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Zi Chena,b,d, Teng Xuc,∗, J. Jaime Gómez-Hernándezd, Andrea Zaninie, Quanping Zhoua,b

aNanjing Center, China Geological Survey, Nanjing, China
bKey Laboratory of Watershed Eco-Geological Processes, Ministry of Natural Resources, Nanjing, China

cState Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University,
Nanjing, China

dInstitute of Water and Environmental Engineering, Universitat Politècnica de València, Valencia, Spain
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Abstract

Identifying a contaminant time-varying release history is an ill-posed problem but crucial for

groundwater contamination issues. A precise inversed release history offers a promising esti-

mation of contaminant movement and is of great importance for environmental monitoring

and further management. In this paper, a recent emerging data assimilation method, the

ensemble smoother with multiple data assimilation (ES-MDA) is employed to handle this co-

nundrum. The study starts with some synthetic cases in which several factors are analyzed,

such as the observation data frequency, covariance inflation schemes, iteration numbers used

in the ES-MDA for the purpose of identifying a time-varying contaminant injection event

with different precision. The results show that the ES-MDA performs well in recovering the

release history when the injection is discretized into 50 or 100-time steps but encounters

fluctuation problems in the cases with 300-time steps. Further comparison reveals that the

observation data frequency is a very influential factor, while the number of iterations or

the kind of covariance inflation used has a lesser effect. Nevertheless, this is a first test in

a non-synthetic environment, in which the ES-MDA has proven its ability to recover the
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release history in two close-to-reality sandbox experiments. The outcome shows that the

ES-MDA with Rafiee’s inflation scheme has the ability to capture the main pattern of the

release history. But in order to move one more step to field cases, a more detailed description

of uncertainties or elaborated parameterization of the time functions is paramount.

Keywords: Inverse modeling, Source identification, Inflation factor, Data assimilation,

Sandbox

1. Introduction1

Groundwater contamination has gained extensive attention over the last several decades2

(e.g., Feyen et al., 2003b,a; Gómez-Hernández et al., 2003; Li et al., 2011; Dai et al., 2020)3

since it is becoming a huge threat to our ecosystem. Determining the responsible for the4

pollution is a forensic hydrogeology task needed to ensure the accountability of those re-5

sponsible. This is not an easy task, since, in general, only a few observations downstream6

from the source are available when the contamination is first detected. Even with the help of7

advanced groundwater models, and with assumptions such as knowing the release location,8

identifying the release history, and, therefore, the total amount of pollutants injected into9

the aquifer, has proven to be a complicated endeavour. A challenge that faces the prob-10

lem of ill-posedness (Skaggs & Kabala, 1994; Carrera & Neuman, 1986; Woodbury et al.,11

1998) common to all inverse problems (Franssen & Gómez-Hernández, 2002; Capilla et al.,12

1998; Wen et al., 1999; Ayvaz, 2010) . Various methods have been devised to address this13

problem and several reviews have been published in the subject (e.g., Atmadja & Bagt-14

zoglou, 2001; Michalak & Kitanidis, 2004; Bagtzoglou & Atmadja, 2005; Sun et al., 2006a;15

Gómez-Hernández & Xu, 2021).16

Among all these methods, simulation-optimization methods have been used from a very17

early age (Gorelick et al., 1983), and they aim to minimize the inconsistency between simu-18

lated and observed based on an objective function (Sun et al., 2006b; Mirghani et al., 2009;19
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Ayvaz, 2010), but still, need to reformulate the problem from the beginning if new measure-20

ments are acquired (Zhou et al., 2014). Therefore, one branch, data assimilation methods,21

comes out ahead because of their ability to deal with huge amounts of observed data simul-22

taneously. Data assimilation methods are versatile, efficient, and simple to understand and23

implement (Zhou et al., 2014). Among the data assimilation methods, the ensemble Kalman24

filter (EnKF) stands out. It was first proposed by Evensen (2003) in order to deal with the25

nonlinear relationship between parameters and state variables in inverse problems and has26

gained popularity in multidisciplinary fields such as oceanography, meteorology, and geology27

(e.g., Houtekamer & Mitchell, 2001; Bertino et al., 2003; Chen & Zhang, 2006; Aanonsen28

et al., 2009). Specifically, in hydrogeology, the EnKF method has proven the ability to29

inverse identify aquifer parameters, such as hydraulic conductivity (Chen & Zhang, 2006;30

Huang et al., 2009; Kurtz et al., 2014), porosity (Li et al., 2012), recharge rates (Franssen &31

Kinzelbach, 2009), boundary conditions (Chen & Zhang, 2006) and also transport-related pa-32

rameters (Lan et al., 2018). More recently, researchers have started to employ EnKF variants33

to identify the parameters describing a contaminant source in aquifers (Zhou et al., 2011).34

