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Abstract Forty years and one hundred fifty-seven papers later, research on
contaminant source identification has grown exponentially in numbers but
seems to be stalled concerning advancement towards the problem solution and
its field application. This paper presents a historical evolution of the subject,
highlighting its major advances. It also shows how the subject has grown in
sophistication on the solution of the core problem (the source identification),
forgetting that, from a practical point of view, such identification is worth-
less unless it is accompanied by a joint identification of the other uncertain
parameters that characterize flow and transport in aquifers.

Keywords simulation-optimization, backward tracking, Bayesian approach,
machine learning, surrogate models, heuristic approaches

1 Introduction

The year 2021 will mark the 40th anniversary of the first work on contaminant
source identification in aquifers: the Ph. D. thesis defended by Steven Gorelick
at Stanford University (Gorelick 1981). The subject attracted some attention
in the following decade. It flourished during the last decade of the previous cen-
tury, and has grown exponentially during the current century; unfortunately,
this growth was not accompanied by the breadth of new ideas and approaches
that took place between 1991 and 1997. Figure 1 shows a histogram of the
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2 J. Jaime Gómez-Hernández, Teng Xu

number of works published in the field per year and its cumulative version.
The figure includes a few papers not precisely about identifying contaminant
sources in aquifers but in streamflows, lakes, and water distribution systems,
mainly when these papers are based on the findings in aquifer research. As
this paper is being written, the total number of works found is 157, but, most
likely, that number will have increased by the time the paper is published.

The rate at which papers have been published in the last three years is
above ten papers per year; yet, very few discuss applications to real problems.

This paper revisits how the subject has evolved after the pioneering work by
Gorelick (1981) pointing out those papers that, in the opinion of the authors,
signified an apparent breakthrough in the subject. The paper ends with a
discussion of why, after forty years, the subject is not mature enough to find
routine applications to real cases and is still far from being applied regularly.

2 The Problem

The problem of identifying a contaminant source in an aquifer using concen-
tration measurements observed downgradient from the point of contamination
falls in the realm of inverse problems (Tarantola 2005; Zhou et al. 2014). Con-
sider, first, a forward model

d = G(m) (1)

where d is the outcome of the model providing the state of the system, m rep-
resents the model parameters at large, including not only material parameters
but also those variables that need to be specified to characterize the system
before any prediction is performed, and G is the function that maps param-
eters into system states. For example, in an aquifer where groundwater flow
is under study, the state of the system is given by the piezometric heads, the
model parameters are the hydraulic conductivities and porosities, but also the
infiltration rates, boundary conditions, and pumping rates; and the function
G is the groundwater flow equation, or better the numerical model solving the
groundwater flow equation on a discretized version of the aquifer.

Consider, now, that several observations of the state of the system are
available dobs; one could attempt to guess the values of the model parameters
by inverting (1)

m = G−1(d). (2)

This inversion is much more challenging to perform than the forward modeling
because seldom the inverse model G−1 is explicitly known, nor the number of
necessary observations available. In such case, the solution is to use the for-
ward model to try to determine the parameters by means of an optimization
or search procedure. During the search, the objective is to find a set of param-
eters m that produces state values G(m) that are as close as possible to the
observed ones. Issues that must be considered in solving this problem include
taking into account measurement errors—observations dobs may be corrupted
estimates of the true state values—; and model errors—G is only a numerical



Contaminant Source Identification 3

approximation of a system state equation that may not be representing exactly
all relevant processes, and therefore, predictions d may not be exactly of the
system state.

Contaminant source identification is an inverse problem where the target
parameters to identify are the number and spacetime locations of the con-
tamination events and their strengths. As discussed next, focusing on iden-
tifying the parameters characterizing the source results in an interesting and
difficult-to-solve problem. Still, it may remain purely academic if realism is
not introduced as part of the solution to the general problem.

3 Milestones in the Timeline

3.1 Early Work · The Simulation-Optimization Approach

The Ph.D. thesis by Steven Gorelick (1981) centers on groundwater pollution
management problems, one of which is determining the location and strength
of a contaminant leaking into an aquifer; making this the first work addressing
this problem. The work was later published (Gorelick et al. 1983) and, to the
best of the authors’ knowledge, is the first paper on the subject.

