denotes the dissolved contaminant concentration [ML−3]; θ represents98

effective porosity of the medium [-]; t denotes time [T ]; D is a hydrodynamic dispersion99
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coefficient tensor [L2T−1]; v stands for the flow velocity of the groundwater [LT−1] obtained100

from the solution of groundwater flow model (Eq. (1)); qs denotes the volumetric flow rate101

per unit volume of aquifer associated with a fluid source or sink [T−1], while Cs stands for102

the concentration of the source or sink [ML−3]. The solution of both equations requires103

the specification of initial and boundary conditions. In this work, the groundwater flow104

equation is numerically solved through the finite difference MODFLOW program (Harbaugh,105

2005) while the solute transport equation is handled by the finite difference MT3D program106

(Bedekar et al., 2016).107

2.2. Geophysical model108

The electrical potential field induced by a couple of electrodes can be characterized by109

the following equation110

−∇ · 1
ρ
∇V = I(δ(r− r+)− δ(r− r−)), (3)111

where ρ is porous media resistivity; V denotes electrical potential field; I is the input current112

from a dipole; r+ and r− are the locations of the positive and negative electrodes, respectively,113

and δ(·) is the Dirac delta function.114

Here, the porous media resistivity depends on several factors, such as porosity or pore115

water conductivity. The resistivity model proposed by Revil et al. (2018) is employed in this116

work117

1

ρ
= (Swϕ)

mσw + (Swϕ)
m−1ρs(B − λ)CEC, (4)118

where Sw is water saturation, which equals 1 in aquifers; ϕ is porosity, which in this study119

is 0.32 for both the coarse and fine sands (Power et al., 2013); m is a cementation exponent;120

ρs is grain density; B and λ are apparent mobility of the counterions responsible for surface121
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conduction and polarization, respectively; CEC is the quantity of exchangeable cation on122

the surface of the silica grains, and can be calculated by the following equation (Revil, 2013;123

Revil et al., 2017)124

CEC = 6
Qs

ρsd
, (5)125

where Qs equals 0.64 Cm−2; d stands for the mean grain diameter of the sand. σw is126

the conductivity of the pore water, which is determined by the ionic concentration and127

temperature (Sen, 1992) according to the following expression128

σw = (5.6 + 0.27T − 1.5× 10−4T 2)C − (
2.36 + 0.099T

1.0 + 0.214C
)C

2
3 , (6)129

where T is temperature, which is assumed constant at 25 ◦C in this research; and C is ionic130

concentration.131

In the context of resistivity field surveys, the apparent resistivity (ρa) is preferred over132

the resistivity as it serves as a proxy for the alteration in the electrical characteristics of the133

subsurface medium with a specific electrode array configuration, defined by134

ρa = K
∆U

I
, (7)135

where K denotes a geometric factor which depends on the electrode array configuration; ∆U136

stands for the potential difference between the two potential electrodes M and N.137

Specifically, the apparent resistivity can be computed from the resistivity values obtained138

from Eq. (4) by solving a geophysical forward problem. In this work, the geophysical forward139

problem is solved by the finite-element open-source software ResIPy (Blanchy et al., 2020).140

With the contaminant concentration calculated from MODFLOW and MT3DS and sev-141

eral geophysical parameters, the resistivity values of the aquifer could be obtained from142
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Eq. (4),(5) and (6). Thus, with the geophysical forward model ResIPy, the relationship143

between apparent resistivity ρa and concentration C can be established.144

2.3. Ensemble Smoother with Multiple Data Assimilation (ES-MDA)145

The ES-MDA technology is employed to identify a contaminant source and aquifer het-146

erogeneity from apparent resistivity data. A short description of the ES-MDA is provided147

next, for a more in-depth discussion the reader is referred to Emerick and Reynolds (2013):148

1. Procedure149

The first step of the ES-MDA technology is to generate a certain numberNe of realizations150

with unknown contaminant source and aquifer characterization (CSAC) parameters, which151

include time-varying release history and hydraulic conductivity spatial distribution in this152

work. Once the number of iterationsNa and the inflation factor αj (explained in detail below)153

are determined, the method will go through two main steps: forecast step and analysis step.154