Butera et al. (2013) employ a geostatistical approach with some weak hypotheses to identify35

the pollutant release history and the source location. Xu & Gómez-Hernández (2016) use36

the restart normal-score Ensemble Kalman filter (Ns-EnKF) for contaminant source identifi-37

cation in a synthetic deterministic aquifer and later extended this method to jointly identify38

hydraulic conductivity and source information (Xu & Gómez-Hernández, 2018). Then, Chen39

et al. (2018) move one step further, to identify contaminant source information plus the po-40

sition and length of a vertical barrier in a sandbox experiment via the restart Ensemble41

Kalman filter. Chen et al. (2021) also discuss the influence of different inflation methods42

in the application of the restart Ns-EnKF and prove its ability for the joint identification43

of hydraulic conductivities and contaminant source information in a laboratory sandbox ex-44

periment. Li et al. (2019) used Kalman filtering combined with a mixed-integer nonlinear45
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programming optimization model to deduce the accurate location and release history of a46

contaminant source. The aforementioned works are a strong demonstration that the EnKF47

and its variants are valid methods for contaminant source identification. However, except48

for the work by Butera et al. (2013), the release history identified in these works only focuses49

on a constant pulse, the magnitude of which is independent of time.50

As an alternative to the EnKF, the ensemble smoother (ES), which was first introduced51

by van Leeuwen & Evensen (1996), assimilates all available data in one single step instead of52

updating the state variable sequentially. Thus, it is expected that it should be able to identify53

time-varying parameters better than the EnKF (and at a cheaper price). The EnKF and the54

ES produce the same results when they deal with linear state-transfer functions since they55

are based on the same covariance-based formulation (Evensen, 2004). However, in studying56

process with strong nonlinearities, such as in the case of inverting the groundwater flow and57

mass transport equations, the EnKF outperformed the ES (Evensen & van Leeuwen, 2000),58

until an iterative variant of the ES was proposed, the ES with Multiple Data Assimilation59

(ES-MDA), by Emerick & Reynolds (2013). Evensen (2018) compared the ES-MDA with60

other iterative ensemble smoothers to solve history matching problems. Ranazzi & Sampaio61

(2019) investigated the influence of the ensemble size on the use of an adaptive ES-MDA for62

history matching. Todaro et al. (2019) use the ES-MDA to find a solution to the reverse flow63

routing problem. Bao et al. (2020) coupled Generative Adversarial Networks and ES-MDA64

methods, then use them to reconstruct the channel structures and reduce the uncertainty of65

hydraulic head and contaminant concentration predictions. Xu et al. (2021) employed the66

ES-MDA to identify contaminant source parameters and heterogeneous hydraulic conductiv-67

ity jointly with the comparison with restart EnKF. Todaro et al. (2021) employed ES-MDA68

for the simultaneous identification of the source location and the release history of a ground-69

water contamination event. These works are all good examples of ES-MDA dealing with70

time-varying input parameters. However, most of the aforementioned work approximated71
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the time-varying parameters by a multiple step function without analyzing the impact that72

the step size had in the results.73

The objective of this paper is to assess the capacity of the ES-MDA for identifying com-74

plex time-varying release history and to check the possible obstacles to apply the ES-MDA75

in closer-to-reality cases. In this work, the ES-MDA is employed to identify a time-varying76

release history in both synthetic and real cases, the capacity of ES-MDA in identifying a77

release history function as a function of the discretization used to approximate it is analyzed78

first. Then, a synthetic case is studied where the influence of observation data frequency79

and number of ES-MDA iterations are discussed. The synthetic also served to analyze two80

covariance inflation procedures (e.g., Le et al., 2016; Rafiee & Reynolds, 2017) to prevent81

smoother collapsing. Next, the ES-MDA is applied to the identification of release history82

functions in two sandbox experiments. It is the first time to testify the capacity of ES-DMDA83

in identifying time-varying release history with a sandbox experiment. The paper is orga-84

nized as follows: in section 2, we describe the methodology; in section 3, the synthetic and85

the real sandbox experiment are presented, followed by the setup of different scenarios and86

evaluation criteria. Finally, in section 4, we discuss the results and draw some conclusions.87

2. Methodology88

2.1. Groundwater flow and solute transport equations89

In this work, the contaminant is injected with a given flow rate into a transient ground-90

water flow system. Thus, the governing equations includes both the transient groundwater91

flow equation (Bear, 1972) and the solute transport equation (Zheng & Wang, 1999):92

Ss
∂h

∂t
= ∇ · (K∇h) + w, (1)93

94

∂ (θC)

∂t
= ∇ · (θD · ∇C)−∇ · (θvC)− qsCs, (2)95
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where, Ss represents the specific storage [L−1]; h is the hydraulic head [L]; t denotes time96