The problem addressed is identifying the locations and strengths of the
leaking portions of a pipe that is in contact with an aquifer where the contam-
inant disperses. The problem is cast as an optimization problem to minimize
an objective function measuring the discrepancy between model-predicted con-
centrations and observed ones

J(m) = w [|dobs − dcal|p]T (3)

with

dcal = Hd = HG(m) (4)

where dobs is a vector with the observed concentrations, and dcal is a vector
with the calculated concentrations at the same locations, which are obtained
after applying an observation matrix H to the model outcome G(m); w is a
row vector of positive weights, the exponent p is generally 1 or 2, depending
on the norm to be minimized, and the upper-script T stands for transpose. In
Gorelick’s work, he uses two optimization approaches, a linear programming
one, in which the exponent is 1, and a least-squares one, in which the exponent
is 2. In both cases, the weights are inversely proportional to the magnitude of
the observations.

The vector of parameters m, on which d depends, includes all the param-
eters needed to run the numerical model G, such as the material parameters
describing the aquifer (conductivity, porosity, etc.), the boundary conditions,
the external stresses and the parameters describing the source. Not all of these
parameters are subject to identification, and, in most papers, many of them are
considered known without uncertainty. For example, in the work by Gorelick,
all model parameters are known (and homogeneous) except for the intensities
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at eight potential pipe leaks. Under these setting, application of the principle
of superposition yields dcal as a linear function of the unknown parameters
m; this allows writing the minimization problem as a linear programming one.
Each observed concentration in time and space acts as a linear constraint to be
satisfied by the parameters. Gorelick et al. (1983) also analyze the results ob-
tained by multiple regression, which amounts to minimizing (3) with an expo-
nent p equal to 2 using a least-squares approach. a This paper sets the scene for
the papers to come. Gorelick et al. (1983) had identified a new and interesting
inverse problem. He also established a specific way to approach the problem,
which is the combination of simulation—to solve the forward model (1)—and
optimization—to minimize an objective function like (3). For this reason, the
papers using this approach are referred to as simulation-optimization papers.

The Ph.D. thesis by Gorelick (1981) also got the attention of Hwang and
Koerner (1983) who looked for an alternative solution to the problem of source
identification coupled with a dynamic network design. They use system sen-
sitivity theory (a branch of control theory). Aquifer transport is treated as a
dynamic system for which an initial guess of parameters is made, and feedback
is obtained after concentrations are observed. The mismatch between predicted
and observed concentrations is used to compute a so-called trajectory function
that provides a perturbation of the parameters to be added to their last esti-
mate before making the next prediction. The authors demonstrate the method
in a two-dimensional synthetic aquifer and announce that a three-dimensional
case study would follow, which was never published.

The decade of the 1980s finished with the publication of a research report
by Datta et al. (1989) who use the same approach as Gorelick et al. (1983) to
solve the problem.

From here on, the text will focus on the papers that, according to the
authors, have supposed a significant advancement either in the solution of the
core problem or in making the solution closer to its potential application to real
cases. These papers are indicated in the timeline shown in Fig. 2. The text will
end with a quick discussion and classification of the papers published in these
40 years. Two tables, including all 157 papers, are appended as supplementary
material.

3.2 Backward Probability

Bagtzoglou et al. (1991) formulate a probabilistic solution for the problem of
source identification based on the stochastic transport theory by Dagan (1982).
In a heterogeneous media, solute concentrations resulting from an injection of
a contaminant at location X0 are proportional to the probability that such
a particle may be at location X after some time t. Dagan’s theory revolves
around trying to find these probability functions. Reversing the concept, one
can think of finding the probability that a given particle that has been observed
atX at time t was atX0 at time zero. When the release time is known, running
a backward-in-time particle tracking using the current spatial distribution of
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the concentrations will yield a map of probabilities. The locations with the
highest values would correspond with the source locations. As described, this
identification is possible only if the velocity field is perfectly known and if all
the sources start at the same known time. The paper leaves some unresolved
issues but opens a new avenue for the solution of the source identification that
will be explored by several authors in the future.

Bagtzoglou et al. (1992) addressed some of those problems in their next
paper, such as not knowing precisely the time of the release or the velocity field,
and propose the calculation of location and time probabilities with attached
uncertainty.

3.3 Joint Identification of Source and Hydraulic Conductivity

Wagner (1992) is the first author that realizes that assuming that the hydraulic
conductivity or the velocity spatial distributions are known is unrealistic and
proposes a maximum likelihood parameter estimation following the steps by
Carrera (1984) and Carrera and Neuman (1986). The forward problem remains
the same, but now the objective function not only depends on the source
parameters, but also on other parameters such as hydraulic conductivities,
dispersivities, and boundary fluxes, which must be identified, too. The author
demonstrates the application of maximum likelihood estimation, which had
been utilized successfully for aquifer parameter identification in zoned aquifers,
to the simultaneous estimation of material and source parameters. Our main
criticism of this work is that the conceptualization of aquifer heterogeneity is
very simple. It is limited to two zones with homogeneous flow and transport
parameters. It also assumes that the source location is known, with the only
source-related unknown being the mass load. In total, there are ten parameters
to estimate.