In the forecast step, for each member of the realizations, the groundwater flow, solute155

transport and geophysical models (MODFLOW, MT3DS and ResIPy) are solved sequen-156

tially,157

Bf
i,j = ψ[B0, Ai,j], (8)158

where Bf denotes the vector of forecasted apparent resistivity, while B0 represents the vector159

of initial apparent resistivity; i stands for the realization index, i = 1, 2, . . . , Ne and j is the160

iteration index of ES-MDA, j = 1, 2, . . . , Na; ψ denotes the forward numerical simulators,161

which are MODFLOW, MT3DS and ResIPy in this case; A stands for the vector of CSAC162

parameters, including time-varying release history and hydraulic conductivity distribution.163

Then, the CSAC parameters are updated using a truncated singular value decomposition164
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(TSVD) algorithm in the analysis step, the detailed procedure can be expressed as following,165

Ai,j+1 = Ai,j +∆Aj(∆B
f
j )

T [∆Bf
j (∆B

f
j )

T + αjR]
−1[yobs +

√
αjε−Bf

o,i,j], (9)166

where i and j stand for the same meaning as in Eq. 8; αj stands for the inflation factor; yobs167

denotes an No · Nt × 1 vector of apparent resistivity observations (No denotes the amount168

of measurements in a single time step, while Nt stands for the amount of time steps with169

measurements); ε denotes the observation error, with a observation error covariance matrix170

R; Bf
o,i,j represents the vector of forecasted apparent resistivity at observation locations; ∆Aj171

and ∆Bj are square root matrices defined as172

∆Aj =
1√

Ne − 1
[A1,j − Aj, A2,j − Aj, . . . , ANe,j − Aj], (10)173

174

∆Bf
j =

1√
Ne − 1

[Bf
1,j −Bf

j, B
f
2,j −Bf

j, . . . , B
f
Ne,j

−Bf
j], (11)175

where Aj and Bf
j are the ensemble means of the CSAC parameters subject to identification176

and of the forecasted apparent resistivity at the jth iteration, respectively.177

2. Inflation factor178

The inflation factor αj is employed to augment the covariance matrix associated with179

the measurements errors to damp the changes in the model parameters at early iterations180

(Emerick and Reynolds, 2013). It is influential to the functioning of the ES-MDA, therefore,181

several ways on how to compute them have been described in previous studies (Le et al., 2016;182

Rafiee and Reynolds, 2017; Evensen, 2018). In this work, based on our previous experience183

(Chen et al., 2022), we decide to apply the inflation factor scheme proposed by Rafiee and184

Reynolds (2017). According to their detailed procedures, the first step is to generate the185

initial inflation factor based on the following equation:186
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α1 = (
1

N

N∑
i=1

λi)
2, (12)187

where α1 denotes the initial inflation factor; N is the minimum between ensemble size Ne188

and the total amount of apparent resistivity measurements No ·Nt; λi denotes the singular189

values of the dimensionless sensitivity matrix Dj, which is defined as190

Dj = R− 1
2△Bf

j . (13)191

Then, the succeeding inflation factors are determined in a geometrical decreasing pro-192

gression,193

αj = βj−1α1, (14)194

where β denotes the common ratio that ensures the summation of the reciprocal of the195

inflation factors equals to one. Its value can be obtained by196

1− (1/β)Na−1

1− 1/β
= α1. (15)197

3. The normal-score transformation198

Although ES-MDA is capable of handling non-linear models, its performance deteriorated199

obviously when the augmented state vector followed a non-Gaussian distribution (Zhou et al.,200

2014; Cao et al., 2018). To address this problem, several methods have been proposed, such201

as using iterative approaches, reparameterizations, Gaussian mixture models and normal-202

score transform (Hendricks Franssen and Kinzelbach, 2008; Zhou et al., 2011; Kumar and203

Srinivasan, 2019). In this paper, the normal-score transform algorithm is combined with204

ES-MDA to deal with non-Gaussianity. The main procedure of this method follows two205

steps: (i) transform the non-Gaussian augmented state vector into a marginally-Gaussian206

vector, and then perform ES-MDA in Gaussian space; (ii) back transform the ES-MDA207
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Table 1: A detailed description of the proposed data assimilation framework.

