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Abstract  

Estimating the aquifer properties and their spatial variability is the most challenging part of 
groundwater flow and transport simulations. In this work, an ensemble Kalman-based method, the 
ES-MDA, is applied to infer the characteristics of a binary field by means of a tracer test reproduced 
in an experimental sandbox. Two different approaches are compared: the first one aims at 
estimating the hydraulic conductivity over the whole field assuming that the rest of the hydraulic 
and transport parameters are known by applying the standard ES-MDA method; the second one 
couples the ES-MDA with a truncated Gaussian model to simultaneously estimate the spatial 
distribution of two geological lithotypes and their main hydraulic and transport properties. Both 
procedures are tested following a fully-parameterized approach and a pilot point approach. A 
synthetic case that mimics the sandbox experiment was developed to test the capability of the 
proposed methods and find out their optimal configurations to be used for the real case. The results 
show that the ES-MDA coupled with a truncated Gaussian model outperforms the standard ES-MDA 
and it reproduces well the binary field and the aquifer properties also in presence of large 
measurement errors. The fully parametrized and pilot points approach lead to comparable 
solutions, with less computation time required by the pilot point approach.  

 

1. Introduction 

Aquifer characterization is fundamental for developing effective engineering strategies and 
applications, such as the planning of groundwater extraction or recharge systems and the 
assessment of the spatiotemporal evolution of subsurface contaminants. However, the 
identification of aquifer hydraulic and transport properties is still a subject under investigation in 
the scientific community. Many of these parameters cannot be estimated directly and need to be 
inferred through inverse modelling. Several approaches have been developed to address the inverse 
problem; extensive reviews have been carried out by Zimmerman et al. (1998), Vrugt et al. (2008) 
and Zhou et al. (2014).  

In the past years, ensemble Kalman filter-based methods gained increasing interest due to their 
efficiency and flexibility in data assimilation for large nonlinear models. In fact, aquifer 
characterization by inverse modelling using gradient-based optimization approaches needs massive 
computational efforts for moderately large systems. The ensemble Kalman filter-based methods 
saves considerable computing time and does not need to resort to, for instance, pilot point 
techniques and variogram-based interpolations, commonly used in full Bayesian approaches, to 



reduce the number of unknown parameters. Hendricks Franssen and Kinzelbach (2009) compared 
the Ensemble Kalman filter (EnKF) with a Monte-Carlo type inverse modelling technique, the 
sequential self-calibration method, for inverse modelling of groundwater flow systems. The two 
methods give similar results; however, the EnKF computational cost is 80 times lower than that 
required by the sequential self-calibration method. 

Since the introduction of the Ensemble Kalman filter (EnKF) by Evensen (1994), it has been widely 
used for data assimilation and inverse modelling in several fields, including aquifer characterization. 
Chen and Zhang (2006) applied the EnKF to continuously update the hydraulic conductivity of  both 
two- and three-dimensional synthetic models by assimilating dynamic pressure head observations. 
Camporese et al. (2011) applied the EnKF to infer the spatial distribution of hydraulic conductivity 
from electrical resistivity tomography monitoring of a three-dimensional synthetic tracer test 
experiment. Tong et al. (2013) used the EnKF in a synthetic two-dimensional aquifer to identify the 
hydraulic conductivity distribution by assimilating solute concentration measurements. Xu and 
Gómez-Hernández (2018) used the restart normal-score EnKF for the simultaneous identification of 
a contaminant source and the spatially-variable hydraulic conductivity in an aquifer. The method 
has been applied in synthetic aquifers by assimilating in time piezometric heads and concentrations 
from observation wells. 

Many variants of the EnKF have been developed over time, such as the ensemble smoother (ES) 
proposed by van Leeuwen and Evensen (1996). Unlike the EnKF, which sequentially assimilates data 
over time, the ES incorporates all available information into a single global update step. Bailey and 
Baù (2012) used the ES to estimate spatially-variable hydraulic conductivity within a synthetic three-
dimensional tilted v-shaped catchment system by assimilating water table elevation and streamflow 
data. Crestani et al. (2013) compared the capabilities of the EnKF and the ES to estimate the 
hydraulic conductivity assimilating observed concentrations. The two approaches have been tested 
in a two-dimensional synthetic aquifer where a tracer test is simulated. The authors conclude that 
EnKF always outperforms the ES due to iterative assimilations of information that helps to handle 
nonlinear and non-Gaussian conditions. With the aim to improve the ES performance for highly 
nonlinear applications, Emerick and Reynolds  (2012; 2013) proposed the ensemble smoother with 
multiple data assimilation (ES-MDA), which iteratively assimilates the same data multiple times. The 
good performance of ES-MDA for inverse modelling have been confirmed in different studies 
(Todaro et al. 2019; 2021; 2022; D’Oria et al. 2021; Lam et al. 2020; Godoy, Napa-García, and Gómez-
Hernández 2022). Xu et al. (2021) compared the ensemble smoother with multiple data assimilation 
(ES-MDA) and the restart EnKF for the simultaneous identification of a contaminant source and 
hydraulic conductivity using both piezometric heads and concentrations on a synthetic aquifer. The 
results showed that the ES-MDA performs better than the restart EnKF when using enough 
iterations, needing almost the same computational time. 

