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Abstract

Thermoelectric materials assembled in Peltier cells are an increasingly widespread option for generating electricity
from residual sources and refrigeration, even at the nanoscale. These cells can cool below the nominal temperatures
with an electric pulse, during short periods and for applications such as laser devices or microchips. The present article
uses heuristic algorithms to improve the response of a Peltier cell by concurrently optimizing the pulse and geometry
of its thermoelements. The study is based on the Finite Element method, handling full coupling and dynamics of
the thermal, electric, and mechanical fields and temperature dependency of the material properties. The optimization
algorithm is Simulated Annealing, capable of discarding local minima to reach robust results and permitting set
limiting factors such as the maximum stress. The main novelty lies in multilayered geometries and pulse shapes
that can reproduce any geometry and pulse virtually. First, a complete parametric analysis under constant pulse is
presented to understand the complexities of the temperature, electric flux, and stress distributions in these layered
geometries. Second, combined optimizations are discussed. The targets are overcooling temperature, time to reach it,
overheating minimization, overcooling duration, and combinations. In the best cases, the first target is doubled, the
second is reduced to a few milliseconds, the third is null, and the duration can be 95% of the pulse while reducing the
stress up to 40%.

Keywords: Multiphysics dynamics, nonlinear finite element, simulated annealing, weighted sum–multiparameter,
thermoelement optimization, thermoelectric pulse optimization, mechanical stress failure

Nomenclature

I Electric current A
T Temperature ◦C
l TE (or layer) length m

A TE cross–sectional area m2

ρ Mass density kg/m3

cp Specific heat J/kg K
αT Thermal expansion coefficient 1/K
λ, µ Lamé’s parameters Pa
α Seebeck coefficient V/K
κ Thermal conductivity W/K m
γ Electric conductivity A/V m
Q Thermal power W
x Spatial coordinates m
j Electric flux A/m2

V Electric potential V
q Thermal flux W/m2

σ Stress tensor Pa
C Stiffness tensor Pa
ε Strain tensor –
β Thermal stress tensor Pa/K
u Displacement vector m
c TE layer width m
e TE depth m
P Pulse gain –
t Time s
ξ Dimensionless coordinate –
ϕ Area ratio –

d1 TE vertical slope –
σ Normal stress Pa
τ Tangential stress Pa
O Objective function –
φ Weighting coefficient –
m Target value ◦C, s
s Target standard deviation ◦C, s
θ Annealing “temperature ” –
i Iteration counter –
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Sub–, Super–scripts
¯ Prescribed property, average

op Optimal
h Hot side
c Cold side

css Cold face at steady state
1, 2, 3 Spatial direction
i, j, k Component, counter

ad Admissible
˙ 1st time derivative
p Pulse

pp Post–pulse
mx Maximum
ht Holding time

mn Minimum
0 Reference, origin

V M Von Mises
˜ Perturbed

Acronyms
TE Thermoelectric
TC Thermocouple
FE Finite Element

COP Coefficient–of–Performance
BC Boundary Condition
SA Simulated Annealing

1. Introduction

Peltier cells, due to their low material cost, ease
of use, and applicability across a range of scenarios,
from cooling isolated systems without moving parts to
micro-scale sensors and actuators, have garnered signif-
icant attention. Achieving optimal performance in these
devices hinges on calculating an electric intensity Īop

that maximizes the Peltier effect while minimizing the
Joule effect, a relationship expressed in Eq. (3). During
steady-state operation, the Peltier effect prevails over
the Joule heat and Fourier conduction effects to main-
tain cooling at the cold face.

Sophisticated applications, such as lasers and elec-
tronic circuits, necessitate additional cooling during
brief transient periods, often referred to as “overcool-
ing”. This involves temporarily increasing I beyond Īop

to enhance the Peltier effect, albeit at the expense of in-
creased Joule heat. The challenge lies in ensuring that
Joule heat does not compromise cooling performance
during overcooling, which requires a deep understand-
ing of the transient state.

The transient state of Peltier cells is inherently chal-
lenging to study due to the intricate interplay of cou-
pled phenomena, dynamics, and the delicate balance be-
tween the Peltier, Joule, and Fourier effects. Moreover,

as local temperature differences increase during over-
cooling, phenomena like the Thomson effect, which ac-
counts for variations in TE properties with temperature,
become more pronounced. Additionally, the transient
state imposes heightened thermomechanical stresses,
demanding robust TE designs.

Recent articles [1] and [2] reviewed the state–of–the–
art in Peltier cells for refrigerating electronic circuits,
highlighting the need for research in areas such as con-
tacts, integration, manufacturing processes, new mate-
rials, and design optimization. It is this last aspect that
our paper addresses.

