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Abstract 12 

Electrical resistivity tomography (ERT) is a geophysical method used to image the subsurface due to its sensitivity 13 

to subsurface porosity, water saturation, and fluid salinity. This geophysical method has been widely applied to 14 

investigate mineral and groundwater resources, as well as in archaeological, environmental, and engineering 15 

studies. The prediction of subsurface properties, such as electrical conductivity, from measured ERT data requires 16 

solving a challenging geophysical inversion problem. This work proposes an iterative geostatistical resistivity 17 

inversion method using stochastic sequential simulation and co-simulation as model perturbation and update 18 

techniques. Electrical resistivity models are generated conditioned to a target histogram, often retrieved from 19 

available resistivity borehole data, and assuming a spatial continuity pattern described by a variogram model. From 20 

the electrical resistivity models, a finite-volume approximation of Poisson’s equation is used to compute synthetic 21 

ERT data. The misfit between predicted and observed data drives an iterative procedure and condition the co-22 

simulation of new models in the subsequent iterations. This methodology is applied to a two-dimensional synthetic 23 

case, and a set of two-dimensional profiles obtained from an ERT survey carried out in Southern Portugal. In both 24 

application examples, the final models predict ERT data that match the observed ones while reproducing borehole 25 

data and imposed variogram models. The results obtained in both data sets are compared against a commercial 26 

deterministic ERT inversion methodology, showing the ability of the proposed method to model small-scale 27 

variability and assess spatial uncertainty. 28 
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 31 

1. Introduction 32 

Electrical Resistivity Tomography (ERT) is a geophysical method used to predict the spatial distribution of 33 

subsurface electrical resistivity (e.g., Parasnis 1986; Telford et al. 1990; Reynolds 2011). Since electrical resistivity 34 

is directly related to rock type, porosity, ionic strength of the pore fluids, and surface conductivity of geologic 35 

materials (Sumner 1976; Sharma 1997), ERT is widely used in hydrological studies (Page 1968; Wilson et al. 36 

2006), mineral exploration (Bauman 2005; White et al. 2001), archaeological prospection (Griffiths and Barker 37 

1994; Tsokas et al. 2008), or environmental and engineering studies (Chambers et al. 2006; Rucker et al. 2010). 38 

ERT data are collected by establishing an electrical potential difference between two current electrodes. An 39 

electrical current is injected into the ground, and the resulting potential distribution is measured at many pairs of 40 

potential electrodes (Griffiths and Barker 1993). The observed measurements are then converted into apparent 41 

resistivity, which represents a weighted average of the resistance of earth materials to current flow, providing a 42 

smooth representation of the true subsurface spatial distribution of electrical resistivity (Loke et al. 2013). 43 

Apparent resistivity enables a qualitative prediction of the electrical parameters of the subsurface, but it is not 44 

sufficient to predict and capture the true spatial distribution and variability of the subsurface electrical resistivity. 45 

Apparent resistivity models distort the real subsurface characteristics as these data correspond to volumetric 46 

measurements highly dependent on the type and configuration of the acquisition (Dahlin and Zhou 2004; Saydam 47 

and Duckworth 1978). 48 

 To predict the true subsurface electrical resistivity spatial distribution, observed apparent resistivity needs 49 

to be inverted (Loke 2002). Due to measurement errors in the acquisition, noise contamination, and incomplete 50 

data coverage, ERT inversion is an ill-posed, nonlinear problem with a non-unique solution (e.g., Tarantola 2005). 51 

Multiple solutions imply uncertainty about the prediction obtained. Hence, an accurate assessment of model 52 

uncertainty is fundamental to properly interpreting the predictions and for well-informed decision-making.  53 

The2elationnship between observed geophysical data and model parameters can be mathematically 54 

described as 55 

 𝐝𝐨𝐛𝐬 = F(𝐦) + 𝐞, (1) 

where m represents the model parameters to be predicted (i.e., electrical resistivity), 𝐝𝐨𝐛𝐬 corresponds to the 56 

observed data (i.e., apparent resistivity), F is the forward operator that maps the model into the data domain, and 57 

𝐞 represents the discrepancies arising from measurement errors and the assumptions made during the data 58 

processing. 59 
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Classical ERT inversion methods are deterministic. A deterministic inversion procedure searches for a 60 

single earth model (i.e., the expected model) able to predict ERT data with an acceptable fit to the observed data, 61 

satisfying any other imposed constraints such as being consistent with an initial model built from the a priori 62 

knowledge about the subsurface geology. In deterministic inversion methods, the solution minimizes an objective 63 

function consisting of a regularized weighted least squares formulation, in which the search is usually conducted 64 

using iterative gradient-based methods (e.g., Ellis and Oldenberg 1994; LaBrecque et al. 1996; Loke and Barker 65 

1996; Pidlisecky et al. 2007). As deterministic inversion predicts a single solution it does not provide insights into 66 

the degree of uncertainty associated with the inversion results. Several works have investigated the use of 67 

geostatistical priors to regularize and impose a given spatial continuity pattern to the predicted models (e.g., 68 

Hermans et al., 2012; Jordi et al. 2018; Bouchedda et al., 2017). Hermans et al. (2016) proposes the prediction-69 

focused approach (PFA) forecast the spatiotemporal change hydrogeological properties using electrical resistivity 70 

tomography. Linde et al. (2015) review the most common methods to include geological realism in 71 

hydrogeological and geophysical inverse modelling. 72 

Alternatively, stochastic geophysical inversion methods search for multiple subsurface models (e.g., of 73 

electrical conductivity) that predict ERT data that fit equally well the observed ERT data. A variety of stochastic 74 

methods are described in the literature, but in general, they are divided into two main groups of techniques: 75 