While these studies has demonstrated the capability of ensemble-based methods to determine 
aquifer parameters, their application to real sites is still limited due to the complexity of field data 
collection. Chen et al. (2013) employed the parameter space EnKF and some variants of ES to 
characterize the hydraulic conductivity field of an aquifer by assimilating experimental tracer data 



obtained from the Integrated Field Research Challenge site in U.S. Department of Energy's Hanford 
300 Area. 

In this work, the ES-MDA is employed to infer the properties of a binary aquifer from concentration 
data obtained via an experimental tracer test. The data are collected in a laboratory sandbox that 
mimics a vertical cross-section of an unconfined aquifer. Glass beads of two different diameters 
reproduce a heterogeneous binary field, and fluorescein sodium salt is used as a tracer. The 
groundwater flow and transport processes are modeled with MODFLOW and MT3DMS, 
respectively. The software package genES-MDA (Todaro et al. 2022) was used to apply the ES-MDA 
procedure. 

Different approaches are tested to estimate the aquifer parameters. First, the binary pattern of the 
true field is assumed unknown, and the ES-MDA is applied to directly estimate the hydraulic 
conductivity field. Another common approach to model subsurface characteristics is the 
conceptualization of the field using lithotypes or facies; constant properties are assigned to each 
lithotype. Kalman filter-based methods are optimal when working with Gaussian distributed 
parameters, and they are not suitable for estimating categorical variables, such as geological 
lithotypes. To handle the categorical parameter estimation through ES-MDA, it can be coupled with 
a truncated Gaussian method (Matheron et al. 1987). The main key of the truncated Gaussian model 
is the definition of the proportion of facies and their spatial distribution. The application of this 
approach for inverse modelling was firstly introduced by Wen et al. (2002) as an extension of the 
self-calibrating approach (Capilla et al. 1998, Wen et al. 1999, Franssen et al. 2002). Then, the 
truncated Gaussian methods have been linked to ensemble-based methods in history-matching 
problems (Liu and Oliver 2005; Agbalaka and Oliver 2008; Zhao, Reynolds, and Li 2008; Zhang et al. 
2015), but they have only been applied to synthetic cases and considering the properties of the 
facies known.  

In this work, the ES-MDA is coupled with a truncated Gaussian model (ES-MDA-T) to simultaneously 
estimate the pattern of the aquifer and the hydraulic and transport parameters of each facie. Both 
ES-MDA and ES-MDA-T are applied using a fully parametrized approach, parameters are estimated 
at each cell of the grid domain, and a pilot point approach, parameters are estimated at some points 
of the grid and then interpolated to obtain the solution over the whole field. To validate the 
methods proposed, a synthetic case that reproduces the sandbox experiment is developed and used 
to test different configuration of the inverse procedures. Then the experimental tracer test data are 
used to infer the characteristics of the sandbox field.  

The paper is organized as follows: the next Section presents the ES-MDA procedure and its link with 
a truncated Gaussian model; Section 3 describes the sandbox and the laboratory and synthetic 
experiments; Section 4 summarizes all the tests performed using synthetic and experimental data; 
Section 5 outlines discussion and conclusion.  



2. Methods 

The methods applied in this work to solve the inverse problem are based on the ensemble smoother 
with multiple data assimilation (ES-MDA) technique, in some cases coupled with a Gaussian 
truncated model. The ES-MDA is a stochastic iterative approach that allows the estimation of a set 
of unknown parameters and their uncertainty from available observations of the state of the 
system. The description of the ES-MDA scheme is presented in detail by Emerick and Reynolds 
(2013), Evensen (2018) and Todaro et al. (2022); here, an overview of the method is given. Then the 
link between the truncated Gaussian model and the ES-MDA is presented.  

2.1 ES-MDA  

The ES-MDA is used to solve the inverse problem aimed at estimating the aquifer parameters 
assimilating observed tracer breakthrough curve data. The vector 𝐗 ∈ 	ℜ!!contains the aquifer 
parameters to be estimated, while the vector of observations 𝐃  ∈ 	ℜ" contains the tracer 
concentrations measured at sparse sampling locations in the aquifer at different times. The method 
requires the relationship between parameters and observations to be known; this is given by a 
forward model that simulates the flow (MODFLOW) and transport processes (MT3DMS). The 
procedure consists of an initialization phase and then proceeds with an iterative loop made up of 
two steps. 

Initialization phase 

The first ingredient of the ES-MDA is the definition of an initial ensemble of parameters. The size of 
the ensemble, Ne, should be large enough to be statistical representative of the problem at hand 
and as small as possible with the aim to limit the computational burden. The characteristics of the 
initial ensemble of parameters allow to take into account prior information, when available.  

Another preliminary step is to specify an ensemble of measurement errors 𝜺 ∈ 	ℜ"	×!", they are 
usually assumed to be uncorrelated and drawn from a Gaussian distribution with zero mean and 
given standard deviation. The ES-MDA also requires defining a priori the number of iterations to be 
performed, N , and a vector of coefficients 𝛂 = (α&, α', … , α!)  that apply to the measurement 
errors and control the parameter change from one step to another. A gradual decrease of 𝛂 during 
the iterative process improves the performance of the method as it gradually reduces the 
measurement errors helping to avoid overfitting in the first updates. Several schemes can be used 
to define the set of 𝛂, but they must satisfy the condition: 
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After the initialization step, the procedure follows with two iterative steps. 