Historically, constant section parallelepipeds were fa-
vored due to their ease of manufacture. However, ad-
vancements in nanoscale technology, exemplified in [3],
have enabled the production of more intricate shapes at
a competitive cost. Thin film depositions of TEs for
cooling electronic devices [4] and innovative cooling
garments [5] exemplify this trend.

The optimization of TE geometries for steady-state
applications has been explored in depth. Notable re-
views [6] have scrutinized the impact of TE dimensions,
layers or TC cell distribution. Also, optimization algo-
rithms on the performance, both for cooling and power
generation applications (see [7] or [8]). However, these
studies often focus on simple geometrical variations, ne-
glecting the effect of transversal area variation.

However, the review lacked coverage of TE geome-
try optimization involving variations in transversal area,
as observed in works such as [9], [10], and [11]. These
studies conducted parametric analyses to identify opti-
mal shapes for various objectives, studying basic linear
transversal area variations. Additionally, advanced op-
timization algorithms were used in the works of [12],
[7], and [13], to explore unconventional shapes and de-
signs. Recent contributions in this field (see [14], [4],
and [15]) further underscore the evolving landscape of
TE geometry optimization.

In this paper, a novel approach to optimizing pulsed
Peltier cells is presented. The method revolves around
the innovative design for TE geometries and electric
pulses utilizing a piecewise approach. The focus is
on adjusting the width of specific points within the
TE structure and optimizing gain values at specific
times, employing interpolation for intermediate values.
This optimization technique enables precise fine–tuning
of parameters, leading to substantial performance en-
hancements for pulsed Peltier cells.

In addition to addressing the complexity of TE geom-
etry optimization, the present study considers the often-
neglected Thomson effect and electrical contact resis-
tance. Recent work [8] underscores the significance of
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the Thomson, which can lead to a 7% difference in the
results. Also, for miniaturized TEs, electrical contact
resistance cannot be ignored, further emphasizing the
need for a comprehensive analysis.

While many previous studies rely on commercial
codes for their analyses, these tools often impose lim-
itations on material model complexity. Many previ-
ous studies rely on commercial codes for their analy-
ses. While commercial codes offer advantages, such
as ease of use and widespread availability, they often
have inherent limitations on material model complexity.
Consequently, these limitations can impede the flexibil-
ity and customization required to address the nuances
of the thermoelectric formulation. In contrast, we em-
ploy a comprehensive nonlinear FE code—introduced
in [16], [17], and [18]—integrated with the research FE
software FEAP [19] from UC Berkeley. This code effec-
tively couples mechanical, electric, and thermal fields,
accounting for T–dependent properties.

To identify optimal geometries, which may be intri-
cate and counterintuitive, a heuristic algorithm previ-
ously applied to optimize electric pulses is applied [20].
This same approach guides our work in optimizing TE
geometries, offering a robust and adaptable methodol-
ogy.

This paper is structured as follows: Section 2 pro-
vides a brief description of the models, followed by a
parametric study of predetermined geometries in Sec-
tion 3. SA is the selected optimization procedure [21]
introduced in Section 4, highlighting its ability to handle
complex objectives and nonlinear optimization prob-
lems. Finally, Sections 5 and 6 delve into intricate ge-
ometries and optimization results, significantly enhanc-
ing performance.

2. Description of the model

In the Peltier cell studied in the current article, only
one of the 128 TCs is considered (see the representation
of the complete Peltier cell in [22]). In addition, only a
quarter of the TC is meshed due to symmetries, repre-
senting only half of a p–doped TE as shown in Figure 1.
With these simplifications, the distributions of T and V
and the absolute values of the fluxes and stresses are the
same in the two TEs if their α are equal [23] in absolute
value.

Figure 1 illustrates four distinct materials stacked
from bottom to top. Starting from the outermost, Al2O3
can be seen, followed by SnPb, Cu, and finally the lay-
ered Bi2Te3. It is important to note that among these
materials, only Bi2Te3 possesses thermoelectric proper-
ties within the cell. The thermoelectric BCs are a pre-
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x2
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ξ
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Cu
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Bi2Te3

Al2O3
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Figure 1: Half–thermocouple with mechanical hinges at hot and cold
faces and repetition at left and right as in [22]; layered thermoelement
with variable area. Overbars denote prescribed magnitudes.

scribed optimal electric current j̄op proportional to Īop.
A particular interface FE developed in [22] is used for
this purpose. Also, T̄h = 50◦C is set at the top face,
and V is gauged to zero at the top Cu cut. The bottom
Tc can take any value, but its thermal flux is forced to
Qc = 0 W. The material properties used throughout the
calculations are listed in Table 1.

The repetition and symmetry cuts define the mechan-
ical BCs, and hinged surfaces are considered of the sev-
eral possible conditions at the Al2O3 hot and cold faces.
Since the Peltier cells often are encapsulated, convec-
tion and radiation through internal air are neglected, and
TE contacts are considered perfect.