The objective function to minimize in this work is the negative log-likelihood
function, which under the assumption of normally distributed errors has an
expression very similar to (3). Observations d, in this case, were not limited
to concentration values but also included piezometric heads (to help in the
hydraulic conductivity identification).

The simultaneous estimation of aquifer and source parameters will reappear
in several papers published later, but, almost always, with very simplistic
representations of aquifer heterogeneity.

3.4 Time-Varying Injection and Tikhonov Regularization

The next major step was to consider the identification of a continuously time-
varying solute injection function. Until the work by Skaggs and Kabala (1994),
the identification of contaminant source was either of a constant pulse of finite
duration or a series of them. Still, nobody had contemplated the possibility



6 J. Jaime Gómez-Hernández, Teng Xu

of identifying a pulse that was a continuous function of time. In their one-
dimensional seminal paper, Skaggs and Kabala proposed to identify the three-
peaked release function represented in Fig. 3; the identification was formulated
by discretizing the span during which the release occurred into 100 points.
They argue that such identification would be bound to fail due to the ill-
posedness of the inversion problem and introduced, for the first time, the idea
of regularizing the solution. Regularization implies modifying the objective
function (3) by adding a term

J(m) = w [|dobs − dcal|p]T + α2‖L(m)‖2 (5)

where L is the regularization function and α is a weighting factor controlling
its strength in the objective function. Skaggs and Kabala’s regularization is
a function of the 100 parameters discretizing the input function penalizing
rapid oscillations in time. The authors focus exclusively on identifying the dis-
cretized source function, assuming that all other parameters controlling flow
and transport in a homogeneous aquifer are known, including the source loca-
tion. The observations are concentrations sampled in time and space at selected
intervals. Two case studies were analyzed, one with exact observations with-
out observation errors and one with inexact observations with measurement
errors of varying magnitude. The authors conclude that Tikhonov regulariza-
tion could be used to solve an inherently ill-posed inverse problem as long as
the observation errors are not too large and that the measurements are taken
before the plume has dissipated too much.

3.5 Minimum Relative Entropy

The year 1996 saw the publication of two significant contributions to the solu-
tion of the source identification problem. One of them is the work byWoodbury
and Ulrych (1996), who shifted the focus of the problem from a deterministic
one into a stochastic one. The other one is described in the next section.

The parameters m to be identified are considered as random variables
with unknown probability distribution functions (pdfs), and the optimization
approach is aimed at determining these pdfs, from which the expected value or
the median could be retrieved as the model parameter estimate. Let p be the
parameter prior pdf, which could be as uninformative as a uniform distribution
between some lower and upper bounds, let q be the pdf of the parameters that
are consistent with the observation data. By consistent, it is meant that the
expected value of the predicted state at observation locations be equal to the
observed values, E{HG(m)} = dobs. Pdf q will result from the minimization
of the relative entropy

H(q, p) =

!
q(x) ln

"
q(x)

p(x)

#
dx (6)

subject to several linear constraints that result from the consistency require-
ment described above. The authors describe in detail how the minimization is
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performed, retrieve q(m), and compute its expected value, which is compared
with the reference injection curve with satisfactory results. The same injection
function used by Skaggs and Kabala (1994) is analyzed, and the impact of
observation errors is also studied. The location of the source is not subject to
identification.

3.6 Heuristic Approaches

The work by Aral and Guan (1996) is the second of the landmark papers of
1996. It is the first paper that uses a heuristic approach to solve the optimiza-
tion problem. The problem statement is the same one used by Gorelick et al.
(1983), that is, the minimization of (3) subject to linearity constraints (one
for each observed concentration). These constraints can be easily derived from
the solute transport equation when the aquifer is homogeneous and of known
parameters. The authors also add the additional constraint that the parame-
ters to identify (the contaminant fluxes into the aquifer) must be positive. The
originality of the solution is to depart from standard optimization algorithms
and move into the, then new, heuristic algorithms, of which a genetic algo-
rithm was chosen. As with all heuristic algorithms, multiple evaluations of the
forward model (1) are needed, which makes the method computationally de-
manding; as a counterpart, these heuristic algorithms are supposed not to get
stuck in local minima and are capable of getting the global minimum for ob-
jective functions with potentially many local extremes. Aral and Guan (1996)
demonstrate the application of genetic algorithms to identify the contaminant
fluxes from six known locations time-varying stepwise in three known time
intervals. The aquifer is synthetic, two-dimensional, and of known parameters.
Exact and measurement error-corrupted observations are used. The authors
conclude that genetic algorithms are a viable alternative.