Bayesian inversion and stochastic optimization algorithms (e.g., Tarantola 2005, Gloaguen et al., 2005, Giroux et 76 

al., 2007, Pasquale et al., 2017, de Pasquale and Linde, 2017; de Pasquale et al., 2019). 77 

In Bayesian inversion methods, a joint posterior probability distribution for all model parameters is used 78 

to describe the solution to the inverse problem. The posterior distribution is obtained using a likelihood function 79 

built on the available data sources, which updates a prior distribution for the model parameters. Zhang et al. (1995) 80 

proposed an inversion method to maximize model parameters’ posterior probability density function. This 81 

method’s implementation for ERT relies on assumptions about the spatial covariance of the resistivity parameters 82 

and Gaussian distributions for data errors and model parameters. Mosegaard and Tarantola (1995) described a 83 

statistical approach reformulated as a Bayesian inference problem using Markov chain Monte Carlo (McMC) and 84 

the Metropolis algorithm sampling method. In their work, the posterior distribution combines physical models and 85 

available prior information with new information obtained through direct measurement of the subsurface.  86 

Alternatively, stochastic optimization algorithms methods to predict hydrogeological properties 87 

approximate the posterior distribution. A comparison between three global optimization methods is provided in 88 

Barboza et al. (2018). The most cited works include ERT inversion based on McMC to assess the posterior 89 
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distribution of the model parameters are shown in de Pasquale (2017), de Pasquale and Linde (2017), de Pasquale 90 

et al. (2019) and Aleardi et al. (2020). Chen and Zhang (2006) propose an ensemble Kalman filter for providing 91 

updated estimates of model parameters and model state variables, such as hydraulic conductivity and pressure head 92 

and their uncertainty. Arboleda-Zapata et al. (2022) propose a workflow to analyze ensembles of predicted 93 

electrical resistivity models.  94 

In iterative geostatistical geophysical inversion methods (e.g., Azevedo and Soares 2017; Grana et al. 95 

2021), the model parameters are considered as a realization of a random function. In this context, the model 96 

parameter space is perturbed and updated using stochastic sequential simulation and co-simulation coupled with a 97 

global optimizer. The optimization is driven by the mismatch between observed and predicted synthetic data. At 98 

the end of the iterative procedure, a set of subsurface models representing the posterior probability distribution are 99 

obtained. The uncertainty of the predicted models can be assessed, for example, by computing the pointwise inter-100 

quantile range of the set of inverted models. The application of these methods to invert ERT data is still limited. 101 

Dealing with ERT data, Yeh et al. (2002) describe a sequential geostatistical ERT inversion method that 102 

uses spatial covariance matrices to include prior knowledge about general geological structures. The method uses 103 

well-log data to constrain the solution and a successive linear estimator to find an optimal model. Feyen and Caers 104 

(2006) employed multiple-point geostatistics to characterize the hydrofacies architecture of complex geological 105 

settings, using a training image designed to reflect the prior geological knowledge. They also used a spatial 106 

covariance and a multi-Gaussian random function to model the intra-facies variability of the hydraulic properties. 107 

Mariethoz et al. (2008) used truncated pluri-Gaussian simulation to assess contaminant migration in highly 108 

heterogeneous porous media. Truncated pluri-Gaussian simulation attempts to create maps of categorical values 109 

by truncating at least two underlying multi-Gaussian simulations. Hörning et al. (2020) presented a geostatistical 110 

approach for the inversion of ERT data based on Random Mixing; in this technique, realizations of conductivity 111 

fields are constructed by combining random fields that have the spatial correlation of conductivity. Lochbühler et 112 

al. (2014) propose a method to condition the generation of subsurface models with multiple-point statistics with 113 

tomographic images. 114 

We propose herein an alternative iterative geostatistical resistivity inversion method based on direct 115 

sequential simulation and co-simulation (Deutsch and Journel 1998). The available resistivity borehole data are 116 

used to model the spatial continuity patterns of subsurface geology as given by a variogram model and to condition 117 

the generation of electrical resistivity models locally. When borehole data are not available, variogram models and 118 

target distribution of electrical resistivity retrieved from analogues can be imposed. The similarity coefficient 119 
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between observed and predicted data at a given iteration drives the convergence of the iterative procedure and the 120 

assimilation level of the observed ERT data from iteration to iteration. 121 

The proposed geostatistical ERT inversion methodology is applied to two-dimensional synthetic and real 122 

data sets. The real application example consists of a set of two-dimensional profiles obtained from an ERT survey 123 

carried out in the Alentejo region in Portugal, which was designed to model the groundwater system of the region. 124 

All predicted models generate synthetic ERT data similar to the observed ones, reproducing both the borehole data 125 

and the imposed variogram models. In addition, the predicted models show the ability of the proposed inversion 126 

method to characterize the spatial uncertainty of the model parameters. The results obtained in both application 127 

examples are compared against a conventional deterministic inversion methodology available in commercial 128 

software (RES2DINV) (Loke 2010). 129 

The next section details the proposed methodology. This is followed by the synthetic and real case 130 

applications, including a detailed description of the data sets. The results are discussed in the subsequent section 131 

before the main conclusions. 132 

 133 

2. Methodology 134 

The proposed iterative geostatistical ERT inversion method to predict the spatial distribution of subsurface 135 

electrical resistivity from recorded ERT data (i.e., apparent resistivity pseudo-sections). This method encompasses 136 

three main steps: model generation, generating synthetic ERT data, and stochastic update (Fig. 1). Each step is 137 

described in detail below.  138 

 139 

Fig. 1 Schematic representation of the proposed iterative geostatistical ERT inversion method. 140 
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 141 