Although T will be reported in Celsius degrees,
Kelvin degrees are considered in the equations. The cur-
rent formulation governs the TE coupled with mechani-
cal phenomena, and it is based on the constitutive (first
column) and equilibrium (second column) equations:

j = −γ∇V − αγ∇T ; ∇ · j = 0

q = −κ∇T + αT j; ρcpṪ = −∇ · q − j · ∇V

σ = C : ε − β (T − T0); ρü = ∇ · σ
(1)
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Figure 2: Geometries of thermoelements for transient parametric study with cold face at the bottom and hot face at the top: constant “straight” S,
linear “pyramids” A and B, quadratic “barrel” C, “hourglass” D, cubic “vase” E.

Al2O3 Cu SnPb Bi2Te3

ρ×103 3.57 8.96 7.31 7.53
cp×102 8.37 3.85 2.26 5.44
αT ×10−6 5.0 17 27 16.8
λ×1010 16.34 7.16 3.25 6.71
µ×1010 15.08 4.39 1.68 1.68
κ 35.3 386 48 κ(T )

γ×106 0 58.1 4.72 γ(T )
α 0 0 0 α(T )

σad×106 – – – 60

Table 1: Properties of the Peltier cell materials of Figure 1 from
[24]. Temperature–dependent properties of Bi2Te3 from polynomi-
als of [25]; typical allowable stress from [26].

The TE widths ci of Figure 1 vary piecewise, but the
thickness e in direction x2 is constant; this is a limiting
condition that could easily be overcome but facilitates
the construction of the FE mesh. Otherwise, and thanks
to this layered shape, there are no restrictions on the ge-
ometries the optimization algorithm can handle. How-
ever, maximum and minimum widths will be imposed
to avoid singular figures.

The study [20] demonstrated that only the mechan-
ical field is significantly influenced by the mesh size,
while convergence can be achieved in the electric and
thermal fields even with coarse meshes. To optimize the
simulation time, given the large number of cases the op-
timization algorithm will handle, a convergence study
was conducted to determine the minimum element size
required for satisfactory results.

The mesh consists of 27-node hexahedra isoparamet-
ric elements. Figure 3 shows the results for the number
of elements in the x3 direction for shape E (refer to Fig-
ure 2) and l = 0.006 m. It is important to note that the
number of elements must be a multiple of the number
of layers. Based on the findings, it can be concluded

that a minimum of 24 elements and a maximum of 40
are sufficient for obtaining a reliable estimation of stress
in the thermoelement, corresponding to an element size
ranging from 0.15 to 0.25 mm.
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Figure 3: Maximum Von Mises stress for a different number of ele-
ments in direction x3.

For each iterated TE geometry, it is necessary to find
the Īop that maximizes Qcss so that a steady state min-
imum Tcss can be achieved. Optimal intensities have
been obtained in the past, but in general, for paral-
lelepipedal (straight) or linear TEs, viz. [24] or [27].
Since this work aims to determine optimal geometries
of a variable section, a semi–analytical procedure for a
general Īop is taken from [25] to avoid additional time–
consuming FE runs. Although very fast, this calcula-
tion is recursive since each layer of Figure 1 is under
constant but different T ; that is, α(T ), γ(T ), κ(T ) are
variable along l. The fitted polynomials for the three
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properties are from [24]:

α = 1.988×10−4 + 3.353×10−7 T + 7.52×10−10 T 2

κ = 1.663 − 3.58×10−3 T + 3.195×10−5 T 2

γ = 1.096×105 − 5.59×102 T + 2.498 T 2

(2)

3. Parametric study in transient state

This section presents a parametric study of the TE
basic geometries sketched in Figure 2, keeping the di-
mensions and shapes of the other material parts from
Figure 1. The linear geometries have been extensively
studied in the literature, and the rest in [25]. Still, the
following results’ novelty lies in the electric prescrip-
tion’s dynamic nature.

For comparison purposes, all lengths are fixed at l = 5
mm, and the maximum 1.5 mm and minimum 0.75 mm
widths are equal for all variable geometries, except an
average of 1 mm for the straight S.

The steady state is driven by Īop, producing a cold
face temperature Tcss. Suddenly, a step pulse of con-
stant gain P = 2.5 and duration tp = 6 s is applied;
see Figure 4(a) and (b): the overcooling starts, and the
cold face eventually achieves its minimum Tcss − ∆Tp.
When the extra volumetric heat due to Joule reaches this
cold face by conduction, the temperature increases up to
Tcss + ∆Tpp at tmx. Without other pulses, T slowly re-
turns to the steady state level for a long time (out of the
figure) due to the evacuation of the extra heat through
the hot face. The holding time tht (or “uptime”) is the
period for which the overcooling is at least 80% of the
maximum ∆Tp.

