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Definition

The ensemble Kalman filter (EnKF) is an evolution of the Kalman filter
for its application to non-linear state-transition systems with a further
extension to serve as a powerful parameter inversion method. Its main
purpose is to improve the estimates of the system state as observation are
acquired. As the Kalman filter, the EnKF is based on two steps, forecasting
and updating (or filtering). During the forecasting step, the state of the
system is forecasted on the basis of the latest state estimate; then, forecasts
are compared with observations and a correction is made to the state (and
possibly to the parameters of the state equation) that will serve as the basis
for the next forecast.

The Kalman filter was developed by Kalman (1960) for the purpose of
improving the trajectory estimation of spacecrafts and missiles and one of its
very first implementations was in the Apollo program. The Kalman filter,
as developed by Kalman, had a great success when it was first proposed
since it provides optimal results for dynamic systems that are controlled by
a linear state-transition equation; then, it went into oblivion because it did
not work so well when dealing with non-linear systems. New formulations
such as the extended Kalman filter were postulated with limited success, but
it was not until the work by Evensen (1994), who introduced the EnKF as a
mean to deal with the non-linearities, that the Kalman filter came back into
the spotlight. This rebirth of the Kalman filter not only allowed a better
modeling of non-linear systems but also proved that it can be used as a very



efficient inverse modeling approach for the identification of parameters of
the state-transition equations.

The Kalman filter

Consider a dynamic system evolving in time according to a state-transition
equation. There are two ways to predict the state system at time ¢: (i) By
dead reckoning , that is, the state-transition model is run until time ¢ given
some known state at time 0, or (ii) by observing the state of the system
using measuring probes. Neither way will provide an exact description of
the state of the system at time ¢, the first one, because the state-transition
model is always an approximation of the real system, and the second one,
because the probes always have measurement errors and, generally, only
sample sparsely the state itself. Kalman found a way to combine the two
predictions into a better one in his formulation of his filter.
Kalman formulated his filter for a linear dynamic system

vt =L (a:t_l) (1)

where x is the state of the system, and £ the linear state-transition equation
that gives the state of the system at time ¢ given its state in a previous
instant ¢ — 1. Since most of the models used in the geosciences are built
on discretized versions of the real system, a matrix notation can be used to
describe the evolution of the system

xt=A-x!"! (2)

where x is a column vector of size N x 1 with the values of the state at
the centers of the IV voxels that discretize the study area, and A is a state-
transition matrix of size N x N.

Adopting a random function model, we can interpret each element of
X, at any time ¢, as a random variable , and the entire vector, at any time ¢,
as a random function. As a consequence, the expected value of the random
function propagates in time according to

E{xt}:A~E{xt*1}, (3)
and its covariance , according to

CExHY=A-C (xt_l) “A, (4)



where C' is a covariance matrix of size N x N containing all pairwise covari-
ances between any two elements in the vector state and the ’ symbol is used
to denote transpose.

Now, consider that the state has been observed at M locations (gener-
ally M < N). These observations are represented by vector y. For the sake
of simplicity, assume that these observations have been taken at the cen-
ters of the voxels that discretize the study area and that measure directly
the state of the system not a proxy. This simplification implies that the
observation matrix H that will be used later should be made up of just
zeroes and ones and it serves to extract the specific rows and columns from
the vectors and matrices used in the formulation that follows corresponding
to the observation locations. Consider also that these observations have un-
correlated measurement errors with zero mean; the error covariance R is,
therefore, diagonal. Under these considerations, the conditional expectation
of the state at time ¢ given the observations taken at that same time is the
optimal estimate in a least-square sense of the state of the system and is
given by the following expression:

E{x'|y'} =FE{x'}+K: (y'—H -E{x'}) (5)

where K is the so-called Kalman gain matrix of size N x M, the expression
of which is
K=CKx)-H-(H-C(x')-H +R)™". (6)

The analysis of expression (5) shows that the conditional expectation is
equal to the unconditional one corrected by a factor that is proportional to
the discrepancy between the observations and the predicted expected data at
time ¢ obtained with Eq. (3). The proportionality term is itself proportional
to the predicted state covariance at time ¢, and inverse proportional to the
measurement error covariance and to the covariance between the locations
at which the state has been observed.

The conditional covariance is given by

C(x'|y")=(0-K-H)-C(x); (7)

it is the covariance associated with the conditional expectation.

