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Definition

Sequential Gaussian simulation is a computer-based technique for the gen-
eration of realizations z(x) from a multiGaussian random function Z(x)
defined on a finite point set D, generally discretizing into N voxels a one-,
two-, or three-dimensional area of interest. There are many other techniques
capable of generating realizations from a multiGaussian random function,
but what makes unique the sequential Gaussian simulation algorithm is the
possibility of generating realizations with a reasonable computing effort over
arbitrarily large domains with N easily reaching values larger than millions.
This is achieved thanks to the sequential simulation principle derived and
implemented by André Journel’s group at Stanford University in the late
1980s (Gómez-Hernández and Srivastava, 2021).

Random Function

A random function Z(x) can be defined as a rule that assigns a realization
to the outcome of an experiment

Z(x) ∼ {z(x, θ)}, ∀θ ∈ Ω,x ∈ D. (1)

In the case of numerical simulations in discretized domains, D is defined as
the set of N points falling at the centers of the voxels discretizing the area
of study; x is any such point, θ is the outcome of an experiment and Ω is
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the sample space containing all possible outcomes. In the remainder, the
dependency of any realization on θ will be dropped and lower capital letters
will be used to refer to a realization or the values it could take, and upper
capital letters will be used for random variables or random functions.

A random function can also be defined by all the n-variate distributions

F (x1,x2, . . . ,xn; z1, z2, . . . , zn) =

Prob(Z(x1) ≤ z1, Z(x2) ≤ z2, . . . , Z(xn) ≤ zn),
(2)

for any subset of n points out of the N points discretizing the study area.
In the previous expression Z(xi) is a random variable defined at xi through
the ensemble of realizations.

When the random function is multiGaussian each random variable can
take any value in ℜ and the distributions in Eq. (2) have the following
expression (Anderson, 1984)

F (x1,x2, . . . ,xn; z1, z2, . . . , zn) =

(2π)−
n
2 |Σ|
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where µ is a column vector with the expected values of the random variables

µ =
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z is an n-component column vector with the integration variables, and Σ is
a matrix of covariances

Σ =
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...
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...
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(5)
The attractiveness of the multiGaussian distribution is that it is fully char-
acterized by its expected value and its covariance between any two points
in its domain. At the same time, this is its major drawback since such a
characterization prevents any control on the higher-order moments, which
are fully determined as functions of the mean and covariance. Once a multi-
Gaussian random function is chosen, the user cannot expect higher-order
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moments different from the ones to be derived from the distributions in
Eq. (3). For instance, multiGaussianity will always prevent high continu-
ity of extreme values, a property much desirable in the geosciences when
modeling high-permeability fracture zones or impermeable shale barriers.

Sequential Simulation

The sequential simulation algorithm was proposed by André Journel in the
late 1980s to address the problem of how to generate a realization from a
non-Gaussian random function defined on the basis of indicator functions
(functions that take a value of 0 or 1 depending if the argument is above
or below a given threshold). The first publicly available code was published
by Gómez-Hernández and Srivastava (1990) and it describes the principles
of the algorithm and many implementation issues. Soon after, it was real-
ized that sequential simulation could also be applied for the generation of
realizations from other random functions, particularly, from multiGaussian
random functions, and sequential Gaussian simulation was born (Deutsch
and Journel, 1992; Gómez-Hernández and Journel, 1993).

The basic idea behind sequential simulation is quite simple (Gómez-
Hernández and Cassiraga, 1994). Given a random function defined over a
finite point set of size N , the probability distribution in Eq. (2) can be de-
composed, by recursively applying the definition of conditional probability,
as follows:

F (Z(x1), Z(x2), . . . , Z(xN )) = F (Z(u1)) ·
F (Z(x2)|Z(x1)) ·
F (Z(x3)|Z(x1), Z(x2)) · · ·
F (Z(xN )|Z(x1), . . . , Z(xN−1)). (6)

Using this decomposition, drawing a realization from a full N -variate dis-
tribution can be replaced by drawing, sequentially, N values from N condi-
tional univariate distributions. The only requirement would be the ability
to compute the conditional distribution of any random variable given any
number of random variables. What, for the case of a multiGaussian random
function, is trivial.

The conditional distribution of a random variable given any number of
random variables when these random variables are members of a multiGaus-
sian random function is a Gaussian distribution with mean and covariance
given by the solution of a set of normal equations (Anderson, 1984), also
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known as the simple kriging equations. Its expression is

Prob(Z(xi) ≤ zi|Z(x1) = z1, Z(x2) = z2, . . . , Z(xn) = zn) =

1
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with µ being the simple kriging estimate of z(xi) using as data {z1, z2, . . . , zn}
at locations {x1,x2, . . . ,xn}, respectively; and σ2 the corresponding simple
kriging variance.

The conditional distribution in Eq (7) is generally approximated, when
the number n is large, by restricting the data used to solve the kriging equa-
tions to a predefined maximum number within a given search neighborhood
around xi. Only the subset of z1, z2, . . . , zn that falls within the neighbor-
hood, and only the closest values up to certain maximum number are used
to build the simple kriging system. This approximation is necessary since,
for a realization with N larger than a few hundreds, the decomposition in
Eq. 6 results in conditional distributions depending in too many conditioning
data; determining the parameters of those conditional distributions would
amount to solving kriging systems with hundreds of equations; in order to
keep the computation of the conditional realizations —that has to be re-
peated for each point— at a reasonable computing cost, there is a need to
reduce the size of the kriging system, what can be achieved using the concept
of a search neighborhood and limiting the maximum number of points.

Sequential Gaussian Simulation Algorithm

Drawing a realization from a multiGaussian random function can be achieved
as follows:

1. Define a random permutation of the natural numbers 1 to N that will
serve to define how the expression (6) is built and also the order in
which the points will be visited,

2. Following the order in the random permutation visit each point and

(a) Search for the values that have already been simulated falling
within a search neighborhood centered at the point to simulated,

(b) Solve the simple kriging equations to determine the mean and the
variance of the Gaussian conditional distribution,

(c) Draw a random number from the conditional distribution and
assign it to the point.
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3. Return to the beginning for the generation of a new realization.

Remarks

Equation (6) is valid for any permutation of numbers 1 to N ; a random
permutation is suggested because it was found that the approximation of
the conditional distribution retaining only the closest simulated points in-
troduces some artifacts in the realizations when a structured sequence is
used (for instance, simulating the points following the rows or columns of a
two-dimensional realization).

Conditional realizations, that is, realizations that honor the observed
data at data locations can be generated simply by including their locations
in the domain D and by including the observed values as known (already
simulated) values at their locations prior to the start of any simulation.

There are other implementation issues, many of which can be consulted
in the review paper by Gómez-Hernández and Srivastava (2021).
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