Framework: ES-MDA with coupled models

• Generate initial ensemble, A0 (including K0,C0).
• Choose the number of ES-MDA iterations, Na.
• For j = 1 to Na

◦ Set Af
i,j = Aa

i,j−1 for i = 1, 2, ...Ne.
◦ Execute the groundwater flow and solute transport simulators for each realization.
◦ Calculate ρ using (4) and (6).
◦ Execute the geophysical simulator, obtain apparent resistivity ρa.
◦ Calculate αj using (12),(13),(14) and (15).
◦ Apply the normal-score transformation.
◦ Update model parameters Aa

i,j based on (9).
◦ Apply the normal-score back transformation.

• Endfor

updates into its original space. One more thing need to point out is that the normal-208

score transform algorithm does not guarantee its higher-order moments will also follow a209

multi-Gaussian distribution, however, the outcome of normal-score ES-MDA outperforms210

ES-MDA for clearly non-Gaussian parameters (Jafarpour and Khodabakhshi, 2011; Kumar211

and Srinivasan, 2020).212

2.4. Data assimilation workflow213

Figure 1 illustrates the details of the proposed data assimilation workflow. Using this214

workflow, we are able to jointly update the non-Gaussian hydraulic conductivity and source215

release history by assimilating the apparent resistivity. Note that since MODFLOW and216

MT3DS are finite-difference numerical methods, while ResIPy is a finite-element method, an217

extra grid refinement procedure is needed before the geophysical model is run.218
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3. Application219

3.1. Synthetic profile description220

To test the proposed data assimilation framework, a benchmark case with a non-Gaussian221

confined aquifer and time-varying contaminant release is constructed. The contaminant222

movement in a two-dimensional synthetic model of 40 × 1 × 20m3 is simulated, and then a223

quasi-3D geophysical model (infinite in y dimension) is used to capture the evolution in time224

of the pollutant concentration.225

The profile model is discretized into 80 by 1 by 40 cells, each of which is 0.5 by 1 by 0.5 m.226

The model is filled with fine and coarse sand, and the detailed spatial distribution of these227

two materials are arranged based on a truncated Gaussian simulation (Journel and Isaaks,228

1984) with a threshold of 25 percentage, as shown in Figure 1. Notice that, the hydraulic229

conductivity values of the fine and coarse sand are generated by normal distribution algo-230

rithm with a mean of 0.5, 15 m/d and standard deviation of 0.06, 1 m/d, respectively. The231

boundary conditions are defined as follows: the left boundary is a constant head boundary of232

30m; the right boundary is zero-flow, except for the top four cells that are time-varying in-233

come flow through which the contaminant enters the aquifer; the upper and lower boundaries234

are impermeable. Such contamination could mimic the release from a contaminated river or235

irrigation canal in reality. The release pattern follows the same bimodal pulse proposed by236

Skaggs and Kabala (1994) and used many times later by others (Figure 1) given by:237

C(t) = 2 · exp(−(t− 10)2

35
) + 0.6 · exp(−(t− 25)2

80
) + exp(−(t− 45)2

40
) 0 ≤ t ≤ 100

(16)238

For the quasi-3D geophysical model, a fine triangular mesh is generated in the zone of239

investigation (the profile) to compute the voltage field. Moreover, the left, right and lower240

boundaries of the mesh have been extended to 200 m (5 times the profile length) away241

from the profile to mimic the infinite boundaries, and the elements gradually increase in242
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Figure 1: Schematic view of the groundwater flow and solute transport reference model. (a) Flow boundary
conditions and reference hydraulic conductivity field. (b) Reference concentration release curve.