The resulting Tc evolutions during the transient state
calculated with FEAP are plotted in Figure 4(c). Since
all TEs are subjected to the same pulse, the initial slopes
are equal since it mostly depends on the equal l. It al-
ready can be observed that the best–performing geom-
etry to achieve the largest ∆Tp (the most crucial target)
is E.

By order of importance, the three main causes of this
good overcooling are:

a1) Due to Joule, the maximum Tmx appears in the
neck far away from the cold face, then its influence
on Tc is delayed.

a2) From [20], the prescribed dynamic intensity P · Īop

is among the lowest, producing a reduced Joule.

a3) The area is the largest by the cold face, allowing an
efficient Peltier evacuation of heat despite a cold
face smaller than the maximum.

Geometry B fulfills a1 even better than E, but not the
other two causes; A and D are, for this target, the worst
geometries since they only partially comply with the
three causes. For C, the maximum Joule will be gen-
erated at both ends. Still, because of a3 (or equivalently
because of the large volume at the barrel center), the TE
can evacuate from the cold face, an essential part of the
heat by Peltier.

The overheating ∆Tpp is minimum for B and E due to
two causes:

b1) The Tc at pulse removal are among the lowest since
they achieve excellent ∆Tp and good tht.

b2) The volumes of their bottom halves are the largest,
then the Joule that arrives at the cold face is smaller
for the same pulse energy.

The S and D geometries also perform well due to both
b1 and b2 and their ability to externally evacuate heat
quickly, partly thanks to their sizeable hot face sections.

The holding time tht is optimal again with B and E

because of a1. The significant heat conduction in the TE
middle also helps maximize tht for E. Also, C presents a
good result, but E is better due to its smaller cold face
area.

As a summary, the B, C, and E geometries are appro-
priate for most targets except for tmn. Whereas both
A and D are undesirable due to the generation of large
Joule heat near the cold face, the significant difference
between them is their maximum mechanical stress, to
be studied next. The straight S gives intermediate but
poor results for most targets.

The spatial T distributions during steady state calcu-
lated with FEAP are shown in Figure 5(a). As for the
repetitive optimization cases, the FE mesh is relatively
coarse to minimize the running time but does not pro-
duce a loss of precision; see [20] for a convergence
study of the same mesh and thermoelectric case. The
horizontal variation of T is negligible. Still, the vertical
variation is significant, provoking vertical free expan-
sion in the top half of the TE and contraction in the rest,
especially near the cold face. The expansion is maxi-
mum near the neck, where T reaches its highest 53.2◦C;
the TE remains at T0 = 20◦C in the middle, and the
cooling is −30.7◦C near the lower end. Due to these dif-
ferences and combined expansion and contraction, the
whole TE tends to move toward the bottom.
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Figure 5: Contour plot temperatures in ◦C and deformation at steady
state, (a) and (b), and at transient state at maximum cold face temper-
ature, (c) and (d), for E from Figure 2. Initial (blue), deformed ×400
(black line) meshes.

Figure 5(b) shows the deformed geometry of E also
in steady state. The distortions are primarily due to two
related causes: (i) compression/expansion due to decre-
ment/increment of T with respect to T0 and (ii) bending
due to the rotation of the TE ends. The latter answers
to the difference of αT between Cu and Al2O3 (the last
very low, see Table 1), combined with the mechanical
and repetition BCs of Figure 1. The S nPb solder has
a minimum thickness of 0.05 mm and does not signifi-
cantly influence deformations.

Figures 5(c) and 5(d) show identical distributions but

at tp (pulse removal) when the highest stresses appear
due to the accumulated electric energy introduced. The
cold face reaches Tcmn = −39◦C, significantly lower
than the steady state −30.7◦C. The trade–off is that at
this instant, Tmx jumps to 145◦C by the neck, almost
three times the steady maximum 53◦C. Consequently,
5/6 of the TE is now above T0, tending to expand in all
directions much more than during steady state. Due to
the general augmentation of T , most TE also tries to ex-
pand vertically. Still, the Al2O3 restriction prevents it,
producing the corresponding stress increase and stress–
induced stiffness which reduces the rotation of the TE
ends.

The T distributions of Figures 5(a) and 5(c) (and of
the other geometries of Figure 2) are essential for un-
derstanding the final shapes that SA will produce. Other
relevant issues are the adiabatic nature of the cold face
and the constant pulse.

For further interpretation, consider the simplified 1D
model deduced from [25] for geometrical linear varia-
tion at steady state and under constant properties:

q(ξ) = Iα
T̄h ln ϕ0ξ − Tc ln ϕlξ

ln ϕ0l
+

d1κ

ln ϕ0ξ

(
Tc − T̄h

)
−

I2

d1γ
ln

(
ϕ0ξϕlξ

)
;

ϕ0ξ :=
A(0)
A(ξ)

; ϕ0l :=
A(0)
A(l)

; ϕlξ :=
A(l)
A(ξ)

(3)
where the coordinate ξ is defined in Figure 1 and A(0),
A(l) the cold an hot faces’ areas.