Forecast step  



At each iteration i, the state of the system coinciding with the available observations, 𝐘*,( , are 
obtained for each realization j	of the ensemble of parameters, 𝐗*,(, by means of the forward model: 

𝐘*,( = g5𝐗*,(6,  

where the operator g(∙)	includes the forward model run and the functions used to extract the 
predictions at the same spacetime locations where observations were collected. 

Update step  

During the update step, the ensemble of parameters is updated following the equation: 

𝐗(,& = 𝐗( +
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where 𝐂𝐗𝐘( ∈ ℜ!!×",  𝐂𝐘𝐘( ∈ ℜ"×" and 𝐑 ∈ ℜ/×/ are the cross-covariance between parameters 

and predictions, the auto-covariance of the predictions and the auto-covariance of the 

measurement errors, respectively. 𝐑 is a diagonal matrix containing the error variances, 𝐂𝐗𝐘(  and 
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where 𝐗?( and 𝐘?( are the ensemble means of parameters and predictions, respectively.  

The procedure repeats until the last iteration after making 𝐗( = 𝐗(0&. 

To avoid the appearance of negative values during the update phase, which can be inconsistent for 
some types of parameters, a space transformation can be applied. In this study, the ensemble of 
parameters is transformed in the logarithmic space before the update and back-transformed into 
its physical space after the update. 

The total number of runs of the forward model, 𝑛2, required by ES-MDA depends on the ensemble 
size and the number of iterations: 𝑛2 = 𝑁 ∙ 𝑁3. Therefore, it is crucial to use a small ensemble and 
at the same time avoiding undersampling problems that leads to divergence and the appearance of 
long spurious correlations. Covariance localization approaches can be applied to mitigate the 
appearance of long-range spurious correlations and increases the rank of the covariance matrices, 
which are rank deficient when the number of parameters is higher than the ensemble size. 



Covariance localization is applied by element-wise multiplication of the original covariance matrices 
with correlation matrices reducing the correlations between points for increasing distances (Hamill, 
Whitaker, and Snyder 2001; Anderson 2007; Y. Chen and Oliver 2010). 

Furthermore, to avoid overshooting, a linear relaxation can be applied on the ensemble of 
parameters at the end of each update step:  

𝐗B(,& = (1 − w)𝐗(,& +w𝐗(, 

where w is a relaxation coefficient between 0 and 1. 

 

2.2 The ES-MDA-T: linking the ES-MDA and a truncated Gaussian model 

In this paper, the ES-MDA is coupled with the truncated Gaussian model with the aim of 
characterizing a binary field. The spatial distribution of the two facies and their main properties are 
simultaneously estimated. The proportion of the two lithotypes is assumed known. The truncated 
Gaussian model consists of thresholding a Gaussian random function using a threshold defined to 
match the proportions of the facies.  

In this case, the vector of unknown parameters is 𝐗 = (𝐏&, 𝐏', 𝐅) , where 𝐏&  and 𝐏'  are the 
properties of the two facies to be estimated (e.g. hydraulic conductivities, longitudinal dispersivities 
of the two facies, etc.), while 𝐅 = (F&, F', … , F4#) is the vector containing the categorical variables 
for each cell of the discretized domain. Therefore, the number of unknown parameters N5 is equal 
to the number of aquifer parameters to be estimated (for the two facies) plus the total number of 
cells of the model grid (𝑁6) corresponding to the categorical variables. The categorical variable can 
take the values 1 or 2. The cells with categorical value 1 assume the properties 𝐏&, while the cells 
with categorical value is 2 assume properties 𝐏'. The vector of observations 𝐃 is the same as in the 
previous section.  

This procedure allows for estimating categorical variables using the ES-MDA. The modification to 
the ES-MDA loop to incorporate the truncated Gaussian model into the process is described below. 

Initialization phase 

The initial ensemble of parameters is generated using random values drawn from a Gaussian 
distribution for the realizations of the aquifer parameters (𝐏& and 𝐏') and random Gaussian fields 
for the definition of the spatial distribution of the facies; let’s call this initial ensemble of Gaussian 
random fields 𝐅G = (FG&, FG', … , FG4#). The proportion between facies must be defined a priori on the 
basis of available information and expert knowledge. The ensemble of measurement errors and the 
vector of coefficients  𝛂  are defined as described in the previous section.  

The following iterative loop is the same as the standard ES-MDA method, but an additional step 
named “truncation step” is introduced before the forecast step. 

Truncation step 



The truncation step consists in thresholding the Gaussian field to obtain a binary field; this step 
allows to transform the continuous variables estimated by ES-MDA into categorical variables. At 
each iteration i and for each realization of parameters j, the categorical field 𝐅(,*  is obtained by 
truncating the Gaussian field 𝐅G(,*  using as threshold the percentile corresponding to the facies 
proportion. Then, the continuous Gaussian field is transformed into a categorical one by replacing 
each value of 𝐅G(,* with 1, if it is below or equal to the threshold, and 2 otherwise. In Figure 1, an 
example of a Gaussian field and the associated binary field after truncation is shown. 