size laterally and vertically in this extension region. 30 electrodes are assigned in three243

vertical boreholes with an interval of 2 m as shown in Figure 2. A and B denote the244

current electrodes, while M and N stand for the potential electrodes. We adopt the bipole-245

bipole electrode array configuration based on previous research since the cross-hole AM-BN246

configuration yields greater flexibility in practice without any singularity problem in data247

acquisition (Zhou and Greenhalgh, 2000). And the measurement is performed by staying248

AM electrodes in one borehole and moving down the BN electrodes in the other. Once the249

potential electrode N reaches the bottom of the borehole, AM electrodes will move down250

one interval and then the second round of measurements get started. In this paper, the251

separation between the electrodes BN is kept the same as those in AM (AM=BN=a). Three252
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vertical separation distance values are analyzed (a=6 m, 4 m, 2 m). Four different numbers253

of ρa measurements are considered (98, 128, 162, and 388). See Table 2 for the list of254

scenarios analyzed. In scenario S1, a sparse AM-BN scheme with an electrode spacing of 6255

m is used (98 measurements per time step, 980 in total). This is a relatively small amount256

of measurements in a time-lapse ERT survey but could happen in reality when limited data257

processing capabilities are available (Binley and Kemna, 2005). We gradually increase the258

number of measurements in scenarios S2 and S3, with AM-BN schemes of 128 and 162259

measurements, respectively. In scenario S4, all three electrode separation distances are used,260

resulting in a total of 388 measurements per time step.261

(a)

(b)

Borehole 1 Borehole 2 Borehole 3

0

-10

-20

0 10 20 4030

Figure 2: Schematic view of the geophysical synthetic model. (a) The distribution of the boreholes and
electrodes. The black dotted box represents the borehole; the blue circle stands for a single electrode. (b)
Configuration of the bipole-bipole electrodes array. A and B denote the current electrodes, while M and N
stand for the potential electrodes.

The total simulation time of groundwater flow and transport solute is 100 days, and the262

models are run in 50 equal-sized time steps. As for the geophysical model, the measurements263
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Table 2: Definition of the synthetic scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Vertical separation distance, a (m) 6 4 2 2, 4 and 6
Number of ρa measurements 98 128 162 388

are acquired with a time interval of 10 days. A more detailed description of the parameters264

used in the MODFLOW, MT3DS and ResIPy models are listed in Table 3. The reference265

hydraulic head, a couple of snapshots of the reference contaminant plumes and their related266

reference resistivity are shown in Figure 3.267

For the assimilation phase, and based on our previous work (Chen et al., 2018, 2021; Xu268

et al., 2021), the number of iterations (Na) is chosen to be 4, the ensemble size (Ne) is taken269

as 500. The initial hydraulic conductivity distribution fields are generated from the same270

algorithm as the reference one, while the initial release history ensemble are generated based271

on uniform distribution with a range between [0.5, 1.5] g/l. In this work, a 1.20% relative272

error is added to the apparent resistivity (following a Gaussian distribution with a mean of273

0 and standard deviation of 0.1 Ω ·m), while the aforementioned forward models errors are274

neglected.275

3.2. Evaluation Criterion276

The root mean square error (RMSE) is one of the most effective criteria to evaluate the277

estimation accuracy of the ensemble-based methods and has been utilized in this work:278

RMSE =

√√√√ 1

n

n∑
i=1

(Aref
i − Ai)2, (17)279

where n denotes the number of segments in which the release history curve is discretized280

or the number of cells in which hydraulic conductivity must be identified, Aref
i is the ith281

component of reference CSAC parameters, while Ai represents the ensemble mean of the ith282

component of the updated CSAC parameters. The smaller the values for RMSE, the better283
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Table 3: Groundwater flow, solute transport, geophysical model parameters