The Peltier effect (first term of the right–hand side) is
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Figure 6: Contour plots for Von Mises stress in MPa for the thermoelement geometries of Figure 2 at pulse removal tp defined in Figure 4(a).
Computations are performed using three–dimensional coupled and dynamic finite elements.

essential during the pulse application due to the incre-
ment of the intensity I, especially in or near the possible
necks that SA will predict. The Fourier conduction and
Joule generation (second and third terms) modify the
flux depending on: i) the sign of the T distribution and
ii) the variable area A(ξ), respectively.

In the modeled p–doped TE of Figure 1, the heat flux
is upward in most of the TE from the pulse beginning
to when ∆Tp (maximum cooling) is reached. However,
from this instant to tmx, the flux is upward in the upper
part and downward in the lower part. Then, there is an
intermediate zone with zero flux—not necessarily in the
middle—a function of many parameters: l, tp, BCs, and
significantly the geometry. Finally, after tmx, the steady
state slowly recovers, and the flux is upward again.

One of the important contributions of the present
work is the analysis of mechanical stresses, which can
reach very high values in transient states for some ge-
ometries and pulses. Figure 6 shows contour plots of
the Von Mises equivalent stresses σVM in the TE at pulse
removal.

The treatment of the mechanical field in Eq. (1) is
linear elastic. Therefore possible stress relaxations can
occur due to plasticity in Cu and S nPb or to damage in
the stiff and brittle Al2O3. Despite this simplification,
the observed trends are correct since high stresses are
restricted to small zones. The components of σVM come
from:

c1) The high vertical stress σx3 , due to the vertical me-
chanical constriction.

c2) The small but influential shear stresses τx1 x3 , τx2 x3

due to the αT mismatch and rotations.

During the transient process, c1 and c2 can happen
simultaneously at some TE points leading to stress con-
centrations. The first candidate for these concentrations

Initial param. set p

Perturbed param. set p~

O < O ?
yes

no

Accepted iter. p = p~

Max. ia reached?

yes
Reduce Boltz. probability

no

ACCEPTANCE
Boltzmann funct.
Random number

fB
r

yes

yes

r > fB ?
no

Rejected iteration

Max. ir reached?
no

~

Figure 7: Simulated Annealing optimization algorithm flow chart.

is the TE corners close to the cold face, where a high T
increment occurs.

The σVM highest values and their locations are differ-
ent for each geometry, demonstrating the importance of
the mechanical analysis. With σad from Table 1 and an-
alyzing Figures 6, it can be concluded that while for B,
D, and E, the maxima are about the permissible, for the
other geometries they are much higher; for A, the ex-
cess is a significant 50%, with a poor overcooling per-
formance.

As commented, the necks are concentrators of Joule
heat, and, as long as they do not lie close to the cold
face, their existence favors the TE mechanical perfor-
mance since they can decouple the stress causes, as in
B, D, and E. The neck should be in the top half since the
T̄h = 50◦C BC reduces the T increment, and the maxi-
mum Joule heat takes longer to reach the cold face. The
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comparison between A and C is paradigmatic: the small
cold face section provokes high stresses in both, but for
C, they are lower due to a3. The slightly higher stress in
the cold face of E compared with that of D can also be
attributed to the smaller cold face area of the former. In
Figure 6, it is clear that the stress distributions of D and
E are not only proportional to thermomechanical strains
β[T (ξ)−T0] but also, indirectly through the third Eq. (1),
to the bending drawn in Figures 5(b) and 5(d).

4. Simulated Annealing

SA is a heuristic optimization method that mimics the
metallurgical process of heating and controlled cooling,
known as annealing, to get an optimal crystallization of
a metallic material. SA is used to solve global optimiza-
tion problems in large search spaces, which can involve
multiple and potentially conflicting targets.

The objective function O to be minimized is a
weighted sum of each target function. Before the opti-
mization begins, several evaluations of each target func-
tion are calculated to find their average value and stan-
dard deviations. Then, the function takes the form of the
left expression:

O(p) =
4∑

k=1

φk
mk(p) − m̄k

sk
; fB = exp

(
∆O
θ

)
(4)

where 1 ≤ k ≤ 4 since four targets will be analyzed.
SA aims to find the p that minimizes O(p); each new
parameter vector is proposed by taking previous values
from suitable prior distributions.