 

Figure 1 - Truncated Gaussian model performed considering a facies proportion equal to 76%. The Gaussian 
field is on the left and the truncated field is on the right. 

Forecast step 

At each iteration i , the predictions 𝐘*,(  are obtained for each realization j	of the ensemble of 
parameters, 𝐗*,( = (𝐏&, 𝐏', 𝐅),  

𝐘*,( = g5𝐗*,(6. 

At each cell of the grid, 𝐏&	parameters are assigned if the categorical value of the cell is 1, and 𝐏' 
are assigned if the categorical value of the cell is 2. 

Update step  

During the update step, the ensemble of parameters, 𝐗I*,( = 5𝐏&, 𝐏',			𝐅G6  is updated in the 
continuous space: 

𝐗I(,& = 𝐗I( +
𝐂𝐗𝐘(

𝐂𝐘𝐘( + α(𝐑
× 5𝐃 + <α(𝛆 − 𝐘(6. 

The key difference with the standard implementation is that the updates are applied to the 
underlying continuous Gaussian fields and not to the conductivity fields, which, in this case, are 
binary. Then the procedure repeats from the truncation step until the end of the iterative process. 



3. Description of the experiment 

3.1 Sandbox experiment 

The tracer test used to collect the observations to solve the inverse problem is reproduced in a 
laboratory sandbox set up in the hydraulic laboratory of the University of Parma, Italy (Figure 2). 
The experimental device mimics a vertical cross-section of an unconfined heterogeneous aquifer 
and the device has been used to develop several laboratory tests (Cupola, Tanda, and Zanini 2015; 
Citarella et al. 2015; Todaro et al. 2021; Z. Chen et al. 2018; 2021; 2022). The sandbox has a width 
of 120 cm, a height of 73 cm, and a thickness of 14 cm; it is made of polymethyl methacrylate 
(PMMA) plates with a thickness of 2 cm for the lateral sides and 3 cm for the bottom lid. The sandbox 
is divided in three parts along the longitudinal direction: an upstream tank, a central chamber that 
contains the porous medium and a downstream tank. The flow into the experimental device is 
governed by the water levels at the upstream and downstream tanks, which are equal to 62.5 cm 
and 61 cm above the horizontal bottom of the tank, respectively. The porous media consists of glass 
beads with two different diameters of about 1 mm and 4 mm, which reproduce a binary field. 
Fluorescein sodium salt is employed as conservative tracer. The PMMA walls of the device allow to 
collect concentration data by interpreting pictures taken during the experiment. The picture RGB 
values are converted to concentrations through an image processing technique (Citarella et al. 
2015).  

  

Figure 2 – Picture of the front side of the experimental sandbox. The red rectangle outlines the area where 
experimental data are collected.  



At the beginning of the experiment (initial condition) the porous medium within the sandbox had a 
homogeneous concentration of fluorescein sodium salt of 25 mg/l. The tracer test performed had a 
duration of 4000 s; during this time the fluorescein concentration progressively decreases within 
the sandbox as clean water enters the system. The experiment ended when tracer concentration 
was zero everywhere. Pictures are collected with a time step of 5 seconds and converted in 
concentration data at each pixel of the images. Breakthrough curves recorded at 64 monitoring 
points with a discretization time of 75 seconds are used as observations in the inverse procedure. 
As example, Figure 3 shows the concentration fields obtained from the analysis of the images in four 
instants from the beginning of the test.  

During the experiment, the flow stopped accidentally for about 855 s after 985 s since the start of 
the test. This was likely caused by a clogged drain in the downstream tank leading to a rise in the 
downstream water level and resulting in no gradient in the sandbox during the clogging period. The 
model that simulates the experiment also takes into account the period of no-flow considering a 
transient boundary condition downstream. Groundwater flow and mass transport were modeled 
with MODFLOW 2005 (Harbaugh, 2005) and with MT3DMS (Zheng and Wang, 1999), respectively. 
The domain is discretized into a uniform grid of 1 cm resolution (70 layers, 97 columns and 1 row). 

 

Figure 3 - Concentration field from the image process collected 250 (a), 500 (b), 1500 (c) and 2250 s (d) 
after the start of test. Flow direction is from left to right. The black dots indicate the monitoring points 

where observations are collected to perform the inverse procedure. 

 

3.2 Synthetic experiment 

Before applying the different methods to the sandbox experiment, a synthetic case was performed 
with the aim of evaluating the capability of the proposed approaches to infer the aquifer 
characteristics and find the optimal configuration of the inverse algorithm. The synthetic case 



mimics the sandbox experiment; the reference hydraulic conductivity field is depicted in Figure 4. It 
is a binary field characterized by two different facies, named Facies 1 and Facies 2. The same 
numerical model developed to simulate the experimental test is used as forward model; the 
reference solution is obtained using the parameters reported in Table 1. The observed 
concentrations used for the inverse modeling are collected at the same spacetime locations 
considered for the experimental data: 64 breakthrough curves discretized in 54 time steps.   