[T ]; ∇· is the divergence operator, while ∇ represents the gradient operator; K denotes97

the hydraulic conductivity [LT−1] and w represents distributed sources or sinks [T−1], θ98

represents the porosity of the medium [-]; C is dissolved concentration [ML−3]; D represents99

the hydrodynamic dispersion coefficient tensor [L2T−1]; v is the flow velocity vector [LT−1]100

derived from the solution of the flow equation; qs represents volumetric flow rate per unit101

volume of aquifer associated with a fluid source or sink [T−1] and Cs is the concentration of102

the source or sink [ML−3].103

2.2. Ensemble Smoother with Multiple Data Assimilation(ES-MDA)104

As we mentioned before, the ES-MDA is an improvement of the ES made by Emerick &105

Reynolds (2013) for handling nonlinear models. It is an iterative version of the ES where the106

number of iterations is predefined. The method is easy to understand and to implement and107

has been referred many times in the literature (Emerick & Reynolds, 2013; Evensen, 2018;108

Xu et al., 2021). A brief recall of the three steps that conform the method are described109

next.110

1. Initialization step.111

An ensemble of Ne realizations of the n parameters to identify is generated. In this112

case, the parameters are the mass loadings in time representing the discretized injection113

curve; their initial values are drawn from predefined uniform distributions.(Each ensemble114

member is a different release history function.) At this stage, we also need to set the number115

of iterations Na (also referred to as assimilation steps), and the inflation factors αj; the116

meaning of which are described later.117

2. Assimilation.118

Once the number of iterations and the inflation coefficients are determined, it is time for119

the assimilation procedure, which consists of two steps, a forecast step, and an update step.120
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These two steps are repeated for each iteration.121

a. Forecast step122

In this step, the groundwater flow and contaminant transport models, MODFLOW (Mc-123

Donald & Harbaugh, 1988) and MT3DS (e.g., Zheng, 2010; Ma et al., 2012), are run for each124

member of the ensemble; in our case, for each different release history,125

Cf
i,j = ψ[C0, Ai,j], (3)126

where ψ represents the forward numerical model,C0 stands for the initial concentrations in127

the domain, Cf
i,j are the predicted concentrations (in space and time) at assimilation iteration128

j for the last estimate of the release function i of the ensemble, Ai,j. The size of A depends129

on the number of time steps used to discretize it.130

b. Update step131

Then, the model parameters are updated as follows,132

Ai,j+1 = Ai,j +∆Aj(∆C
f
j )

T [∆Cf
j (∆C

f
j )

T + αjR]
−1[yobs +

√
αjε− Cf

o,i,j], (4)133

where yobs is a column vector with dimensions No ·Nt containing all observed concentrations134

at all locations and all time steps (No is the number of locations, and Nt the number of135

observation steps); ε stands for the observation error, while R is the covariance matrix of the136

observation error; Cf
o,i,j is the vector of forecasted concentrations for the ensemble parameter137

set Ai,j at the same locations and times where and when observations yobs are made; ∆Aj138

and ∆Cj are matrices defined as139

∆Aj =
1√

Ne − 1
[A1,j − Aj, A2,j − Aj, . . . , ANe,j − Aj], (5)140

141

∆Cf
j =

1√
Ne − 1

[Cf
1,j − Cf

j, C
f
2,j − Cf

j, . . . , C
f
Ne,j

− Cf
j], (6)142

7



where Aj and Cf
j are the ensemble means of source release history parameters and forecasted143

concentrations at the jth iteration, respectively. The products ∆Cf
j (∆C

f
j )

T and ∆Aj(∆C
f
j )

T
144

are the concentration covariance and the concentration-release function parameters cross-145

covariance, respectively.146

These forecast and update steps will be repeated until the predefined iterations are com-147

pleted. One more thing needs to be pointed out: in our study, since the number of mea-148

surements is larger than the ensemble size, it is necessary to employ the truncated singular149

value decomposition (TSVD) method to compute a pseudo-inverse in Eq. (4).150

2.3. The inflation factors αj151

The iteration number (Na) and the inflation factor (αj) are two influential parameters152

in the performance of the ES-MDA, which are related to one another. Emerick & Reynolds153

(2013) have proven that the ES-MDA could sample the posterior probability distribution154

function of the parameters precisely only in a linear model and only if the inflation factors155

αj satisfy the following equation,156

Na∑
j=1

1

αj

= 1, (7)157

There are still many options on how to choose the αj parameters satisfying the previous158

equation. Apparently, choosing a decreasing series may be the most appropriate, but some159

authors claim that using uniform values gives similar results, and that choosing these values160

arbitrarily may lead to filter collapse (Le et al., 2016). We have decided to explore two161

methods to select the inflation factors, one proposed by Rafiee & Reynolds (2017), and the162

other one proposed by Evensen (2018).163

Rafiee & Reynolds (2017) propose that the inflation factor for the first iteration is com-164

puted as165

α1 = (
1

N

N∑
i=1

λi)
2, (8)166
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where N is the minimum of Ne and No ·Nt, and λi are the singular values of matrix Dj given167

by168

Dj = R− 1
2△Cf

j . (9)169

The subsequent inflation factors are chosen in a geometrical decreasing progression,170