2.1 Model generation 142 

Electrical resistivity model parameters are generated using direct sequential simulation (DSS) during the first 143 

iteration and direct sequential co-simulation (co-DSS) in the following iterations (Soares 2001; Azevedo and 144 

Soares 2017). At each iteration, a set of Ns electrical resistivity models are generated, accounting for the spatial 145 

continuity given by a variogram model (i.e., a spatial covariance matrix), considering the local distribution that 146 

the attribute should have at each location and conditioned to the available resistivity borehole data. The variogram 147 

model and the local probability distribution can be estimated from the existing borehole data and/or inferred from 148 

expert knowledge. 149 

Briefly, in direct sequential simulation, each location of the simulation grid is visited sequentially 150 

following a random path. At each visited location, a value of the original variable is drawn from a probability 151 

distribution function based on a simple kriging estimate using observed data (i.e., direct observations) and 152 

previously simulated values within a given neighborhood (Deutsch and Journel 1998; Soares 2001). The simple 153 

kriging estimate and variance are used to build an auxiliary probability distribution function from the distribution 154 

of the experimental data set. The simulation finishes after all the locations of the random path are visited. Each 155 

time the simulation runs, an alternative model is generated (i.e., a geostatistical realization) as the random path 156 

changes, and so they change the previously simulated data at each location. 157 

 158 

2.2 Generating synthetic ERT data 159 

The forward model implemented in the iterative geostatistical ERT inversion method described herein was 160 

developed by Pidlisecky and Knight (2008). During the iterative procedure, this two-dimensional forward model 161 

is used to compute Ns synthetic apparent resistivity models from the previously generated Ns electrical resistivity 162 

geostatistical realizations. Using a two-dimensional forward model might represent a limitation when computing 163 

the ERT response from highly complex geological settings, as the injected electrical current into the subsurface 164 

flows three-dimensionally through preferential paths that could circumvent resistive structures present in a two-165 

dimensional representation. In these cases, alternative three-dimensional forward models could be used, but the 166 

computational costs of the proposed methodology would increase. A summary of the main principles followed by 167 

Pidlisecky and Knight (2008) is provided below. 168 



   
 

 7 

In ERT surveys, a series of voltage measurements are obtained in response to a series of known input 169 

currents. Poisson’s equation can be used to describe the electric potential field generated when a current passes 170 

across an electrode dipole 171 

 −𝛻	 ∙ (𝜎𝛻𝜙) = 𝐼1𝛿(𝑟 − 𝑟$) − 	𝛿(𝑟 −	𝑟%)4, (2) 

where 𝜎 is the electrical conductivity [M-1L-3T3I2], 𝜙 is the potential field [ML2T-3I-1], 𝐼 is the input current [I], 𝛿 172 

is the Dirac delta function, and 𝑟$ and 𝑟% are the locations of the positive and negative current electrodes, 173 

respectively. To solve numerically Eq. (2) for the electric potential, 𝜙, numerical gradient, and divergence 174 

approximations are required. Following Pidlisecky and Knight (2008), once numerical finite difference operators 175 

have been derived for gradient and divergence, Eq. (2) can be written in matrix notation as 176 

 (𝐃𝐒(𝜎)𝐆)𝜙8 = 𝐀(𝜎)𝜙8 = 𝑞, (3) 

where D is the divergence matrix, 𝐒(𝜎) is a diagonal matrix containing the electrical conductivity values, G is the 177 

gradient matrix, 𝜙8 is a vector of electric potentials, 𝐀(𝜎) is the combined forward operator, and q is a vector 178 

containing the current electrode pairs. Equation (3) is solved to yield the potential field 179 

 𝜙8 = 𝐀%&(𝜎)𝑞, (4) 

Equation (4) results in a vector of electric potential values for the cells in the model. Knowing the survey 180 

potential electrode locations, potential differences can be calculated across each measurement pair. These 181 

measurements are then multiplied by the geometric factor K to provide apparent resistivities 182 

 𝜌'(( = Δ𝜙8𝐾. (5) 

The geometric factor (𝐾) depends on the arrangement of the four electrodes (i.e., depends on the distance between 183 

each electrode and the measurement). K is given by 184 

 𝐾 =	
2𝜋

1
𝑟)&%*&

−	 1
𝑟)&%*+

− 1
𝑟)+%*&

+ 1
𝑟)+%*+

, (6) 

where 𝑟)&%*& is the distance between current electrode C1 and potential electrode P1, 𝑟)&%*+ is the distance 185 

between current electrode C1 and potential electrode P2, 𝑟)+%*& is the distance between current electrode C2 and 186 

potential electrode P1, and 𝑟)+%*+ is the distance between current electrode C2 and potential electrode P2. 187 