3.7 Geostatistical/Bayesian Approaches

Following the path by Woodbury and Ulrych (1996), Snodgrass and Kitanidis
(1997) also use a stochastic approach for the solution of the identification
problem. The authors focus on the solution of the same problem, estimating a
contaminant time-varying release function into an aquifer, assuming that the
source location and the rest of the parameters describing the aquifer are known.
Following a standard geostatistical approach, the parameters m (which, in this
case, are the injection strengths discretized in time over the injection period)
are modeled as a random function with a stationary but unknown mean value
and a stationary but unknown covariance function of which its shape is known
(for instance, it may be an exponential function). There are no observations of
the parameters, but there are observations of the concentrations downgradient
from the source, which, for conservative solutes, are linearly related to the
source parameters. This linearity permits the computation of the conditional
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expected value and the conditional covariance of the unknown parameters
given the observed concentrations.

The geostatistical approach starts by first estimating the parameters of the
multivariate random function, which, in this case, are the unknown mean and
the unknown parameters of the covariance function (variance and correlation
length for the case of an exponential isotropic covariance). Then, the estima-
tion is done maximizing the likelihood of the observations given the structural
parameters. Snodgrass and Kitanidis (1997) argue that simultaneous estima-
tion of both mean and covariance parameters results in biased estimates and
proceed to maximize the likelihood after filtering out the unknown mean by
integrating over all possible mean values. Once the parameters have been es-
timated, the rest is a standard co-kriging estimation to obtain the conditional
(also referred to as posterior) estimate of mean and covariance of the param-
eters describing the injection function.

Since kriging cannot enforce non-negativity, Snodgrass and Kitanidis (1997)
describe an iterative approach to the estimation of a non-linear transform of
the input concentrations (what breaks the linearity between parameters to be
estimated and observations) that ensures that all concentrations estimates are
positive. The method is demonstrated using the benchmark injection function
by Skaggs and Kabala (1994) in a one-dimensional aquifer with satisfactory
results. An interesting discussion in the paper is the indication that Tikhonov
regularization or thin-plate spline interpolation would yield the same results
as the geostatistical approach for specific shapes of the covariance of the mul-
tivariate random function.

Although not explicitly stated in the paper, this is the first one in which a
Bayesian approach is used.

3.8 Jumping into Three Dimensions

In 1998, the first paper addressing contaminant source identification in a three-
dimensional domain was published. Woodbury et al. (1998) extend their ap-
plication of Minimum Relative Entropy (MRE) in one dimension to the re-
construction of a three-dimensional plume source. The source is a rectangular
patch of known dimensions, and in order to maintain the linearity between ob-
servations and source concentrations, the aquifer is considered homogeneous
and with known parameters. An analytical solution of the transport equation
is used that relates aquifer concentrations and source values. The benchmark
input function of Fig. 3 is used, and the capabilities of the MRE in three di-
mensions are demonstrated. Case studies using observations with and without
errors and the interplay between spatial data and temporal data are analyzed.

The method was also applied to a real case to identify the source of a 1,4-
dioxane plume observed at the Gloucester landfill in Ontario, Canada. The
underlying model of the aquifer had to adhere to the simplifications used for
the derivation of the algorithm; that is, it was modeled as homogeneous with
known flow and transport parameters. The authors are pretty satisfied with
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the results since the parameter uncertainty intervals are smaller than previous
estimates.

3.9 Artificial Neural Networks

It is not until 2004 that the first paper that explores the potential of machine
learning to identify a contaminant source appears. Singh et al. (2004) and
Singh and Datta (2004) publish two very similar papers to demonstrate the use
of artificial neural networks to estimate the parameters describing a contam-
ination event and the aquifer properties. Focusing on the joint identification
problem, the authors consider that aquifer and source can be characterized
with fourteen parameters: one for the isotropic conductivity, one for porosity,
two for dispersivity (longitudinal and transversal) and ten for the injection
strengths in five years at two locations (injections remain constant within the
year). The aquifer is two-dimensional and homogeneous in its parameters and
perfectly known in size and shape; the location of the two sources is also
known. Using a numerical code, the authors generate 8500 sets of values for
the fourteen parameters, which are used to predict concentrations at 40 time
intervals at four observation wells. From these sets, 4500 are chosen as training
sets and 4000 as testing ones. The authors consider different artificial neural
network architectures until they find the one that produces the smaller pre-
diction errors. They follow with a demonstration using data with observation
errors and conclude that these models could be used for source identification
with a warning: the artificial neural network would have to be retrained for a
different case study or if the aquifer system changes in any way.