Parameters Value

Model discretization
model length along x (m) 40
model length along y (m) 1
model height along z (m) 20
grid size ∆x×∆y ×∆z (m) 0.5× 1× 0.5
total simulation time (d) 100
time step length (d) 2
number of time steps 50
Groundwater flow model parameters
mean of hydraulic conductivity, coarse sand (m/d) 15
mean of hydraulic conductivity, fine sand (m/d) 0.5
Std. of hydraulic conductivity, coarse sand (m/d) 1
Std. of hydraulic conductivity, fine sand (m/d) 0.06
Solute transport model parameters
longitudinal dispersivity (m) 0.5
transverse dispersivity (m) 0.025
molecular diffusion coefficient 0
initial water concentration (g/l) 0.15
Geophysical model parameters
porosity, coarse sand & fine sand 0.32a

diameter, coarse sand(mm) 2
diameter, fine sand(mm) 0.25
CEC, coarse sand(C/kg) 0.72b

CEC, fine sand(C/kg) 5.80b

Cementation exponent, coarse sand & fine sand 2.0a

B(m−2s−1V−1) 4.1× 10−9 c

λ(m−2s−1V−1) 3.46× 10−10 c

a Power et al. (2013).
b Revil (2013).
c Revil et al. (2018).
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the estimation of the CSAC parameters.284
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Figure 3: The properties of the reference models. (a) Hydraulic head distribution. (b) Reference contaminant
plumes on day 40 and 70. (c) Reference resistivity distribution on day 40 and 70.
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4. Results285

4.1. Contaminant source and aquifer characterization286

Figure 4 represents the recovered time-varying release histories for scenario S1 to S4.287

For each scenario, the blue dotted line illustrates the reference time-varying release history,288

while each gray line represents one recovered release history curve for one ensemble member,289

the red dotted line stands for the median, while the black dashed lines denote the 5 and 95290

percentiles of the recovered release history curves. It can be clearly seen that the median291

of the recovered release history curves follows the true release in all scenarios, but with an292

excess of fluctuation. This noticeable fluctuation in the ensemble medians and individual293

curves is believed to be caused by the inherent ill-posedness of identification problem (Chen294

et al., 2022). For scenarios S1 to S3, the increase in the number of measurements seems able295

to improve the characterization of the pollutant release curve with a narrower width of the296

90% confidence interval. However, in Scenario S4, with the largest number of observations297

with an AM-BN scheme with 388 measurements, the 90% confidence interval gets too narrow298

and in several instants does not contain the reference release curve. The calculated RMSEc299

for all scenarios is shown in Table 4 and reinforces the previous statements. For scenarios S1300

to S2, the RMSEc declines slightly with the increasing of measurements, while in scenario301

S4, the RMSEc has a value second only to the initial ensemble. Despite the use of an302

adaptive covariance inflation in this work, the ensemble variance of the release history in303

scenario S4 is still underestimated, and this poorly conditioned inversion can be attribute to304

filter inbreeding (Hendricks Franssen and Kinzelbach, 2008). Another thing to pay attention305

to is the bad estimation of the release curve for the last time steps. This outcome can be306

explained in that there are not enough data for the ES-MDA method to estimate the release307

at the latest release times.308

As for aquifer characterization, Figure 5 shows the ensemble means and variances of hy-309

draulic conductivities for the initial ensemble and scenarios S1 to S4. The ensemble mean310
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Figure 4: Recovered time-varying release histories for scenario S1-S4. The blue dotted line illustrates the
reference time-varying release history, each gray line represents one recovered release history curve for one
ensemble member, the red dotted line stands for the median, while the black dashed lines denote the 5 and
95 percentiles.

of the hydraulic conductivities in the initial ensemble is relatively homogenous, while the311

ensemble variance takes a large value. After assimilating the geophysical measurements, the312

ensemble mean of the updated hydraulic conductivities can delineate roughly the facies dis-313

tribution in the aquifer with a substantial reduction of the ensemble variance in all scenarios.314