 188 

2.3 Stochastic update 189 

At the end of each iteration, the stochastic update of the electrical resistivity models is performed using a data 190 

selection procedure that controls the assimilation degree of the observed ERT data. For a given iteration, and for 191 

the set of Ns simulated electrical resistivity models, Ns synthetic apparent resistivity models are computed using 192 
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the forward model described above. The computed apparent resistivities are locally compared against the observed 193 

one in terms of a similarity coefficient, S, using a non-overlapping moving window that visits all the inversion grid 194 

locations 195 

 
𝑆 = 	

2 ∗ ∑ (𝑥,. 𝑦,)-
,.&

∑ (𝑥,)+ + ∑ (𝑦,)+-
,.&

-
,.&

, 
(7) 

Where x and y are the observed and synthetic apparent resistivity, respectively. N is the number of observations 196 

used in the calculations. The moving window does not need to be square, and its width and height are randomly 197 

generated at the beginning of each iteration to avoid biasing the results from iteration to iteration. Alternative 198 

similarity coefficients could be used as long as they are bounded between -1 and 1 with a similar meaning to 199 

Pearson’s correlation coefficient. This assumption is required due to the use of S in the stochastic sequential co-200 

simulation of new models in the subsequent iteration. 201 

At each moving window location, the samples of electrical resistivity corresponding to a given 202 

geostatistical realization and that originated the largest similarity coefficient are stored together with the similarity 203 

coefficient in two auxiliary arrays, which are used as conditioning information in the subsequent iteration. 204 

In the new iteration a new set of Ns models is co-simulated using both auxiliary arrays as secondary 205 

variables. The magnitude of 𝑆 determines the variability of the new ensemble of electrical resistivity co-simulated 206 

models. The higher the similarity coefficient, the less variable the ensemble will be (i.e., the higher the assimilation 207 

of the observed apparent resistivity data). 𝑆 is similar to Pearson’s correlation coefficient but is sensitive to the 208 

amplitude mismatch between signals. The iterative process finishes when the similarity coefficient, computed over 209 

the entire domain, is above a given threshold or a given number of pre-defined iterations is reached. 210 

During the entire iterative procedure, each electrical resistivity model generated with DSS and co-DSS 211 

reproduces the observed data at their locations, the probability distribution function of electrical resistivity, and 212 

the variogram model imposed during the stochastic sequential (co-)simulation. The variogram model adopted for 213 

the inversion depends on the data availability and will condition the geological plausibility of the predicted 214 

subsurface models. 215 

The proposed iterative geostatistical ERT inversion method can be summarized by the following sequence of 216 

steps (illustrated in Fig. 1): 217 

 218 

i) Simulation of a set of Ns electrical resistivity models using DSS. The existing borehole data are used 219 

as hard data. The spatial continuity pattern of the stochastic sequential simulation is imposed by a 220 

variogram model; 221 
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ii) Calculation of the corresponding Ns synthetic ERT data (i.e., apparent electrical resistivity) for each 222 

electrical resistivity subsurface model simulated in step i) using the forward model; 223 

iii) Computation of the local similarity coefficient (𝑆) between observed (i.e., measured) and predicted 224 

(i.e., synthetic) ERT data; 225 

iv) Construction of the two auxiliary arrays by selecting, for each moving window position, the grid 226 

cells from the realization with the highest 𝑆 and the corresponding 𝑆 values, respectively; 227 

v) Generation of a new ensemble of Ns electrical resistivity models by co-DSS using the auxiliary arrays 228 

resulting from iv) as secondary variables; 229 

vi) Iterate and repeat steps ii)-v), until the value of 𝑆 computed over the entire domain reaches a pre-230 

defined threshold or the number of iterations gets to a user-defined number of iterations. 231 

 232 

3. Application examples 233 

The proposed iterative geostatistical ERT inversion methodology was applied to two-dimensional synthetic and 234 

real data sets. The synthetic application example acts as proof of concept of the proposed methodology and are 235 

compared against a commercial deterministic inversion solution. The results obtained with the real application 236 

example consider realistic noise levels are compared against a conventional deterministic inversion methodology 237 

to analyze its advantages and disadvantages. 238 

 239 

3.1 Synthetic application example 240 

The synthetic application example shown herein is inspired by a laboratory experiment conducted in a sandbox by 241 

Citarella et al. (2015) and Chen et al. (2018). In this experiment, a laboratory sandbox is filled with homogeneous 242 

porous material (i.e., glass beads) and has an impermeable barrier positioned at the center in the middle top of the 243 

sandbox. Within the sandbox, pollutant dispersion in a groundwater system is simulated by injecting a tracer 244 

solution into the porous medium and controlling the head level. A photometric method is used to monitor the 245 

plume evolution in time. This experiment mimics a typical groundwater system recharged by natural rainfall 246 

entering the soil profile and leaching into deeper soil layers. Due to intensive agricultural or industrial activities, 247 

the leachate leaving the soil profile and entering the aquifer may contain concentrations of toxic substances. Once 248 

these substances have entered the aquifer, they can be transported over large horizontal distances, thus 249 

contaminating large parts of the aquifer. In the case of groundwater contamination, it is important to understand 250 
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how the toxic substances are dispersing so that proper mitigation actions can be taken. The inversion results 251 

illustrated herein aim at assessing the potential of the proposed inversion method to detect contamination plumes. 252 

The electrical resistivity reference data set used in this work represents a snapshot of the system described 253 

above with the plume already dispersed under the impermeable barrier (Fig. 2a). Plume spread is apparent by the 254 