αj = βj−1α1, (10)171

where β is the ratio that fulfills that the sum of the inverse of the inflation factors equals172

one (Eq. (7))173

1− (1/β)Na−1

1− 1/β
= α1. (11)174

Evensen (2018) define the inflation factors on the basis of two numbers, a nonzero value175

α
′
1 and a geometrical ratio αgeo; with these two numbers, a sequence is built according to176

the following procedure177

α
′

j+1 =
α

′
j

αgeo

, (12)178

which is then normalized to provide the αj values that satisfy Eq. (7)179

αj = α
′

j(
Na∑
j=1

1

α
′
j

) (13)180

This scheme has the capacity of defining the inflation factors as uniform, in an increasing181

sequence or in a decreasing one by choosing an αgeo equal, below or above one, respectively.182

Here, we define αgeo and α
′
1 with the values of 2 and 1, respectively.183

In this work, these two different schemes of generating the inflation factors are employed,184

and their impact is discussed.185

All in all, the overall description and detailed procedures of the proposed data assimilation186

framework are shown in Figure 1 and Table 1, respectively.187
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Figure 1: Overall description of the proposed data assimilation framework.

Table 1: Detailed procedure of the proposed data assimilation framework.

Framework: ES-MDA with groundwater flow and solute transport models

• Generate initial ensemble of release history, A0 .
• Choose the number of ES-MDA iteration number, Na.
• For j = 1 to Na

◦ Set Ai,j = Ai,j−1for i = 1, 2, ...Ne.
◦ Run the groundwater flow and solute transport model,

obtain concentration distributions, Cf
i,j.

◦ Calculate ∆Aj and ∆Cf
j through Equation 5 and Equation 6.

◦ Calculate αj in Rafiee’s inflation scheme based on Equation 8,
Equation 9, Equation 10 and Equation 11.

◦ Calculate αj in Evenson’s inflation scheme based on Equation 12 and Equation 13.
◦ Update model parameters Ai,j+1 with two inflation schemes based on Equation 4.

• Endfor

3. Applications188

A numerical model based on real sandbox experiments is used to demonstrate the pro-189

posed method. This sandbox equipment was built up by the Engineering and Architecture190

Department at the University of Parma, and has been employed in several groundwater con-191

tamination studies (Citarella et al., 2015; Cupola et al., 2015; Zanini & Woodbury, 2016). In192

this work, first, we generated synthetic data using this numerical model to test the ES-MDA193

method for the identification of a time-varying release history curve. In the synthetic case,194

we also analyze the impact of the choice of the method to choose the inflation factors, the195

number of iterations, the size of the observation time intervals, and the degree of discretiza-196

tion with which the release curve is represented in the numerical model. Then, we tested197
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Table 2: Parameters of the groundwater flow and transport models

1 mm glass beads 4 mm glass beads

Hydraulic conductivity (cm/s) 0.65 10.4
Longitudinal dispersivity, αL (cm) 0.106 0.2

Vertical transverse dispersivity, αT (cm) 0.048 0.09
Porosity 0.37 0.37

the ES-MDA with real observation data and analyzed the impact of the observation error198

magnitude.199

3.1. Sandbox Set-up200

The sandbox has an internal volume of 95 cm by 10 cm by 70 cm and is discretized into201

95 columns, 1 row, and 70 layers. Glass beads with two different diameters, 1 mm and 4202

mm, are used to fill the sandbox as shown in Figure 2. The spatial distribution of the bead203

is heterogeneous and so is the spatial distribution of hydraulic conductivity in the sandbox.204

The hydraulic conductivity and the porosity or each bead size were obtained previously205

by Cupola et al. (2015). The reservoirs upstream and downstream are set up as constant206

piezometric boundaries with a water level of 62.5 cm and 60.6 cm, respectively. The bottom207

of the sandbox is regarded as a no-flow boundary while the top of the sandbox is a phreatic208

surface. The fluorescein was chosen as the tracer and was released by an injector installed209

inside the glass beads during the experiment. Fluorescein is a non-toxic compound that can210

be easily handled after the experiments. In the meanwhile, it also has the characteristics of211

strong resistance to sorption and can be regarded as a conservative tracer (Smart & Laidlaw,212

1977). Contaminant concentrations are observed in 25 observation points. The details about213

the acquisition of the concentration data could be found in Citarella et al. (2015) and Cupola214

et al. (2015). The total experiment time is 3000s and the injection starts at time zero. The215

main hydraulic parameters used for the simulation are listed in Table 2.216
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Figure 2: Sketch of the experimental device (lateral view). Length unit is cm.