Further comparison between all scenarios demonstrate that S2 has the best aquifer charac-315

terization, with a clear identification of the high permeability area and a relatively small316

ensemble variance, while S1 and S3 could delineate the high hydraulic conductivity zone less317

precisely and with a larger variance. In Scenario S4, a similar outcome to S2 is obtained,318

but with a poorer description of the high permeability area. A quantitative evaluation of all319
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Table 4: Performance of the scenario S1 to S4

Initial ensemble Scenario 1 Scenario 2 Scenario 3 Scenario 4

RMSEC 0.535 0.3236 0.2820 0.3057 0.4416
RMSEK 7.435 6.6774 6.6243 6.7221 7.0766

scenarios is listed in Table 4. Once again, we could find out that S4 has an RMSEK value320

much greater than S1 to S3, this outcome is contrary to the general understanding (the more321

data the better the characterization). It can be the attribute to the fact that the poorly322

conditioned inversion of the release history in scenario S4 deteriorates the characterization323

of the heterogeneous hydraulic conductivities.324

4.2. Contaminant plume reproduction325

For a more intuitive representation of the inversion results, the updated CSAC parame-326

ters are utilized to simulate the contaminant plume evolution and representative snapshots327

are taken to check the performance of the proposed data assimilation framework. Figure 6-9328

show the reference plume, and the ensemble mean plumes simulated with the initial set of329

CSAC parameters and with the updated CSAC values for all 4 scenarios in days 20, 40, 70330

and 90. The ensemble mean plumes generated by the initial ensemble spread widely with331

very large uncertainty since no observed data have been assimilated yet. The comparison be-332

tween the reference and simulated contaminant plumes speaks favorably about the proposed333

methodology since for all 4 scenarios main contaminant plume morphology is captured at334

the different time snapshots. A closer look, point to S2 as the scenario that performs best,335

especially in the high permeability area.336

Figures 10-12 show the time evolution of the vertically-averaged concentration along the337

boreholes 1, 2, and 3 simulated with the updated CSAC parameters for all 4 scenarios.338

The blue curve stands for the concentration evolution in the reference, while each gray line339

represents one concentration curve for one ensemble member, and the red line denotes the340
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ensemble median. The shape of the concentration curves is well reproduced in all scenarios.341

Again, a closer look shows that scenario S2 performs best, especially in borehole 2 and 3.342

4.3. Uncertainty evaluation for electrical properties and apparent resistivity observation error343

The aforementioned four scenarios (S1-S4) are carried out with two assumptions: (1) the344

electrical properties of fine and coarse sand (CEC values) are constant; (2) the observation345

error of apparent resistivity is relatively small. However, these two assumptions are somewhat346

idealistic. In a more realistic scenario, the uncertainties of the petrophysical properties and347

geophysical observations may deteriorate the performance of the proposed data assimilation348

framework (Troldborg et al., 2010; Laloy et al., 2012; Brunetti and Linde, 2018).349

Hence, we have run two additional scenarios S5 and S6, which serve as repetitions of350

scenario S2 but with larger uncertainties in the electrical properties or apparent resistivity351

observation errors. More detailed, in scenario S5, the CEC values of fine and coarse sand352

are no longer constant, but follow a Gaussian distribution with a mean of 0.72, 5.80 and353

standard deviation of 0.072, 0.580 ( 10% relative error), respectively; in scenario S6, a more354

realistic noise (Jardani et al., 2013), which is following Gaussian distribution with a mean355

of 0 and standard deviation of 1.0 Ω · m (12.0% relative error), is added to the apparent356

resistivity. The rest of the setup is exactly the same as in scenario S2, except for the electrical357

properties and apparent resistivity observation errors. We also show the same sets of figures358

shown for scenario S2. Figure 13 represents the recovered time-varying release histories for359

scenarios S5 and S6; Figure 14 shows the ensemble means and variances of the hydraulic360

conductivities for scenarios S5 and S6; Figure 16 illustrates the ensemble mean contaminant361

plumes computed with the updated CSAC values for scenarios S5-S6 at days 20, 40, 70 and362