V-shaped low resistivity feature in a high resistive background (i.e., the glass beads filled with fresh water). The 255 

vertical impermeable barrier induces the V-shape. The sandbox is 90 cm long by 18.2 cm high. Tracer dispersion 256 

occurs from right to left. The impermeable barrier is observed as a vertical low resistivity feature starting from the 257 

top of the model until a depth of about 5.6 cm and positioned at a horizontal distance of 43.5 cm from the left 258 

border. The two-dimensional inversion grid consists of 60 by 1 by 13 cells for the i-, j-, and k-directions, 259 

respectively. 260 

 261 

 262 

Fig. 2 a) Section of electrical resistivity reference model representing pollutant dispersion in groundwater. b) Pseudo-section 263 

of reference apparent resistivity computed considering a Wenner-Schlumberger acquisition array and solving the forward 264 

model to yield the potential field following Pidlisecky and Knight (2008). 265 

 266 

The reference apparent resistivity (Fig. 2b) was numerically computed considering a Wenner-Schlumberger 267 

acquisition array (e.g., Loke 2002) composed of a total of 31 electrodes spaced every 3 cm and solving the forward 268 

model to yield the potential field following Pidlisecky and Knight (2008). This apparent resistivity was used as 269 

true geophysical data during the application of the proposed methodology. The same forward model used to 270 

calculate the true apparent resistivity field was used as part of the inversion. This approach assumes that no 271 
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uncertainty is considered in the forward model, which might be a strong assumption in real case applications with 272 

complex geology settings. 273 

To apply the proposed geostatistical resistivity inversion to the reference data set, the true electrical 274 

resistivity field was sampled at two boreholes on both sides of the impermeable barrier. The position of the 275 

boreholes can be seen in Fig. 2. The borehole data were used as experimental data to condition the generation of 276 

models during the iterative geostatistical inversion. As we are considering two boreholes as conditioning data, the 277 

spatial continuity pattern of both horizontal and vertical directions was estimated directly from the true electrical 278 

resistivity, as represented by a two-dimensional global variogram model (Fig. 3). In this synthetic application 279 

example, it is assumed that there is no uncertainty in the spatial continuity pattern imposed during the iterative 280 

procedure (i.e., no uncertainty on the variogram model). Also, to reduce the complexity of the synthetic data set, 281 

the simulation and inversion area is limited to the region where the apparent resistivity exists (Fig. 2b).  282 

 283 

Fig. 3 Two-dimensional experimental variogram computed directly from the true electrical resistivity model and model fitted 284 

for the a) horizontal and b) vertical directions. It is assumed that there is no uncertainty in the variogram model. 285 

 286 

The experimental variograms in the horizontal and vertical directions were fitted with a spherical 287 

variogram model. The ranges used were 30 cm for the horizontal direction and 5 cm for the vertical one. 288 

The iterative geostatistical inversion ran with thirty-two models of resistivity and for six iterations. These 289 

values were set after trial-and-error to make sure the iterative procedure converged. The evolution of the global 𝑆 290 

between reference and synthetic apparent resistivity is shown in Fig. 4. The models generated during the first 291 

iteration of the inversion procedure are characterized by a global 𝑆 higher than 0.90. This means that the inversion 292 

problem is well characterized since a good convergence is reached at the early stages of the iterative procedure. 293 

This effect might be due to the relatively small size of the inversion grid versus the number of experimental data. 294 
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Also, the imposed variogram model is close to the true one. After the second iteration, the global 𝑆 is higher than 295 

0.95, reaching almost 1 at the end of the six iterations. As stopping criterion for the iterative procedure, we opted 296 

by a fixed number of iterations, which was set after trial-and-error over a small portion of the area of interest. 297 

 298 

Fig. 4 Evolution of the global 𝑆 for the synthetic application example. 299 

 300 

Fig. 5 shows the results of the inversion. In panel a, the reference apparent resistivity computed from the reference 301 

map in Fig. 2a is shown; panel b shows the realization that has the best fit (i.e., with the highest similarity 302 

coefficient), and panel c shows the pointwise mean of all realizations generated during the last iteration of the 303 

iterative procedure. Then, panels e and f show the similarity coefficients computed between the reference apparent 304 

electrical resistivity and that obtained from the best-fit electrical resistivity realization and the pointwise mean. 305 

There are small-scale differences around the areas where the tracer is being injected, the impermeable barrier is 306 

located, and at the plume front (black arrows in Fig. 5). These areas are characterized by high and abrupt resistivity 307 

contrasts, which have an impact on the quality of the inverted pseudo-sections. This effect is also noticeable in the 308 

local 𝑆 values. 309 
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 310 

Fig. 5 Pseudo-sections of a) reference apparent resistivity, b) synthetic best-fit apparent resistivity, and c) synthetic apparent 311 

resistivity given by the mean of the resistivity models after the last iteration of the inversion process. The similarity coefficient 312 

𝑆 is also shown, d) for the similarity between reference and best-fit realization, and e) for the similarity between the reference 313 

and the pointwise mean of all realizations. The black arrows point to small-scale differences between the reference a) and the 314 

two synthetic estimates b) and c). W1 and W2 represent the location of the boreholes considered. 315 
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 316 