The Kalman filter consists of two steps. A forecast step, given by Eq. (3)
and an update step given by Eq. (5). Alongside, the covariances are also
forecasted and updated (Egs. (4) and (7), respectively). The predictions are
based on the linear state transition equation and the updates are the result
of an optimization in some least squares sense. Once the updates are made,
they become the basis for the next forecast and update from t to t + 1.



As described, the method is straightforward to implement and apply.
One of its first applications was to help the guidance of the Apollo spacecrafts
and it was coded in the Apollo computer, a computer with only 2 kilobytes
of RAM, 36 kilobytes of ROM, and a chip running at 100 MHz.

The Extended Kalman Filter

Given its success with linear dynamic systems, an attempt to expand the
Kalman filter to deal with non-linear state transition equations was done
with the Extended Kalman filter (Jazwinski, 1970). When the system does
not evolve linearly

gt =@ (271 (8)

with ® being a non-linear operator, a Taylor expansion can be applied to
get a linear approximation

Xt~ A xtl g 9)
and
CEE)~A-C(x1 A +..., (10)
with 5%
A=oo (11)

being the Jacobian of the state transition equation. When only the first
term of the expansion is retained, the formulation defaults to the Kalman
filter formulation, which is then applied. The main problem with this ap-
proach is that, even if the Jacobian is re-evaluated after each update step,
the covariance estimate deteriorates quickly in time when Eq. (10) is used,
yielding very poor results.

The Ensemble Kalman Filter

An improved method to compute the state covariances for non-linear systems
was proposed by Evensen (1994) circumventing the main problem of the
extended Kalman filter. A random function can be defined by the statistics
of the random variables that conform it, or as a collection of realizations.
Evensen replaced working directly with the expected value and covariance
of the random function by working with an ensemble of realizations, which
are forecasted and updated as per Kalman filter theory. Then, he proposes



to compute, experimentally, the expected value and covariance from the
forecasted realizations. There is no need to approximate the forecast of
neither the mean nor the covariance as in Egs. (9) and (10); rather, the
ensemble of realizations are forecasted in time using the non-linear transfer
function of Eq. (8) and the expected values and covariances are computed
afterwards from the set of forecasted realizations.

Consider an ensemble of K realizations from the random function x, at
time £ — 1, {xﬁ_l,xg_l, ... ,x?l}, each realization composed of N compo-
nents corresponding to the N state values associated to the discretization of
the study area. They propagate in time according to the non-linear transfer
function ®:

{Xﬁ,xg,...,x’}(}:qD{Xﬁ*l,X;l,...,x’}\?l}. (12)

The expected value and the covariance of the state random function can be
approximated from this ensemble of forecasted realizations. Let X be an
array with N rows and K columns containing all states for all realizations.
The expected value is given by

Elx') ~ %(Xt geer) (13)

where 11 is a column vector of K ones, and X! contains all the forecasted
realizations at time t. Likewise, the covariance is computed as

1
O (x) ~ 5 (X' = B{x} L) - (X' = E{x'} - 1an) (14)
where 114y is a row vector of N ones. The Kalman gain is computed using
Eq. (6) and all realizations are updated according to

Xy' =X+ K- ((y' +¢) Lixg —H-X) (15)

where €t

is a vector of random observation errors drawn from the diagonal
covariance matrix R. The conditional expectation and the conditional co-
variance could be computed, if needed, using X[y’ in Eqs. (13) and (14)
in replacement of X*. The conditional expectation would the best estimate,
in some least squares sense, of the state of the system at time ¢, and the
conditional covariance a measure of the estimation uncertainty.

The ensemble of updated realizations becomes the new starting ensemble
of realizations and the forecast and update steps are repeated starting at
Eq. (12).

The algorithm for the ensemble Kalman filter is quite simple and appli-
cable to any dynamic system; its steps would be:



1. Generate an ensemble of realizations of the system state (these real-
izations can be generated by randomizing the parameters of the state
equation and solving it, or by perturbing with noise a given solution
of the state equation),