  

Figure 4 - Reference conductivity field of the synthetic case. Light gray represents Facies 1, dark gray 
represents Facies 2. Black squares indicate the monitoring points. 

Table 1 - Transport and hydraulic parameters of the numerical model used to set up the synthetic case study. 
HK is the horizontal hydraulic conductivity, n is the porosity, Ss is the specific storage coefficient, αL is the 
longitudinal dispersivity and αT is the transverse dispersivity.  

 Facies 1 Facies 2 
HK (cm/s) 0.65 10 
N (-) 0.37 0.37 
HK/VK  (-) 10 10 
Ss (cm-1) 10-4 10-4 
αL (cm) 0.1 0.2 
αT/αL (-) 0.05 0.05 

4. Applications 

Several tests were performed to compare the different approaches and the different settings of the 
ES-MDA algorithm. The analyses were initially performed using the dataset of the synthetic 
experiment and then the laboratory data. For all tests, the observations used in the inverse 
modeling are the breakthrough curves collected at the 64 monitoring points depicted in Figure 4 
and discretized in 54 time steps (number of observations m is 3456). The first analyses employ the 
ES-MDA to estimate directly the hydraulic conductivity field (HK&, HK', …,HK!! ); then, the ES-
MDA-T is used incorporating the extra information that the medium is binary and, therefore, it 
focuses in identifying the spatial distribution of the two facies (F& , F' , …,F!$ ) and 5 aquifer 
parameters: the hydraulic conductivity (HKF1 and HKF2) and longitudinal transport dispersivity (αL,F1 



and αL,F2) of the two facies and the ratio between the transversal and longitudinal dispersivity equal 
for the two facies (αT/αL). The proportion between the two facies is assumed known for all tests and 
equal to 76% for Facies 1 and 24% for Facies 2. 

Both the ES-MDA and the ES-MDA-T are applied using a fully parameterized approach and a pilot-
point method aimed at reducing the number of unknown parameters. For the fully parameterized 
approach, the parameters are estimated at each cell of the model grid (N5=6790 for the ES-MDA, 
N5=6795 for the ES-MDA-T); for the pilot-point method, the parameters are estimated at 266 points 
uniformly distributed over the field (N5=266 for ES-MDA, N5=271 for ES-MDA-T). The full map of 
parameters is obtained by assigning to each cell of the model grid the value of the closest pilot point. 
(This type of interpolation will result in a blocky distribution of the conductivities that would 
resemble the way the sandbox was filled in with the binary media). The ensemble size considered 
(number of realizations of parameters) is 1000 for the fully parametrized approach and 100 for the 
pilot-point one.  

For all tests, the measurement error ε is normally distributed with zero mean and variance 5⋅10-2 
mg/l. The ES-MDA and ES-MDA-T are run with 6 iterations and decreasing α=[364; 121.3; 40.4; 13.5; 
4.5; 1.5]. Covariance localization is applied considering tapering functions that gradually reduce the 
correlations based on the spatial distance between parameters and predictions, and predictions and 
predictions and modify the covariance matrices applying a scale factors from 1 (no-correction) to 0 
(zero correlation) for distances from 0 cm to 120 cm. The linear relaxation is applied with the 
coefficient w = 0.2 for the synthetic data and with w = 0.25 for the experimental data.  

The specific configuration of each test and the results are presented in the following. 

4.1 Synthetic case study 

4.1.1 Test 1.1: ES-MDA for the estimation of the hydraulic conductivity field following a fully 
parameterized approach 

The ES-MDA is applied for the estimation of the hydraulic conductivity field in each cell of the model 
domain considering the remaining hydraulic and transport parameters known. Two tests were 
performed starting from different types of initial ensemble of parameters, all other variables being 
equal. The size of the ensemble is 1000 for both tests. The first test (Test 1.1A) uses homogeneous 
fields as initial ensemble of parameters; the hydraulic conductivity of each realization is constant 
and selected randomly from a uniform distribution, HK ∈ U[0.1,9]. For the second test (Test 1.1B), 
the initial ensemble of parameters is made up of Gaussian fields generated using isotropic 
exponential variograms with random parameters: the mean μ, variance σ and range of correlation 
h are drawn from the following uniform distributions: μ ∈ U[0.5,0.7], σ ∈ U[60,365], h ∈ U[0.05,2]. 
Figure 5 shows some realizations of the initial ensembles of parameters and the results of the 
inverse procedure for both tests. The results refer to the mean field obtained from the ensemble at 
the last iteration of the ES-MDA procedure. The map of coefficient of variations is also reported. 
The RMSE between observed and predicted concentrations is 2.7 mg/l and 2.1 mg/l for Test 1.1A 
and Test 1.1B, respectively. 



 

 

Figure 5 - Test 1.1: Examples of realizations of the initial ensemble of parameters for Test 1.1A and Test 
1.1B (left); estimated fields in terms of ensemble mean (middle) and map of the coefficient of variation 

(right). The black squares indicate monitoring points. The solid line reproduces the outline of the two facies 
of the actual field.   