The best-fit electrical resistivity model (i.e., the one that produces apparent resistivity with the highest 317 

global S) and the pointwise mean of the electrical resistivity models predicted in the last iteration of the inversion 318 

process are shown in Fig. 6b and 6c, respectively. These models reproduce the overall spatial distribution of the 319 

pollutant dispersion observed in the reference model (Fig. 6a), but small differences are identified. Neither the 320 

plume V-shape nor the impermeable barrier are accurately reproduced. This is consistent with the small-scale 321 

differences identified between synthetic and reference apparent resistivity pseudo-sections in Fig. 5. It is a 322 

challenge for geostatistical simulation based on two-point statistics to reproduce small features such as the 323 

impermeable barrier or the curved shape seen in the plume spatial distribution. Alternative geostatistical methods 324 

such as multiple-point geostatistical simulation could perform better. 325 

 326 

Fig. 6 Sections of a) true electrical resistivity, b) best-fit resistivity model, and c) pointwise mean of the resistivity models 327 

predicted in the last iteration of the inversion process. 328 

 329 

Each electric resistivity model generated during the iterative procedure reproduces the histogram of the 330 

true model as retrieved from the borehole. This is an intrinsic property of direct simulation and co-simulation 331 



   
 

 15 

algorithms and of great importance to ensure subsurface geological consistency. Figure 7 compares the reference 332 

histogram and the best-fit model histogram. 333 

 334 

Fig. 7 Histogram of both reference model (blue) and best-fit resistivity model (pink). 335 

  336 

 To assess the performance of the proposed geostatistical ERT inversion method, we compare the results 337 

obtained with those from a deterministic inversion (Fig. 8). The deterministic inversion was obtained using 338 

RES2DINV (Loke 2010) with a default parameterization. The predicted pseudo-sections of apparent resistivity 339 

obtained at the last iteration of the deterministic inversion (Fig. 8a) can reproduce the main patterns of the true 340 

data. The local similarity coefficients between these data are high for the entire inversion grid (Fig. 8b). The 341 

predicted electrical resistivity (Fig. 8c) does reproduce the main V-shape of the electrical resistivity anomaly but 342 

is smooth and has a lower spatial resolution than the predicted model from the geostatistical inversion (Fig. 6). 343 

The small barrier at the top of the model is almost undetected by the predicted electrical resistivity model. 344 

 345 
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 346 

Fig. 8 a) Pseudo-section of apparent resistivity predicted with a deterministic solutions, b) the similarity between reference and 347 

predicted data, and c) predicted electrical resistivity from the deterministic inversion method. 348 

 349 

Additionally, one of the advantages of using iterative geostatistical geophysical inversion methods is the 350 

ability to assess the spatial uncertainty associated with model predictions. Figure 8 shows the pointwise variance 351 

of electrical resistivity computed from the ensemble of models generated during the first and sixth iterations of the 352 

inversion procedure (Fig. 9a and 9b, respectively). It was assumed that the spatial distribution of electrical 353 

resistivity is only variable in the area with geophysical data (area inside the grey lines in Fig. 9). The remaining 354 

areas correspond to the constant high resistive background, so there is no variability. During the first iteration, the 355 

spatial uncertainty in the area of interest is only dependent on the location of the borehole data since no geophysical 356 

data has been assimilated yet. As expected, the variance increases with the distance from the experimental data. In 357 

the last iteration of the inversion process, the spatial uncertainty decreases drastically as the observed geophysical 358 

data is assimilated during the iterative procedure revealing areas where the match between observed and predicted 359 

data is less good (i.e., the predictions at these locations are more uncertain). 360 

a)

b)

c)
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 361 

Fig. 9 Pointwise variance models computed from the ensemble of electrical resistivity models predicted during the a) first and 362 

b) last iterations of the geostatistical inversion. Grey lines delimit the area where there is spatial variability of electrical 363 

resistivity, which coincides with the area where there are geophysical data. 364 

 365 

3.2 Real application example 366 

The proposed iterative geostatistical ERT inversion methodology was applied to four two-dimensional profiles 367 

obtained from an ERT survey carried out at the Neves-Corvo mining site (Alentejo region, Portugal). The survey 368 

aimed to characterize the spatial distribution of a groundwater system within mining premises. The full data set 369 

consists of a total of twenty-two apparent resistivity profiles. The application of the proposed geostatistical 370 

inversion is shown for four profiles that intersect each other, allowing for the assessment of the spatial coherency 371 

between predictions as each profile is inverted individually (Fig. 10). The predicted models with the proposed 372 

inversion methodology were compared against models inverted with a deterministic inversion method. 373 
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374 

Fig. 10 Location of profiles P15, P17, P19, and P20, obtained in the ERT campaign carried out at the Neves-Corvo mining site 375 

(Alentejo region, Portugal) and inverted with the proposed methodology. 376 

 377 

The ERT survey was performed with a Wenner-Schlumberger acquisition array configuration (e.g., 378 

Everett 2013). Table 1 summarizes the survey setup for the acquisition of each profile. 379 

 380 

Table 1 ERT survey setup for the acquisition of profiles P15, P17, P19, and P20. 381 

Profile 

ID 

Total number 

of electrodes 

Minimum 

electrode spacing 

(m) 

First electrode 

position (m) 

Last electrode 

position (m) 

Total number of 

measurements 

P15 323 2.5 0 805 3389 

P17 285 2.5 0 715 2803 

P19 179 2.5 0 445 1406 

P20 177 2.5 0 445 1322 

 382 

The histograms necessary for the stochastic sequential simulation and co-simulation were derived from 383 

previous ERT deterministic inversions due to the lack of wells drilled along the profile cross-sections. Therefore, 384 

the geostatistical simulation and co-simulation were not locally conditioned by any borehole information. Given 385 

the lack of direct observations and their spatial sparseness, the horizontal variogram models were retrieved from 386 

the sections of electrical resistivity obtained with a deterministic inversion approach provided by the data owner 387 

and adjusted for the expected geological knowledge of the area. This approach is similar to the workflow used in 388 
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iterative geostatistical seismic inversion methodologies, where the horizontal variogram models are computed 389 

directly from the seismic data instead of the borehole data (Azevedo and Soares 2017) and was also proposed by 390 