The target values are computed for a given parameter
set, and O is evaluated. Then, one of the parameters,
chosen at random, is perturbed by drawing a new value
from its distribution. The O is reevaluated, and a deci-
sion is taken: if the new function Õ is better than the pre-
vious one, the new parameter value is accepted. If not, a
random choice is made whereby a parameter value that
does not improve O will be accepted with a probabil-
ity that it will be prominent in the initial iterations i but
decrease as the iterations increase. The probability is
given by a Boltzmann’s distribution function of the right
Eq. (4), where ∆O = Õ − O is the (negative) change in
the objective function. Notice that the TE T is unre-
lated to the annealing θ, which should decrease as the
optimization iterations progress. The higher θ, the more
likely an unfavorable proposal will be accepted. There
must be a cooling schedule specifying after how many
iterations θ should go down and by which factor. This
possibility of accepting unfavorable proposals prevents

SA from being trapped in a local minimum, making it a
global optimization method.

Figure 7 shows a flow diagram of the algorithm. The
first iteration counter ia counts the number of accepted
parameter vectors: when ia reaches a maximum value,
θ is reduced, and this counter is reset to zero. The sec-
ond ir counts the number of rejected vectors p: again,
when ir reaches a maximum value, θ is reduced, and
this counter is reset to zero. When there are three resets
of ir, the optimization process stops.

Parameter Symbol Min. Max.
Layer widths ci 0.75 1.5

TE length l 2.5 7.0
Pulse duration I tp 2.1 10
Pulse duration II tp 2.1 11.2

Pulse gain P j 1 6

Table 2: Input parameters and their intervals for the optimizations.

Each input parameter’s minimum and maximum al-
lowed values are taken from uniform distributions of
the intervals indicated in Table 2. The TE geometry is
parametrized using the layer widths ci drawn in Figure 1
and the total TE length l. Eight layers are considered,
assigning c1 to the layer close to the cold face ξ = 0
and c9 close to the hot face ξ = l. The pulse is pa-
rameterized using eight pulse gains P j equally spaced
during the pulse duration tp as in Figure 8. The result-
ing pulse shapes are smoothed using cubic Hermite in-
terpolation polynomials. The pulse always ends with a
constant P = 1, and eventually, stabilization is reached.

The pulse duration tp must be within limits to avoid
introducing insufficient or excessive electric energy in
the device. Notice that two different tp maxima depend
on the optimization type described below. The widths
ci are also taken from the indicated interval to avoid im-
practical geometries. During the optimization, l and the
TE geometry are the most critical parameters since, as
explained before, they control the time Joule heat takes
to reach the cold face by conduction.

Two different optimizations, to be presented in Sec-
tions 5 and 6, are run depending on the input parameters
to optimize:

I Geometry. Input parameters: {ci, i = 1, . . . , 8}, l,
and tp. The pulse is constant P = 2.

II Pulse + Geometry. Input parameters: {ci, i =
1, . . . , 8}, l, tp, and {P j, j = 1, . . . , 8}.

For each optimization, six different cases will be stud-
ied: the first four optimize the targets shown in Fig-
ure 4(b):
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• C1: maximization of overcooling ∆Tp

• C2: minimization of tmn to reach 80% of ∆Tp

• C3: minimization of overheating ∆Tpp after tp

• C4: maximization of holding time tht

An essential feature of the current SA is setting a limit
for the maximum stress allowed in the TE, taken as σad

from Table 1. The reason to define tmn as 80% of the
maximum overcooling is because, with II, more than
one Tc local minima could appear. The other two cases
combine objectives:

• C5: simultaneous optimization of C1, C2, C3, C4

• C6: simultaneous optimization of C1, C3, C4

0.5 1 1.5 2 2.5 3

1
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−
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(-
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Figure 9: For case C4, accepted iterations versus objective function;
thermoelectric geometry calculated evolution.

Figure 9 shows the evolution of O with accepted it-
erations for optimization I and case C4. The TE ge-
ometry has been drawn at five different iterations. The

progression is not monotonic since SA can get momen-
tarily trapped in local minima.

The FE and SA models are run with a computer with
a CPU Intel–Core i7-4930K (12 cores) and 64 Gb of
RAM in a Linux environment. Each FE example is ex-
ecuted in a single core mode, taking from 100 to 500
s, depending on the pulse duration. The SA algorithm
typically needs about 6,000 iterations to converge for
optimization I and more than 10,000 for II.

5. Optimized geometries under constant pulse

In this section, the optimization of only TE geome-
tries for the cases defined in Section 4 is determined
using the FE and SA models previously described. Ta-
ble 3 presents interesting results, with Īop corresponding
to the best iteration. Variable geometries can maintain
σVM much below σad, except for C2 due to the high elec-
tric energy introduced already during steady state by its
high Īop.

Figure 10 displays the final geometries of the six
cases (top row) and the calculated Tc evolutions (bottom
row). Cases C3 and C6 that optimize ∆Tpp have a sim-
ilar bottleneck near the hot face, causing the Joule heat
to concentrate around it and leading to a T–gradient that
facilitates heat evacuation. This behavior was observed
in Figure 5(c) with T jumping from 145◦C to 50◦C.