 

4.1.2 Test 1.2: ES-MDA for the estimation of the hydraulic conductivity using a pilot point 
approach 

The ES-MDA is applied for the estimation of the hydraulic conductivity field at 266 pilot points 
(Figure 6). The ensemble size is 100; the initial realizations of parameters are a subset of the 
ensemble used in Test 1.1B, from which the values at the pilot point locations were selected. 

Figure 6 shows the mean field obtained from the ensemble at the last iteration and the map of the 
coefficient of variation computed from the ensemble. The RMSE between observed and predicted 
concentrations is 2.1 mg/l.  



 

Figure 6 - Test 1.2: Estimated binary field by means of the ES-MDA using a pilot point approach; the 
ensemble mean (left) and the coefficient of variation (right) are reported. The black dots indicate the pilot 

points. 

 

4.1.3 Test 1.3 ES-MDA-T for the characterization of the binary field following a fully 
parameterized approach 

The ES-MDA is linked with the truncated Gaussian model to simultaneously estimate the spatial 
distribution of the two-facies and their main properties. In Test 1.3 the fully parameterized approach 
is adopted. The ensemble size is 1000 and the initial realizations of the hydraulic and transport 
parameters of the two facies are drawn from Gaussian distributions with different mean and 
variance defined as follows: HKF1 ∈ 𝒩 [0.7,0.01]; HKF2 ∈ 𝒩 [7,1]; αL,F1 ∈ 𝒩 [0.1,4·10-3]; αL,F2 ∈ 
𝒩[0.2,4·10-3]; αT /αL ∈ 𝒩[0.05, 1·10-3]. The initial realizations of the field 𝐅G are Gaussian random 
fields with zero mean and standard deviation of 1 generated using isotropic Gaussian variograms 
with correlation range randomly selected from a uniform distribution h ∈ U[10,60].  

Figure 7 shows the solution in terms of best estimate represented in each cell by the mode of the 
ensemble of parameters. The accuracy is given by the percentage of realizations that agree with the 
best estimate. For most cells, almost all realizations estimate the true categorical variable; the 
lowest accuracy is found at the interface between the two materials. 

Table 2 summarizes the actual and estimated hydraulic and transport parameters with their 
uncertainty; the approach shows very good performance in reproducing all the properties of the 
two facies. The RMSE between observed and predicted concentrations is equal to 1.53 mg/l.  



 

Figure 7 – Test 1.3: Best estimate of the binary field using the ES-MDA-T (left); light gray represents Facies 
1, dark gray represents Facies 2. Accuracy of the estimate as proportion of realizations correctly identifying 
the reference facies (right). Black squares indicate monitoring points. The solid line reproduces the outline 

of the two facies of the actual field.   

Table 2 – Test 1.3: Actual and estimated parameters of the two facies. The ensemble mean and the 95% 
uncertainty interval are reported. 

 Actual Estimated 
HKF1 (cm/s) 0.65 0.69 ± 0.04 
HKF2 (cm/s) 10 9.92 ± 0.88 
αL,F1 (cm) 0.1 0.097 ± 0.022 
αL,F2 (cm) 0.2 0.199 ± 0.022 
αT/αL 0.05 0.047 ± 0.011 

 

4.1.4 Test 1.4 ES-MDA-T for the characterization of the binary field using the pilot point 
approach 

Test 1.3 is repeated using the pilot point method. The initial ensemble of parameters is made up of 
100 realizations that are a subset of the initial ensemble of Test 1.3: the values at the pilot point 
locations are extracted from the fully parametrized field. In Figure 8 the resulting binary field (best 
estimate) is depicted with its accuracy (percentage of realizations that agree with the reference). 
Most of the true categorical parameters are well reproduced and the estimation accuracy is 100% 
in almost the whole field. The hydraulic and transport parameters of the two facies are reported in 
Table 3. The RMSE between observations and prediction is equal to 2.2 mg/l. 

 



 

Figure 8 - Test 1.4: Best estimate of the binary field by means of the ES-MDA-T using a pilot point approach 
(left); light gray represents Facies 1, dark gray represents Facies 2. Accuracy of the estimate (right). Black 
dots indicate the pilot points. The solid line reproduces the outline of the two facies of the actual field. 

Table 3 – Test 1.4: Actual and estimated parameters of the two facies. The ensemble mean and the 95% 
uncertainty interval are reported. 

 Actual Estimated 
HKF1 (cm/s) 0.65 0.740 ± 0.005 
HKF2 (cm/s) 10.00 10.50 ± 0.10 
αL,F1 (cm) 0.10 0.080 ± 0.001 
αL,F2 (cm) 0.20 0.210± 0.002 
αT/αL 0.050 0.076 ± 0.001 

 

4.2 Experimental case study 

The results obtained from the synthetic case analyses pointed out that the best performance is 
achieved using the ES-MDA-T approach. Therefore, tests performed using data from the sandbox 
experiment only consider the approach that link ES-MDA with the truncated Gaussian model.  

4.2.1 Test 2.1: ES-MDA-T for the characterization of the binary field following a fully 
parameterized approach  

The ES-MDA-T is applied for the simultaneous estimation of the spatial distribution of the two facies 
and their properties using the experimental data. The same settings and ensembles of the synthetic 
Test 1.3 are used. Figure 9 shows the results obtained by truncation of the ensemble mean of the 
field, where 73% of the estimated parameters match the experimental distribution of the facies. 
The estimated hydraulic and transport parameters with their uncertainty are reported in Table 4. 
The RMSE between observed and predicted concentrations is equal to 3.2 mg/l. 