Hermans et al. (2012). These approaches tend to overestimate the variogram ranges adding uncertainty to the 391 

imposed variogram model and it might result in unplausible predicted models. An alternative, commonly used in 392 

geostatistical seismic inversion, but not applied in this application example is to optimize the variogram model by 393 

running small inversion pilot regions (i.e., mini-inversions). In these small inversion pilot regions, the inversion 394 

grid is divided into a smaller region, where multiple inversion run with different parameterization. Then, the results 395 

are interpreted based on the geological knowledge of the study area and the parameters with the best results are 396 

used to invert the full inversion grid. The number of samples along the borehole path in the vertical direction is 397 

also limited and not able to capture the expected variability of the subsurface electrical conductivity. The limitation 398 

estimating the spatial continuity pattern does impact the inverse solution. The resulting variogram models are 399 

shown in Table 2 and Fig. 11. 400 

 401 

Table 2 Dimension of the inversion grid and global variogram model parameters used to invert profiles P15, P17, P19, and 402 

P20. 403 

Profile ID 

Inversion Grid (number of cells) Global Variogram 

i-direction k-direction 

Horizontal 

range 

(meters) 

Vertical 

range 

(meters) 

Model 

P15 322 21 55 41 Spherical 

P17 286 21 65 45.5 Spherical 

P19 178 21 87.5 35 Spherical 

P20 178 21 95 35 Spherical 

 404 
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 405 

Fig. 11 Two-dimensional experimental variograms computed from the electrical resistivity data resulting from a deterministic 406 

inversion provided by the site owner: a) horizontal and b) vertical directions for profile P15, c) horizontal and d) vertical 407 

directions for profile P17, e) horizontal and f) vertical directions for profile P19, and g) horizontal and h) vertical directions for 408 

profile P20. 409 

 410 

The evolution of the global 𝑆 between observed and synthetic apparent resistivity for the four inverted 411 

profiles is shown in Fig. 12. At the end of the inversion, the models generated for the different profiles reach a 412 

global 𝑆 higher than 0.9. The models predicted during the first iteration produce synthetic ERT data with similarity 413 

coefficients between 0.6 and 0.85. The high convergence at an early stage of the iterative procedure indicates that 414 

the electrical conductivity models generated in the first iteration, when there is not assimilation of the observed 415 

ERT data, might resemble the true subsurface geology. In cases where the variogram model is not geologically 416 

plausible, these the global	𝑆 would be smaller. The predicted ERT data with the deterministic solution reached a 417 

𝑆 above 0.95 for the four sections. 418 
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 419 

Fig. 12 Global 𝑆 evolution of the stochastic resistivity inversion of profiles P15, P17, P19, and P20. 420 

 421 

The synthetic apparent resistivity data computed from the best-fit electrical resistivity model for profiles 422 

P15, P17, P19, and P20 are shown in Fig. 13. These apparent electrical resistivity pseudo-sections reproduce the 423 

main spatial patterns seen on the field apparent resistivity. The differences between synthetic and observed data 424 

are mainly identified in depth and in areas characterized by pronounced irregular shapes with abrupt apparent 425 

resistivity contrasts (black arrows in Fig. 13). The local 𝑆 computed between observed and best-fit apparent 426 

resistivity for profiles P15, P17, P19 and P20, shown in Fig. 14, confirms the lower quality of the inverted results 427 

in these areas. The predictions obtained for these locations are therefore uncertain as reflected by the pointwise 428 

variance computed from the ensemble of resistivity models computed during the last iteration of the inversion 429 

procedure (Fig. 15d). For these regions the variance values are higher and close to the total variance of the imposed 430 

histogram as the local conditioning with the observed ERT data is low. 431 
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 432 

Fig. 13 Apparent resistivity pseudo-sections of a) observed and b) synthetic best-fit of profile P15, c) observed and d) synthetic 433 

best-fit of profile P17, e) observed and f) synthetic best-fit of profile P19, and g) observed and h) synthetic best-fit of profile 434 

P20. The black arrows point to small-scale differences between reference and synthetic best-fit apparent resistivity models. 435 
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 436 

Figure 15 illustrates the integration, in a three-dimensional view, of the best-fit electrical resistivity 437 

models (Fig. 15a), as well as the pointwise mean of the models predicted in the last iteration of the inversion 438 

process (Fig. 15b). The models obtained via deterministic ERT inversion using the commercial software 439 

RES2DINV (Loke 2010) are also shown (Fig. 15c). These models were provided by the data owner and serve as 440 

a benchmark for the models predicted with the proposed ERT inversion method. The predicted models with the 441 

geostatistical inversion method show larger spatial variability, due to the stochastic sequential simulation algorithm 442 

and the imposed variogram model, and have higher coherency when interpreted together. Despite being inverted 443 

individually, there is consistency at the intersection locations. On the other hand, the results obtained with a 444 

deterministic inversion are smoother with abrupt vertical changes, which might not be geologically realistic. These 445 

abrupt variations depend on the parameterization of the inversion (e.g., vertical versus horizontal smoothing). 446 

Moreover, the integration of the deterministic solutions in a three-dimensional view shows some resistivity spatial 447 

continuity inconsistencies, especially in the area where profiles P17 and P20 intersect. 448 