90.363

A quick comparison between the figures for scenarios S2 and S5 shows that the outcomes364

are quite similar in both scenarios. The recovered time-varying release history, ensemble365
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mean of hydraulic conductivities and the ensemble mean contaminant plumes computed366

with the updated CSAC values are all virtually the same in scenario S2 and S5, illustrating367

that the heterogeneity of electrical properties in this level hasn’t deteriorate the performance368

of the proposed data assimilation framework. In contrast, by performing a comparative369

analysis of the inversion outcomes between scenarios S2 and S6, we can evaluate the effect370

of the observation uncertainties in the apparent resistivity. In scenario S5 , the median of371

the recovered release history curves has some deviations from the reference release curve372

(especially between time step 5 to 15) and the 90% confidence interval becomes much wider;373

the identified high permeability area is less accurate and the ensemble variance is still quite374

large; the ensemble mean plume struggles to recover the high plume concentration. In375

summary, we believe that both the uncertainties in the electrical properties and in the376

apparent resistivity observations both have some impact on our data assimilation framework,377

but at least in this case, the uncertainties in the apparent resistivity observations certainly378

deserve more attention.379

In summary, we have again demonstrated the capacity of the proposed data assimilation380

framework by taking into account the uncertainties in the electrical properties and apparent381

resistivity observations.382
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Figure 5: Ensemble means and variances of hydraulic conductivities for the initial ensemble and scenarios
S1 to S4.
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Figure 6: The reference contaminant plume and the ensemble mean contaminant plumes computed with the
initial set of CSAC parameters and with the updated CSAC values for scenario S1-S4 on day 20.
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Figure 7: The reference contaminant plume and the ensemble mean contaminant plumes simulated with the
initial set of CSAC parameters and with the updated CSAC values for scenario S1-S4 on day 40.
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Figure 8: The reference contaminant plume and the ensemble mean contaminant plumes simulated with the
initial set of CSAC parameters and with the updated CSAC values for scenario S1-S4 on day 70.
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Figure 9: The reference contaminant plume and the ensemble mean contaminant plumes simulated with the
initial set of CSAC parameters and with the updated CSAC values for scenario S1-S4 on day 90.
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Figure 10: Time evolution of the vertically-averaged concentration of the recovered plume in borehole 1 for
scenario S1-S4. The blue curve stands for the concentration evolution in the reference, while each gray line
represents one concentration curve for one ensemble member, and the red line denotes the ensemble median.
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Figure 11: Time evolution of the vertically-averaged concentration of the recovered plume in borehole 2 for
scenario S1-S4. The blue curve stands for the concentration evolution in the reference, while each gray line
represents one concentration curve for one ensemble member, and the red line denotes the ensemble median.
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Figure 12: Time evolution of the vertically-averaged concentration of the recovered plume in borehole 3 for
scenario S1-S4. The blue curve stands for the concentration evolution in the reference, while each gray line
represents one concentration curve for one ensemble member, and the red line denotes the ensemble median.
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Figure 13: Recovered time-varying release histories for scenario S5-S6. The blue dotted line illustrates the
reference time-varying release history, each gray line represents one recovered release history curve for one
ensemble member, the red dotted line stands for the median, while the black dashed lines denote the 5 and
95 percentiles.
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Figure 14: Ensemble means and variances of hydraulic conductivities for scenario S5-S6.
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Figure 15: The ensemble mean contaminant plumes computed with the updated CSAC values for scenario
S5-S6 on day 20, 40, 70 and 90.
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Figure 16: The ensemble mean contaminant plumes computed with the updated CSAC values for scenario
S5-S6 on day 20, 40, 70 and 90.
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5. Discussion383

In this paper, we presented a performance evaluation of a proposed data assimilation384

framework for the groundwater contamination inverse problem in a benchmark case. The385

demonstration mainly presented through the following three aspects: (1) establish a coupled386

groundwater flow, transport solute and geophysical model; (2) build a data assimilation387

framework based on ES-MDA and ERT observation data; (3) joint identify contaminant388

source release history and hydraulic conductivities.389

We show that the proposed data assimilation framework works well by using time-lapse390