3.2. Performance Assessment217

The use of an ensemble-based method allows to analyze the performance of the method218

using the root mean square error (RMSE) and the relative RMSE:219

RMSE =

√√√√ 1

n

n∑
i=1

(Aref
i − Ai)2, (14)220

relative RMSE =
RMSE

intial RMSE
, (15)221

where n is the number of points used to discretize the release history curve, Aref
i is the ith222

point of the reference release history while Ai stands for the ensemble mean of the ith point223

of the updated release history, initial RMSE refers to the RMSE of the initial ensemble of224

realizations.225

Based on the definition of RMSE, the smaller the value, the better. The relative RMSE226

is able to show the reduction of the uncertainty. Both parameters serve to evaluate quanti-227
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tatively the outcome of ES-MDA.228

3.3. Synthetic Case229

The first set of analyses is based on the synthetic simulation of a time-varying release230

into the sandbox digital twin. The release function adopted is based on a proposal by Skaggs231

& Kabala (1994):232

S(t) = 2.6 · exp(−
( t
10

− 20)2

50
)

+ 0.78 · exp(−
( t
10

− 50)2

200
)

+ 1.3 · exp(−
( t
10

− 90)2

98
) 0 ≤ t ≤ 3000.

(16)233

This function is shown in Figure 3. We run three sets of scenarios with different time234

discretizations while identifying the release history. More precisely, we chose to identify a235

release function over the 3000 s experiment duration using 50, 100, and 300 time steps.236

For each discretization, two sampling frequencies were considered: samples were taken every237

other time step or every ten time steps. Also, the number of assimilation iterations was varied238

between 4 and 8 based on a comprehensive consideration of computational time cost and239

outcome accuracy (Xu et al., 2021), and both the Rafiee and Evensen inflation schemes were240

tested. In total 24 scenarios were analyzed as reported in Table 3. And in all scenarios, the241

model error is neglected while we assume the observation errors follow Gaussian distribution242

with a mean of 0 and standard deviation of 0.1 mg/l.243

An ensemble of 500 realizations was used. The initial release history curve of every244

realization is generated using a uniform distribution with ranges [0, 52] 10−3 mg/s.245

Figure 4 shows the recovered release history for the set of scenarios with the coarsest246

discretization of the release function: 50 time steps. In each plot, the blue curve corresponds247

to the actual release history, the gray lines are the recovered release history curves for all248

500 realizations, the red dotted line is the median of the ensemble and the black dashed lines249

mark the 5 and 95 percentiles. The first column uses Rafiee’s inflation and the second column250
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Table 3: Definition of the synthetic scenarios

Number of discr. Number of time Number of Inflation
Scenario time steps observations iterations factor

S1 50 5 4 Rafiee’s scheme
S2 50 5 4 Evensen’s scheme
S3 50 5 8 Rafiee’s scheme
S4 50 5 8 Evensen’s scheme
S5 50 25 4 Rafiee’s scheme
S6 50 25 4 Evensen’s scheme
S7 50 25 8 Rafiee’s scheme
S8 50 25 8 Evensen’s scheme

S9 100 10 4 Rafiee’s scheme
S10 100 10 4 Evensen’s scheme
S11 100 10 8 Rafiee’s scheme
S12 100 10 8 Evensen’s scheme
S13 100 50 4 Rafiee’s scheme
S14 100 50 4 Evensen’s scheme
S15 100 50 8 Rafiee’s scheme
S16 100 50 8 Evensen’s scheme

S17 300 30 4 Rafiee’s scheme
S18 300 30 4 Evensen’s scheme
S19 300 30 8 Rafiee’s scheme
S20 300 30 8 Evensen’s scheme
S21 300 150 4 Rafiee’s scheme
S22 300 150 4 Evensen’s scheme
S23 300 150 8 Rafiee’s scheme
S24 300 150 8 Evensen’s scheme

14



0 500 1000 1500 2000 2500 3000

Time (s)

0

10

20

30

40

50

60

M
a
s
s
 l
o
a
d
in

g
 (

1
0-3

 m
g
/s

)

Figure 3: Release curve of a synthetic contaminant source.

Evensen’s inflation. The first two rows use samples every ten time steps (5 snapshots), and251

the last two rows samples every other time step (25 snapshots). The first and third rows use252

four iterations and the second and fourth rows use eight iterations. It can be observed that253

the median of the recovered release history curves is a good estimate of the actual release254

history for all cases, while the uncertainty estimate given by the spread of the curves is larger255

for the scenarios with the smallest sampling frequency (scenarios S1 to S4). Also, it can be256

noticed that Rafiee’s inflation method always yields a smaller spread than Evensen’s one.257