 449 

Fig. 14 Local similarity computed between observed and synthetic best-fit apparent resistivity for profiles a P15, b P17, c P19, 450 

and d P20. 451 

 452 
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The pointwise variance model computed from the electrical resistivity models predicted during the last 453 

iteration of the geostatistical inversion is also presented in a three-dimensional view (Fig. 15d). For the different 454 

profiles, the lowest spatial uncertainty is observed in areas where the predicted resistivity models are populated 455 

with low electrical resistivity values, while higher variability is observed in areas characterized by high electrical 456 

resistivity values. The observed ERT data for these regions tends to be smoother (i.e., with lower spatial variability) 457 

and therefore easier to match. As the observed ERT data of these regions have a higher assimilation degree during 458 

the iterative procedure the ensemble of predicted models during the last iteration has a smaller pointwise variance 459 

(i.e., spatial uncertainty). 460 

 461 
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Fig. 15 Integration in three-dimensional view of a) best-fit resistivity model of profiles P15, P17, P19, and P20, b) mean of the 463 

resistivity models predicted in the last iteration of the inversion process of profiles P15, P17, P19, and P20, c) solution obtained 464 

with deterministic inversion approach of profiles P15, P17, P19 and P20, and d) variance of the resistivity models generated 465 

during the last iteration of the stochastic resistivity inversion method of profiles P15, P17, P19, and P20. 466 

 467 

4. Discussion 468 

This study proposes an iterative geostatistical ERT inversion method based on stochastic sequential simulation 469 

and co-simulation. Information regarding the resistivity spatial continuity pattern (i.e., the variogram model) is 470 

inferred directly from the available resistivity borehole data, which might be complemented by expert knowledge. 471 

The results obtained in both application examples show the ability of the proposed method to predict 472 

electrical resistivity models that are consistent with the recorded ERT geophysical data and with alternative 473 

deterministic inversion approaches. During the first iteration, the predicted models are already close to the true 474 

subsurface resistivity, which explains the high convergence rates. However, the iterative procedure's success and 475 

convergence rate depend on the quality of the observed ERT data, the number of boreholes, and the reliability of 476 

the estimated global variogram model. Also, in both application examples we consider a Wenner-Schlumberger 477 

type of acquisition array. This kind of array as a good correspondence between the pseudo-resistivity section and 478 

the true spatial distribution and therefore might facilitate the convergence of the geostatistical inversion method. 479 

Tests with different acquisition geometries (e.g., dipole-dipole, multiple-gradient arrays) have shown that the 480 

performance of the proposed inversion method is similar. Depending on the acquisition geometry of the data, 481 

apparent resistivity sections might exhibit geometric deformations. If the geometry imposed during the forward 482 

model step matches the one from the field the same level of distortion is expected in the field and synthetic apparent 483 

resistivity sections. 484 

Also, the proposed methodology is presented and illustrated with a two-dimensional forward model. 485 

However, a three-dimensional forward model could be used straightforward. In this case the stochastic sequential 486 

simulation would generate sets of three-dimensional models of subsurface electrical resistivity. 487 

The synthetic application example is characterized by a homogeneous background versus a V-shape 488 

contamination plume. This data set poses a challenging for geostatistical simulation methods based on two-point 489 

statistics due to the non-stationary behavior of the model parameters represented by the sharp discontinuities and 490 

the contamination plume with opposite directions. Nevertheless, in this synthetic application example the predicted 491 

electrical resistivity models reproduce the spatial pattern of pollutant dispersion while sharing the same histogram 492 

as the reference model. Nevertheless, due to the use of geostatistical simulation and co-simulation methods based 493 
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on two-point statistics, the proposed inversion method struggles to predict exactly the location of the impermeable 494 

barrier and the V-shape plume. The results agree with those obtained with the deterministic inversion. 495 

The real case application example illustrates the method's potential with real, noisy data. The proposed 496 

method could predict spatially consistent electrical resistivity models for the different profiles from the observed 497 

ERT data. These models generated synthetic geophysical data similar to the observations while being able to 498 

reproduce the target histogram imposed for the geostatistical simulation. In this application example the target 499 

distribution is the one retrieved from with the deterministic solution, but alternative target histograms could be 500 

used (e.g., from borehole data) (Fig. 15). 501 

 502 

Fig. 16 Histograms of deterministic solution and best-fit resistivity model of profiles a) P15, b) P17, c) P19, and d) P20. 503 

  504 

 In the application examples shown herein we only explore the spatial uncertainty of the predicted 505 

subsurface properties. However, further developments could also include uncertainty in the observed data as 506 

provided by modern ERT systems that provide an estimate of the variance of the measurements.   507 

 508 

5. Conclusion 509 
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The work presented herein proposes an alternative iterative geostatistical ERT inversion method based 510 

on stochastic simulation and co-simulation. It was successfully applied to a two-dimensional synthetic case and a 511 

set of two-dimensional ERT profiles. This was verified by computing apparent resistivity models from the 512 

generated electrical resistivity realizations, which were locally compared against the observed one in terms of 513 

similarity coefficient. The models were constructed by selecting portions from each realization of the ensemble 514 

that showed high similarity with the observed data and then using these portions as secondary data for the next co-515 

simulation. The ensemble of realizations generated during the last iteration of the inversion process was used to 516 

assess the uncertainty of the spatial distribution of electrical resistivity. These electrical resistivity models were 517 

characterized by variability and converged towards the areas of lower electrical resistivity values in the real case 518 

application. 519 

 520 

 521 
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