 

Figure 9 - Test 2.1: Best estimate of the binary field (right) obtained by means of the ES-MDA-T using 
experimental data; light gray represents Facies 1, dark gray represents Facies 2. . Accuracy of the estimate 
(right).  The black squares indicate monitoring points; the dashed line denotes the portion of the field where 
experimental data are available. The solid line reproduces the outline of the two facies of the actual field.   

 

Table 4 - Test 2.1: Estimated parameters of the two facies. The ensemble mean and the 95% uncertainty 
interval are reported. 

 Facie1 Facie2 
HK (cm/s) 0.68 ± 0.03 12.53 ± 0.72 

αL (cm) 0.15 ± 0.03 0.20 ± 0.02 
αT/αL 0.21 ± 0.05 

 
4.2.2 Test 2.2: ES-MDA-T for the characterization of the binary field using a pilot point approach 

In the second experimental case study, the same configuration of Test 1.4 is employed. The inverse 
problem is solved by means of the pilot point method. The results are depicted in Figure 10; only a 
portion of the field is well reproduced. In particular, the ES-MDA-T fails to correctly estimate the 
actual categorical variable for the upper part of the field where no observation data are available.  

Table 5 reports the estimated hydraulic and transport parameters with their uncertainty. The RMSE 
between observed and predicted concentrations is equal to 2.9 mg/l. 



 

Figure 10 - Test 2.2: Best estimated of the experimental binary field by means of the ES-MDA-T using a pilot 
point approach (left); light gray represents Facies 1, dark gray represents Facies 2. Accuracy of the estimate 
(right). Black dots indicate the pilot points; the dashed line denotes the portion of the field where 
experimental data are available. 

Table 5 - Test 2.2: Estimated parameters of the two facies. The ensemble mean and the 95% uncertainty 
interval are reported. 

 Facie1 Facie2 
HK (cm/s) 0.770 ± 0.003 11.10 ± 0.05 

αL (cm) 0.120 ± 0.001 0.200 ± 0.001 
αT/αL 0.310 ± 0.001 

 

 

4.2.3 Test 2.3: ES-MDA-T for the characterization of a three-facies field following a 
parameterized approach  

The third test is performed considering that the experimental field is made of three materials. This 
follows the assumption that there is a mixing zone at the interface between the two facies made up 
of 1 mm or 4 mm diameter glass beads. The mixing zone, named Facies 3, has different 
characteristics from Facies 1 and Facies 2. The ES-MD-T is applied to estimate the spatial distribution 
of the three facies and their properties. The vector of unknown parameters is 𝐗 = (𝐏&, 𝐏', 𝐏7		𝐅), 
where 𝐏&, 𝐏' and 𝐏7 are the vectors containing the parameters of the three facies, 𝐅	is the vector 
of categorical variables for each cell of the discretized domain. The categorical variable can take the 
values 1, 2 or 3. The cells with categorical value 1 assume the properties 𝐏&, the cells with categorical 
value 2 assume the properties 𝐏' and when the value is 3, the parameters 𝐏7 are used. The vector 
of observations 𝐃 is the same as the previous experimental tests. The truncation of the Gaussian 
field is performed defining two thresholds that match the proportions between the three facies. It 
is assumed that the 75% of the field is occupied by Facies 1, 17% by Facies 2 and 8% by Facies 3. The 
two thresholds are equal to the 75th-percentile (Thr1) and 83th-percentile (Thr2) of the values of 
the Gaussian field to be truncated. The continuous variables of the Gaussian function are 
transformed into categorical variables replacing each value with 1 if it is below Thr1, 2 if it is above 



Thr2 and 3 otherwise. The same settings and initial ensemble of Test 2.1 are employed, but two 
additional parameters are estimated: the hydraulic conductivity (HKF3) and longitudinal dispersivity 
(αL,F3) of Facies 3. The initial ensemble of the properties of Facies 3 are drawn from Gaussian 
distributions with different mean and variance defined as follows: HKF3 ∈ 𝒩[5, 0.5] and αL,F3 ∈ 
𝒩[0.4,0.05]. 

Figure 11 and Table 6 report the results of the inverse procedure. The RMSE between observed and 
predicted concentrations is 3.2 mg/l. 

 

Figure 11 - Test 2.3: Estimated three-facies field by means of the ES-MDA-T using experimental data; the 
three shades of gray represent Facie1, Facie3 and Facie2, respectively. The black squares indicate monitoring 
points; the dashed line denotes the portion of the field in which experimental data are available. The solid 
line reproduces the outline of the two facies of the actual field.   

Table 6 – Test 1.3: Estimated parameters of the three facies. The ensemble mean and the 95% uncertainty 
interval are reported. 