It is hard to argue about an improvement with the largest number of iterations since the258

results with four and eight iterations are almost the same.259

Figure 5 shows the recovered release history of the set of scenarios with intermediate260

discretization of the release function: 100 time steps. The organization of the plots in the261

figure are the same as in the previous one. The impact of the inflation scheme, the observation262

data frequency, and the number of iterations is more or less the same as for the 50-time step263

case. However, the median of the recovered release history curves cannot capture the actual264

release history as precisely as in the previous set of realizations, more notably in the set of265

scenarios with samples every 10 time steps (scenarios S9 to S12). For all scenarios, there is266

clearly an excess of fluctuations in the recovered release curves, noticeable in the individual267

curves and also in the ensemble median and percentile curves. This fluctuation is more268
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noticeable when the observation sampling frequency is smaller (scenarios S9 to S12). The269

fluctuations must be due to the inherent ill-posedness of the problem since we are trying270

to estimate a large number of parameters that, initially, are assumed to be independent.271

This problem could be alleviated by introducing some smoothing factor that forces that all272

updated curves after updating display a certain smoothness. It is also important to notice273

the poor estimation of the release curve at the end of the experiment, with a clear non-zero274

estimation for the final steps. This overestimation, which is less patent in the previous set275

of scenarios, must be due to the little or no sensitivity that observations have to release at276

the end of the simulation.277

The deterioration in the estimation of the release curves becomes exacerbated when the278

number of discretization steps is increased up to 300. Figure 6 shows the results for scenarios279

S17 to S24, and their arrangement follows the same pattern as the previous two figures. The280

original release curves are only hinted at by the final ensemble of realizations or their median281

values, the main three peaks are well identified, but several other peaks appear, the spread282

of the realizations is very wide and the fluctuations in time are also quite noticeable. As in283

the previous set of scenarios, using a different parameterization of the release curve enforcing284

some kind of regularization might have helped in removing these artifacts. The only positive285

conclusion from this set of realizations is that, as in the previous two sets, the best results286

are always obtained when using Rafiee’s inflation scheme, eight iterations, and the highest287

sampling frequency.288

For a more quantitative evaluation of the performance of the ES-MDA to recover the time-289

varying release history, Table 4 and Figure 7 illustrates the RMSE and the relative RMSE of290

all 24 scenarios. Based on the RMSE at the last iteration step, we can conclude that the ES-291

MDA with Rafiee’s scheme has a better performance in most scenarios for our case, especially292

when the observation data frequency is low. It is striking to see how the RMSE jumps to up293

to four times the RMSE of the initial ensemble on the first iteration for the fine discretization294
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Table 4: RMSE of the synthetic scenarios at the last iteration step

Scenario RMSE
relative
RMSE

Scenario RMSE
relative
RMSE

Scenario RMSE
relative
RMSE

S1 2.295 0.098 S9 3.621 0.155 S17 12.585 0.543
S2 2.136 0.091 S10 5.057 0.217 S18 15.181 0.655
S3 1.979 0.085 S11 4.222 0.181 S19 8.839 0.381
S4 1.818 0.078 S12 5.671 0.243 S20 12.103 0.522
S5 1.120 0.048 S13 1.711 0.073 S21 9.221 0.398
S6 1.178 0.050 S14 2.475 0.106 S22 8.963 0.387
S7 1.321 0.057 S15 1.891 0.081 S23 7.321 0.316
S8 1.182 0.051 S16 1.959 0.084 S24 6.853 0.294

scenarios (last row of Figure 7), a distinct mark of ill-posedness in the formulation of the295

problem. This phenomenon can be attributed to insufficient observation data but also to296

correlation of observations error in time (Evensen & Eikrem, 2018). One possible solution297

could be enlarging the ensemble size or subsampling the independent observation data.298

One more thing that needs to be taken into consideration is the computational time cost299

of the scenarios. In our proposed data assimilation framework, the main time-consuming300

comes from the forecast procedure. A single simulation of groundwater flow and solute301

transport model in a typical laptop needs 27s, 31s, and 54s for the 50, 100 and 300 time302

steps model, respectively. And the total time consumption for these three models with an303

iteration number of 4 is approximately 54044s, 62288s, and 108288s. Once the iteration304

number becomes 8, the time cost will also be doubled.305

Based on these analysis and for the sake of outcome accuracy, we decide to apply the306

ES-MDA to the sandbox experiments using Rafiee’s inflation scheme, discretizing the release307

history into 50 or 100 time steps, and with 8 assimilation iterations.308

3.4. Laboratory Case309

We performed two sandbox experiments with two release history curves. The first curve310

displays a train of four pulses lasting the entire duration of the experiment and the second311
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Table 5: Definition of the sandbox scenarios for the train of pulses