C1, which maximizes ∆Tp exclusively, gives an op-
timal geometry similar to the preliminary E from Fig-
ure 2. The highest allowed l and ci prevent Joule heat-
ing and its conduction. The overcooling is 10◦C, an
improvement from 7.7◦C of Figure 4(c) for E, and in
addition, the calculated σVM ≈ 30 MPa is a significant
reduction from the 50.7 MPa of S.

Case Īop tp l σVM

C1 0.9 8.0 6.9 29.6
C2 2.55 2.1 2.5 57.9
C3 0.7 2.1 7.0 31.8
C4 1.0 10 6.7 43.7
C5 1.33 6.8 5.5 46.6
C6 0.86 9.9 7.0 30.6

Table 3: Thermoelement geometry optimization I. Steady state inten-
sity and optimized: pulse duration, length, and maximum von Mises
stress.

The only optimized parameter in case C2 is tmn, re-
sulting in a geometry that achieves a concise tmn with a
small ∆Tp. This geometry favors the arrival of Joule to
the cold face, resulting in shorts l and tp, a neck, and an
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Figure 10: Optimized thermoelement geometries (first row, in abscissa centered width in mm) and resulting cold face temperature evolution (bottom
row, in abscissa time in s).

area expansion near the cold face. The resulting geom-
etry is similar to D but with a rectangle at the top and a
very short effective length l = 1.25 mm. The neck is not
directly assigned to the cold face because creating heat
is more efficient if this neck is located at a section with
a high T at steady state. The SA algorithm limits the
obtained stress level to 58 MPa; a geometry similar to A

would give better tmn, but the stresses would have been
too high. The intense heat generated has its drawback in
the high ∆Tpp after the pulse. Minimizing only C2 goes
against the general TE dynamic improvement since the
best way to reduce tmn is the absence of ∆Tp, but this
case is used as a benchmark of SA optimization.

C3 minimizes ∆Tpp, requiring the suppression of
Joule as much as possible: l is selected as the maximum
allowed and tp as the minimum. The resulting geometry
combines D and B with exponential variation, favoring
a modest ∆Tp of 4.1◦C and a corresponding very small
∆Tpp of 0.7◦C.

Case C4 maintains a significant holding time by bal-
ancing the three flux components of Eq. (3) at the cold
face. This balance is achieved by forcing a high T with
a neck close to the cold face and a large cold face area
to minimize Joule and favor conduction. The rest of the
TE is almost straight, and l is nearly the largest, keeping
Tmx = 75◦C near the hot face and far from the cold face.

In C5, l is close to the maximum allowed, with a
medium pulse duration of 6.8 s. This geometry opti-
mizes tmn and requires new evacuation systems since
Tmx is closer to the hot face, and A(l) is almost the al-
lowed maximum.

The optimization cases C1, C5, and C6 aim to min-
imize ∆Tp and increase cold face area while reducing
heat conduction within the TE. The area increase occurs
in only one layer. In contrast, C2 and C3 have a bottle-
neck near the cold face, leading to modest ∆Tp values.

Based on the Tc evolutions of the lower Figure 10, it
is shown that except for C4 and C5, which target tht, the
pulse tends to end when the maximum overcooling is
reached.

All single target cases (C1 to C4) demonstrate signif-
icant optimized improvements concerning S under sim-
ilar conditions, with a notable decrease in the O indi-
cating better results. However, compromises are neces-
sary for combined cases such as C5 and C6 due to target
contradictions, resulting in less noticeable individual in-
creases.

6. Combined geometry and pulse optimization

Some targets of the previous section are more sensi-
tive to pulse shape than TE geometry. Therefore, the
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Figure 11: For the six cases and the two optimizations from Figures 10 and 12: left graphic, objective function; other graphics, the four calculated
targets.

combined optimization II can yield interesting results
without increasing stress levels.

Table 4 displays the SA results, including the maxi-
mum pulse gain of Figure 8. The new pulse limits allow
for high or low electric energy, causing stress levels to
increase or decrease. The other results are similar but
for σVM . Except for case C2, the lengths of the opti-
mized geometries are again almost the maximum be-
cause, with the 80% definition of tmn of Section 4, there
is no need to rush the arrival of Joule to the cold face.
The bottlenecks above of C3 and C6 from Figure 10 and
of E from Figure 2 are now obtained for all cases except
for C2 and C4.

C1 exhibits a “saw” geometry in the upper part of the
TE, but it only slightly improves ∆Tp and ∆Tpp com-
pared to I. The resulting small perturbation at the end
of the pulse only slightly changes the Tc evolution since
it occurs after its minimum. The SA algorithm could
have eliminated this perturbation with more iterations
or a good tuning post–process, but the computing time
was already too high.