 Facie1 Facie2 Facie3 
HK (cm/s) 0.72 ± 0.03 12.26 ± 0.72 6.44 ± 0.57 

αL (cm) 0.07 ± 0.02 0.16 ± 0.02 0.25 ± 0.03 
αT/αL 0.18 ± 0.04 

 

5. Discussion and Conclusions 

The ensemble smoother with multiple data assimilation was applied to characterize a binary aquifer 
by means of experimental tracer test data. First, the ES-MDA was used to infer the hydraulic 
conductivity field unaware that it was binary and assuming the rest of hydraulic and transport 
parameters known. Then, the ES-MDA was linked with a truncated Gaussian model for the 
simultaneous estimation of categorical variables, which reproduce the two-facies field, and the 
properties of each facies. A fully parameterized approach and a pilot point approach were 
considered in the analysis. Initially, a synthetic case study that mimics the laboratory experiment 



was developed to test the capability of the proposed procedures. It is noteworthy that the 
observation errors assumed for the synthetic case are large and comparable with the experimental 
ones used for the laboratory case study. Test 1.1 aimed at the estimation of the hydraulic 
conductivity field using a fully-parameterized approach by assimilating observed breakthrough 
curves. The effect of the characteristics of the initial ensemble of parameters was investigated: Test 
1.1A was performed considering an initial ensemble consisting of random homogeneous fields, 
while Test 1.1B considers Gaussian fields generated using exponential variograms with random 
parameters. The results show that Test 1.1B performs better in terms of RMSE between observed 
and predicted concentrations. Test 1.1A estimate a smoother field than Test 1.1B; the portions of 
the field with low and high permeability are fairly identified, but not the actual distribution of the 
two facies. On the contrary, Test 1.1B better reproduces the complexity of the actual field and the 
discontinuities between the two facies. In both tests, the coefficient of variation is higher at the top 
and bottom of the field, due to the absence of observation points in these portions of the aquifer. 
Therefore, the initialization of the procedure, in terms of the initial ensemble of parameters, affects 
the solution. This is stressed by the ensemble size; the smaller it is, the more the solution may 
depend on the initial configuration. The size of the ensemble should be related to the number of 
parameters to be estimated; in this case, the number of realizations is equal to 1000, and the 
number of parameters to be estimated is 6795. This may lead to rank-deficient covariance matrices, 
since they are computed from the ensembles, and therefore covariance localization techniques 
must be used to mitigate this effect. Hence, the use of a well-defined initial ensemble of parameters 
and covariance localization techniques allows reducing the number of realizations. This leads to a 
remarkable reduction of the computational burden. For instance, a gradient-based optimization 
method needs to run the forward model at least as many times as the number of parameters, per 
iteration. The ES-MDA requires running the forward model a number of times equal to the ensemble 
size, for each iteration. In this case, the ES-MDA computational effort is 85% less than that required 
by a gradient-based method. 

With the aim to further reduce the computational time, Test 1.2 was performed similarly to Test 
1.1, following a pilot-point approach. The hydraulic conductivity is estimated in 266 pilot points 
applying the ES-MDA with an ensemble size equal to 100. The performance metrics are comparable 
with those obtained with the fully parameterized approach. The main features of the binary field 
are reproduced, but the results are not optimal. The following tests were performed taking into 
account the binary distribution of the sandbox field. The ES-MDA was coupled with a truncated 
Gaussian model to simultaneously estimate the distribution of the facies and their main hydraulic 
and transport parameters. ES-MDA-T was first applied following the fully parametrized approach 
(Test 1.3). The results reproduce well the actual field with high accuracy as well as the true 
parameters of each facies. This test was repeated following the pilot point approach (Test 1.4), 
reaching good results, but with a larger error in the reproduction of the breakthrough curves 
compared with Test 1.3. 

Both Test 1.3 and Test 1.4 performed better than Test 1.1 and Test 1.2, suggesting that the ESMDA-
T is better than the standard ES-MDA in reproducing the characteristics of a binary field. In addition, 
the ES-MDA-T has the advantage of being able to simultaneously estimate more properties of the 



aquifer. This estimation could be computationally prohibitive with the ES-MDA, as each aquifer 
parameters has to be estimated at each cell (or each pilot point) resulting in a huge number of 
parameters to be estimated. Furthermore, the estimation of different aquifer parameters for each 
cell can lead to equifinality problems and unreliable solutions.  

Test 2.1 and Test 2.2 were performed using the experimental sandbox data using the optimal 
configuration obtained from the synthetic cases (Test 1.3 and Test 1.4). The ES-MDA-T achieves 
good results, but with lower performance than that obtained for the synthetic cases. This could be 
due to epistemic errors in both the experimental data and the forward model structure. The ES-
MDA-T allows to reproduce the main features of the field and the estimated hydraulic and transport 
parameters for the two facies are reasonable and close to those expected. 

The last test (Test 2.3) was performed assuming that the actual field is made up of three materials, 
where the third material is generated by a mixing zone at the interface between the two facies. The 
ES-MDA-T is applied using a simple truncated Gaussian model that ensures that the three facies 
occur in the same sequential order; the results are comparable with those obtained for Test 2.1. 

For more complex fields, truncated plurigaussian methods can be implemented to reproduce more 
than two facies and different types of contacts between them. Future work will investigate this 
aspect by carrying out new laboratory experiments on more complex fields. 
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