Scenario Number of discr. steps Number of observ. time steps

R1 50 5
R2 50 25
R3 100 10
R4 100 50

Table 6: Definition of the sandbox scenarios for the two pulses

Scenario Number of discr. steps Number of observ. time steps

R5 50 5
R6 50 25
R7 100 10
R8 100 50

curve consists of two pulses at the beginning of the experiment (Figure 8). In this experiment,312

we will not attempt to identify simultaneously the release and the conductivities, but rather,313

we will use the identified distribution of conductivities and observation errors from a previous314

work (Chen et al., 2021) shown in Figure 9. The observation errors follow a Gaussian315

distribution with zero mean and a standard deviation of 1 mg/l. Several scenarios will be316

analyzed that are described in Tables 5.317

Figure 10 shows the recovered release history curves for the first sandbox experiment,318

the train of pulses. The observed performance is quite similar to the one observed for the319

synthetic experiments; the scenario with the smaller number of discretization steps and the320

highest frequency for that discretization is the one performing best. The same phenomenon321

of excess of fluctuation as that in the synthetic cases is observed at the four peaks of the322

release curve. This phenomenon is more obvious with larger discretization scenarios (R3,323

R4), indicating a growth of the ill-posedness of the problem. One promising way to reduce324

this fluctuation could be to increase the observation frequency as the comparison between325

scenarios R1, R2, and R3, R4 shows. But we must argue that this fluctuation is inevitable326

in real cases because of the adverse impact of observation error.327
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Figure 11 shows the recovered release curves for the second experiment, the two pulses.328

The same behavior as before is appreciated here. Large fluctuations about the two main329

peaks of the injection, with the best estimation by the median of the scenario with the330

smallest number of discretization steps and the largest frequency of observation. Yet, there331

is a major failure in this test case that the method is not able to capture the fact that the332

injection stops slightly before the middle of the experiment (at about 1200 s) except for R6.333

In all scenarios, most injection curves for the individual members of the ensemble display334

positive values for the second half of the experiment, and their median is still a relatively335

large positive value, clearly overestimating the total mass injected into the system. Since the336

ES-MDA method has the ability to identify similar releasing histories in the synthetic cases,337

we believe the main explanation for this overall behavior is the magnitude of the observation338

error. In the meanwhile, like the performance in Figure 5, the overestimation of release339

towards the end of the experiment is also quite noticeable due to the same reason we stated340

before. This phenomenon once again proves the observations at the end of the simulation is341

insensitive to the final steps of the release.342

Table 7 and Figure 12 show the evolution of the RMSE and relative RMSE for the two343

sandbox scenarios. The results prove that the ES-MDA with Rafiee’s inflation scheme is an344

effective method in recovering releasing history in both sandbox experiments. The RMSE for345

all 8 scenarios is reduced after assimilating the observation data. A comparison among the346

different sandbox scenarios also shows that a high observation data frequency has a lesser347

impact on the outcome than in the synthetic cases. This phenomenon is particularly obvious348

for scenarios R3, R4, and R7, R8, which are the cases with 100 time steps; we believe it is349

mainly caused by the uncertainty of the observation data.350

For a further evaluation of the results, we use the updated release history to generate351

contaminant plume evolution to visually analyze the capacity of the ES-DMA with Rafiee’s352

inflation scheme to reproduce the real plumes. Figure 13 and Figure 14 show the ensemble353
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Table 7: The RMSE of sandbox scenarios at final iteration step

Scenario RMSE Scenario RMSE

R1 24.073 R5 18.706
R2 22.419 R6 18.289
R3 24.318 R7 19.123
R4 24.878 R8 20.461

means of the contaminant plumes at time steps 600 s, 1200 s, 1800 s, and 2400 s for scenarios354

R2, R4, R6 and R8. We can observe that the simulated plume always spreads more than355

the reference, a consequence of the overestimation of the non-injection period. However,356

compared with the reference contaminant plume in the left column, the simulated plumes357

from the updated release history for the 4 scenarios are all acceptable reproductions of the358

reference.359
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Figure 4: Recovered release histories for scenarios S1 to S8. The blue curve corresponds to the actual release
history. The gray lines are the recovered release history curves for all 500 realizations, the red dotted lines
is the median, and black dashed lines the 5 and 95 percentiles.
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Figure 5: Recovered release histories for scenarios S9 to S16. The blue curve corresponds to the actual
release history. The gray lines are the recovered release history curves for all 500 realizations, the red dotted
lines is the median, and black dashed lines the 5 and 95 percentiles.
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Figure 6: Recovered release histories for scenarios S9 to S16. The blue curve corresponds to the actual
release history. The gray lines are the recovered release history curves for all 500 realizations, the red dotted
lines is the median, and black dashed lines the 5 and 95 percentiles.
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Figure 7: Evolution of the Relative RMSE for the synthetic scenarios as a function of the iteration step.
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Figure 8: Release history curves for the two sandbox experiment.
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Figure 9: Hydraulic conductivity field. The red square denotes the source location. Flow and transport are
from right to left.
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Figure 10: Recovered release history for first sandbox experiment, scenarios R1 to R4. The blue curve
corresponds to the actual release history. The gray lines are the recovered release history curves for all 500
realizations, the red dotted lines is the median, and black dashed lines the 5 and 95 percentiles.
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Figure 11: Recovered release history for the second sandbox experiment, scenarios R5 to R8. The blue curve
corresponds to the actual release history. The gray lines are the recovered release history curves for all 500
realizations, the red dotted lines is the median, and black dashed lines the 5 and 95 percentiles.
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Figure 12: Relative RMSE of sandbox scenarios(R1-R8)
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Reference: 600s R2: 600s R4: 600s