ERT measurements with the proper electrode array configuration. Although the inversion391

of the release history may suffer from filter inbreeding, the reproduced contaminant plume392

via the updated CSAC parameters is still able to capture the dominant pattern of the393

reference contaminant plume. This result may have important implications for groundwater394

contamination modeling, as it suggests that an appropriate number of downstream ERT395

observations could help the researchers jointly identify the aquifer properties and unknown396

contaminant release history.397

In this work, the electrical properties of the fine and coarse sands we used are assumed398

to be perfectly known. However, in field works, these parameters need to be ascertained399

according to dedicated field experiments before our proposed data assimilation framework is400

employed. While it may be argued that we have simplified the geophysical properties of the401

electrical model, the proposed data assimilation framework can be used as a starting point,402

leaving to the ES-MDA the task of evaluating the impact of uncertainties and heterogeneity403

around the electrical properties. In fact, this uncertainty evaluation procedure can be applied404

not only to the aquifer electrical properties but also to the apparent resistivity observation405

errors. This attribute is also indicative of the merits inherent in ensemble-based algorithms.406

Besides, to characterize the contaminant source release history and hydraulic conductivi-407

ties, the difference between the background ionic concentration and the contaminant release408
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is also crucial. The temporal variation in apparent resistivity is an essential prerequisite for409

the proposed data assimilation framework. Hence, this data assimilation framework may410

suffer from larger uncertainty issues in cases with similar background ionic concentrations411

and contaminant releases.412

In summary, we conclude that the proposed data assimilation framework has the capacity413

to identify contaminant source release history and hydraulic conductivities by using time-414

lapse ERTmeasurements with proper electrode array configuration. Moreover, it is refreshing415

to see that this data assimilation framework also has the capacity to handle a more complex416

geophysical model with large apparent resistivity observation errors.417

6. Summary and conclusion418

The main objective of this study is to joint identify a contaminant source release curve419

and hydraulic conductivities by using time-lapse ERT measurements. For this purpose,420

the study combines a coupled model of groundwater flow, solute transport and geophysics421

with the ES-MDA assimilation technique. In this data assimilation framework, only the422

apparent resistivity obtained from the time-lapse ERT measurements is utilized to recognize423

the hydraulic conductivities and contaminant release history. The proposed methodology424

is then validated in a synthetic benchmark with a time-varying contaminant source release425

in a heterogeneous aquifer. The results demonstrate that the CSAC problem could be426

handled by the proposed approach. The time-varying release history and the main patterns427

of high conductivity can be captured with proper time-lapse ERT measurements. The plume428

evolution computed with the updated parameters for both time-varying release curve and429

spatially-heterogeneous conductivity approximates well the plume computed in the reference430

field.431

Besides, we also analyzed the influence of different AM-BN schemes in our data assimila-432

tion framework. Four scenarios with a different number of apparent resistivity measurements433
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(98, 128, 162 and 388) were designed. In scenario S4, the AM-BN scheme with a mixture of434

three different electrode spacing suffers from filter inbreeding producing poor results. This435

phenomenon can be primarily ascribed to the underestimation of ensemble variance of the436

release history, and needs additional attentions in further applications. We also evaluate the437

impact of uncertainties in the petrophysical properties and geophysical observations on our438

data assimilation framework, the outcomes show that the proposed ES-MDA data assimi-439

lation framework could provide convincing inversion of time-varying releasing history and440

hydraulic conductivities.441

This study is significant since it is the first time that time-lapse ERT measurements are442

employed to identify contaminant source information together with hydraulic conductivities.443

And we believe this work also provides a way to assess the uncertainties from different sources444

when we face a more close to reality case. Insights from this work could provide a solid basis445

for more geophysical technologies applied in the future identification of contaminant source446

information and aquifer properties. But we also admit that a number of issues have not447

been considered, such as different electrode-array configurations, or more complex hydraulic448

systems. More research is needed in order to move forward and apply this approach to real449

problems.450
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