In C2 and similarly to I, the goal is still to maximize
Joule, which is achieved with the allowed maximum
P1 ≈ 6 and a minimum l. With this high pulse gain,
the same electric energy as in the previous section can
be applied in less time, increasing the initial slope of
Tc. The second pulse spike results from choosing the

lower limit tp = 2.1 s without much influence on the tar-
get. The neck can now be directly on the cold face since
the quadratically dependent Joule becomes much more
critical than Fourier and Peltier.

Now that the pulse shape has been included in the
optimization, C3 is not a case but a benchmark. The
best pulse to avoid overheating is a zero pulse, P j = 0.
In this situation, any geometry will give zero ∆Tpp, so
the result of the first row is only a possible solution with
no specific meaning.

The C4 geometric solution is very similar to I in the
TE lower part, but an additional neck appears in the up-
per part with minimum influence. The two pulse max-
ima induce two similar ∆Tp local minima. Although the
second local minimum is absolute, the holding time tht

starts at 1 s, and its optimal value is a significant 10.4 s,
as shown in the last Figure 11.

The optimized pulses in Figure 12 second row are
different from those of Figure 10 but similar to those
in [20] for only pulse optimization, except C5 due to
tmn definition, suggesting pulse shape and TE geometry
have independent effects. tp tends to reach its maximum
only when tht is present (C4, C5 and C6).

Figure 11 presents bar graphs summarizing the re-
sults of both optimizations. The outcomes are better for
II than I; for example, the maximum ∆Tp is 16◦C for
the first and 10◦C for the second. Optimization I has a
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time in s). Resulting cold face temperature evolution (bottom row, in abscissa time in s).

Case Īop Pmx tp l σVM

C1 0.93 5.8 6.3 6.9 59.7
C2 2.61 5.9 2.1 2.5 59.5
C3 0.96 1.0 2.8 6.1 21.7
C4 0.84 4.0 11 7.0 48.2
C5 0.94 2.9 8.4 6.9 32.6
C6 0.88 2.5 11 7.0 29.2

Table 4: Thermoelement geometry plus pulse optimization II. Steady
state intensity and optimized: maximum gain, pulse duration, length,
and maximum von Mises stress.

low value for ∆Tpp, while II has a zero due to the lack
of pulse, and almost the same is observed for tmn. For
tht, II achieves a 32% increase. Combined cases C5 and
C6 offer less clear solutions due to compromises. While
II cannot decrease ∆Tp, it can do so with ∆Tpp and tmn,

and only C5 increases tht. To better understand the ef-
fect of concurrently optimizing geometry and pulse, the
left figure shows that the objective function significantly
improves in all cases with II, particularly for C1 and C5,
which are probably the most important cases.

Figure 13 shows the contours of the relevant magni-
tudes for the optimal geometry of C1 at the end of the
applied pulse, t = 6.3 s. Due to the transverse area vari-
ation, isolines deviate from the perfect horizontal align-
ment expected in straight geometries. When the area in-
creases, isolines tend to be concave, whereas when the
area decreases, they tend to be convex.

The maximum T in the thermoelement is found near
its top. The difference between the minimum and maxi-
mum values exceeds 160◦C, which supports the require-
ment for variable properties in the thermoelement. No-
tably, the T–increase near the cold side is significantly
greater than in the middle. V exhibits nearly linear vari-
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Figure 13: Contour plots of temperature, voltage, vertical heat flux, and vertical electric flux for the optimal geometry of Case 1 of Optimization II
at the end of the pulse t = 6.3 s.

ation, although the rate of change tends to increase when
the section decreases. The maximum V is directly asso-
ciated with the applied pulse.

The fluxes, depicted in the last two figures, are corre-
lated with the transverse area: as the area decreases, the
flux increases, and vice versa. This relationship arises
because the fluxes are measured per unit area, ensuring
that the total integrated value remains constant across
sections. The figures exclusively present the vertical
component of the fluxes, which is the most relevant.
Notably, most values are positive, indicating an upward
direction.

7. Conclusions

The results of the current article show that at steady
state, the thermoelement geometry does not signifi-
cantly affect the temperature distributions, particularly
near or at the cold face; in transient state, the distribu-
tions are heavily affected. Also, the geometry affects the
Joule generation—concentrates this effect in necks—
and the conduction but not the Peltier effect. Locating
these necks close to the hot side is essential for many
optimization targets.

Even if the geometry optimization alone does not im-
prove the targets much, except for overcooling, it re-
duces the stresses significantly. This reduction is due
to the different temperatures and heat flux distributions
(the source of thermal stresses) when the geometry is
nonregular.

With the boundary conditions considered in this
work, it has been demonstrated that optimization can

appreciably improve all targets if pulse shape and ther-
moelement piecewise geometry are simultaneously con-
sidered. The performance for some of these targets can
be doubled, particularly the overcooling. The proposed
methodology can develop custom–made solutions for
general thermoelectric dynamic situations.
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