Reference: 1200s R2: 1200s R4: 1200s

Reference: 1800s R2: 1800s R4: 1800s

Reference: 2400s R2: 2400s R4: 2400s

Figure 13: First sandbox experiment: train of pulses. Ensemble mean of the contaminant plume evolution
obtained with the updated release functions for scenarios R2 and R4 at 600 s, 1200 s, 1800 s and 2400 s.
The first column corresponds to the reference contaminant plume.
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Reference: 600s R6: 600s R8: 600s

Reference: 1200s R6: 1200s R8: 1200s

Reference: 1800s R6: 1800s R8: 1800s

Reference: 2400s R6: 2400s R8: 2400s

Figure 14: Second sandbox experiment: two pulses. Ensemble mean of the contaminant plume evolution
obtained with the updated release functions for scenarios R2 and R4 at 600 s, 1200 s, 1800 s and 2400 s.
The first column corresponds to the reference contaminant plume.
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4. Discussions360

The ES-MDA has proven to be an efficient method for the identification of contaminant361

source parameters (e.g., the source location, and release concentration) in a synthetic aquifer362

(Xu et al., 2021). Here, we employ it to identify complex contaminate release histories in363

both synthetic and real laboratory cases. In the synthetic cases, we have analyzed the364

following impact factors on the identification: different inflation schemes, the number of365

iterations, the size of the observation time intervals, and the degree of discretization. Our366

results show that the ES-MDA with Rafiee’s inflation scheme performs well, and that more367

accurate identification can be achieved with more iteration steps at a higher computational368

cost. The recovered release curve may suffer from an excess of fluctuations, especially with369

larger discretization time steps, and one possible way to handle this problem is to increase the370

frequency of the observation data. In real laboratory cases, the challenge mainly comes from371

observation errors, especially when the observed luminosity is transformed into concentration372

data. The magnitude of the observation error seems to undermine the identification by373

the ES-MDA, and larger fluctuation problems appear, especially in the second experiment.374

However, in terms of reproducing the reference plumes by the recovered release history, we375

prove the ES-MDA is a promising method in the identification of contaminant release history.376

In this work, we successfully prove the ability of the proposed data assimilation framework377

to reconstruct the release history in a simple sandbox experiment. In real field studies,378

the setting of models is extra complicated, existing many uncertainties and it would be379

a huge challenge to apply the method for the identification of the source information in380

practice. Besides, though the ES-MDA method is more efficient than alternative Bayesian-381

based inversion methods, it is still difficult to solve high-dimensional problems.382
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5. Summary and Conclusions383

In this paper, we employ the ES-MDA to identify a time-varying release history with384

different precision in both synthetic and laboratory cases. In the synthetic cases, we examined385

the capacity of the ES-MDA to identify the release function for (i) different levels of time386

discretizations, with a ratio of 1 to 6 between the coarsest and finest discretizations; (ii) the387

impact of the observation data frequency (every other time step versus one step every ten time388

steps); (iii) the choice of the inflation factors (between Rafiee’s and Evensen’s proposals);389

and (iv) the impact of the number of iterations in the ES-MDA formulation (between four390

and eight). In total, 24 scenarios with combinations of the aforementioned features were391

generated and compared. The results show that the ES-MDA with Rafiee’s scheme has392

a better performance in most scenarios in our case. Also, in all scenarios, increasing the393

observation data frequency always improves the identification of the recovered release history394

curve. The number of iterations, whether four or eight, does not have an important effect on395

the performance of the ES-MDA. In general, the ES-MDA performs well in recovering the396

release history, when the discretization is equal to 50 or 100 time steps but displays large397

fluctuations in the scenarios with 300 time steps. We believe this problem could be alleviated398

by choosing a different parameterization of the release curve, rather than using uncorrelated399

uniform random numbers to generate the initial ensemble of realizations.400

This is a first test in a real environment, in which the ES-MDA (using Rafiee’s inflation401

scheme and eight iterations) has been tested in two closer-to-reality sandbox experiments402

with two release history curves: a train of four pulses, and two pulses during the first half of403

the experiment. The results show that the ES-MDA works well for the train of pulses, but404

overestimates the injection concentrations for the second experiment after the two pulses have405

ended. We believe that this poor behavior could be explained again by the parameterization406

of the injection curves and the magnitude of the concentration observation errors.407

In conclusion, the ES-MDA is a method capable to identify a time-varying release history408
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in both synthetic and real cases. Better results than the ones presented here could have been409

obtained with a more elaborated parameterization of the time functions to be identified.410
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