2. Forecast the state, realization by realization, until the next observation
time (Eq. (8)) ,

3. Compute the expected value and covariance of the forecasted realiza-
tions (Egs. (9) and (10)),

4. Compute de Kalman gain (Eq. (6)),
5. Update the forecasted realizations (Eq. (15)),

6. Computed the expected value and covariance of the updated realiza-
tions, if necessary (Egs. (9) and (10)),

7. Make the updated realizations the new starting realizations and return
to the forecast step (Eq. (8)).

The Ensemble Kalman Filter With Augmented State

The EnKF as proposed by Evensen solved the problem of the approximate
calculation of the covariance matrices using an alternative (and better) ap-
proximation based on the statistical analysis of an ensemble of realizations,
but its application had the same purpose as the original filter: the update of
the system state each time new observations were obtained. But, it was re-
alized that the method could be used to update the parameters defining the
system, too. In modeling, for instance, an aquifer , these parameters could

be material parameters such as permeability or porosity , forcing terms
such as recharge or contaminant source location, or boundary conditions
such as lateral inflows/outflows or leakages . The idea consists of consider-

ing the parameters as part of an augmented state vector (Wen and Chen,
2007), in which the parameters are updated each time a new observations
are made.

The system state x is now augmented to include the last update of the
model parameters a. The system state continues evolving in time according
to a state-transition model ®, but the model parameters do not evolve.



Forecast equation (3) becomes

(4)-(ey )

Using z to represent the augmented state, a new forecast equation is defined
2= (), (17)

and the EnKF algorithm can be applied once a random function model is
adopted for z. Each ensemble realizations will contain a realization of the
parameters and of the states associated to that parameter realization. The
forecast will be performed using Eq. (17) on each realization, and the rest of
the steps will follow the algorithm described in the previous section. Notice
that new parameter observations can be included at the same time as new
state observations.

This application of the EnKF becomes a powerful inverse modeling
approach since, as observations are assimilated, improved estimates of the
model parameters are obtained. The main criticism of this approach is
the potential lack of consistency between the updated parameters and the
updated state values. After all, the states should abide the principles under
which the state-transition model is built, for instance, in the case of an
aquifer modeling, the preservation of mass. This possible inconsistency
resulted in the proposal of a variant of the filter, the restart EnKF (Xu and
Goémez-Hernandez, 2018), in which the system forecast is always made from
time 0, rather than from the last updated estimate of the system state:

¢ t—1
« Q
= . 1
o= {d | "
The parameters keep being updated after each observation event, but the
states are always recalculated from the state at time 0, 2, with the latest
update of the parameters. This procedure, obviously increase the running

time of the algorithm, but ensures that the state values are always consistent
with the latest estimate of the model parameters.

The Normal-Score Ensemble Kalman Filter

There was still a pitfall in the application of the EnKF to non-linear systems.
The fact that all updates are made using covariances imbue a Gaussian
flavor to the updated realizations, which, after several updates, have clear



Gaussian attributes, starting by their histogram. In geosciences, many of
the attributes have non-Gaussian characteristics, like, for instance, the
permeabilities of a sand-shale aquifer have a histogram closer to a mixture
of two lognormal distributions than to a Gaussian one. Even if the starting
parameter realizations display the desired non-Gaussian characteristics, such
as a bi-modality of the histograms, the final histograms of the parameter
realizations get close to normal. To avoid this problem, the normal-score
EnKF (NS-EnKF) was proposed by Zhou et al. (2011).

In the NS-EnKF, all the EnKF steps are performed in variables that are
marginally-Gaussian. The augmented state vector z is transformed into an-
other one with marginal Gaussian distributions using a normal-score transform
¢(+), which is a monotonic transformation that will yield a resulting vari-
able with a standardized Gaussian histogram, then, given the normal-score
transforms u! and u'~! of the augmented states z! and z'~!

w™l = gt (x)
ut = ¢t ()

and given the state transition equation (17), a new forecast equation can be
written for the normal-score variates

u' =T (v, (19)

with .
F=¢" T (1) . (20)
The NS-EnKF proceeds as the EnKF but in normal-score space. At any

time, the augmented state values z can be obtained by using the inverse of
the normal-score transform ¢ 1(-).

Kalman Filter and Kriging

The observant reader will find streaking similarities between the update
equation (5) and the simple kriging equation, with the Kalman gain being
the kriging weights.

Summary and Conclusions

The ensemble Kalman filter is a variant of the Kalman filter capable to
deal with dynamic non-linear systems. It provides optimal estimates of



the state of the system as well as of the parameters defining the state-
transition model, which are updated sequentially in time as new observations
are acquired. The rationale is simple as is its implementation, and could be
used with virtually any model that allows predicting the state of the system
in the future as a function of the state in the present. Its version using
an augmented state vector has proven a very powerful and efficient inverse
modeling approach.
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