3.10 Markov Chain Monte Carlo and Surrogate Models

The work by Zeng et al. (2012) marks a new development that goes beyond
an incremental contribution. The problem is cast in a probabilistic framework
aimed at computing the posterior probability of the parameters (location and
strength source) given the observations (concentration measurements) using a
Bayesian framework

p(m|d) = p(m)p(d|m)

p(d)
, (7)

where p(m|d) is the posterior pdf, p(m) is the prior pdf, p(d|m) is the like-
lihood, and p(d) can be regarded as a normalizing constant. Then, instead
of using the geostatistical approach to determine the posterior pdf, the au-
thors propose two novelties. One to use Markov chain Monte Carlo (McMC)
to sample the posterior distribution, and the other one to use a surrogate
model for the forward problem (1) (since McMC requires many evaluations
of the likelihood function, which, in turn, requires many runs of the for-
ward model). In particular, the McMC algorithm chosen is delayed rejection
combined with an adaptive Metropolis sampler as described by Haario et al.
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(2006). The surrogate model chosen is a sparse grid-based interpolation us-
ing the Smolyak algorithm (Wasilkowski and Wozniakowski 1995), which pro-
vides an estimate of the forward model by interpolating the forward model
values computed on a sparse grid in parameter space. Let N be the num-
ber of parameters in m, a grid of points is defined within the model domain
{mi1 ,mi2 , . . . ,min ; i1 = 1, . . . , Q1, i2 = 1, . . . , Q2, . . . , iN = 1, . . . , QN}, where
{Q1, Q2, . . . QN} are the number of points along each dimension. The forward
problem is evaluated at each of these points, and then the forward problem
is estimated at any point by interpolating these values using some predefined
basis functions

G(m) ≈
Q$

i=1

fmi
(m)G(mi) (8)

where Q is the number of surrounding points to use in the interpolation, and
fmi

(m) are the basis functions. How to select the number of points to use,
the grid on which they are defined, and the basis functions is discussed in the
paper.

The authors analyze two synthetic two-dimensional case studies, one with
five unknown parameters: location coordinates, beginning and ending times,
and source strength, and the other one with ten parameters representing the
source strength variability in time. Another difference between the two cases
used to test the surrogate model is that the first case uses a homogeneous
aquifer and the second one a heterogeneous one, although conductivities are
not subject to identification and therefore assumed known. Nevertheless, in
both cases, the algorithm can retrieve the parameters sought.

3.11 Network Design

Jha and Datta (2014) introduce a component of reality that had only be
treated in a very imprecise way by Hwang and Koerner (1983), and men-
tioned without any demonstration in the review by Amirabdollahian and Datta
(2013): that of designing the monitoring network to identify the source at the
lowest observation cost possible. Even though the aquifer was still modeled as
homogeneous and perfectly known, the authors propose a realistic situation
whereby there is not a network of observation locations already in place, but
rather, a contaminant is observed in a well during a period. Then, a network
of observations is deployed, maximizing the chances of detecting the source
locations and magnitudes correctly. The method proposed is a two-stage one;
in the first stage, once the contaminant has been monitored during a specific
time in the detection well, several potential source locations, which are con-
sistent with the observations, are identified in the aquifer. Then, with this
set of potential sources, a dense grid of potential observation locations is de-
signed out of which a small number of points are chosen as the observation
network. This network is defined to maximize the possible observed concentra-
tions coming from the potential source locations. Once the network has been
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defined, concentrations are collected in the newly designed network and used
as data to solve the source identification problem. This problem is solved by a
simulation-optimization approach in which the objective function (3) is writ-
ten in terms of a dynamic time warping distance, a distance that coincides
with the traditional Euclidean distance when two series of values spanning
the same length, with the same number of samples and without missing data
are compared. The authors demonstrate the effectiveness of optimal network
design for identifying a time-varying contaminant source in their synthetic
aquifer.

3.12 Ensemble Kalman Filter and Joint Identification of Source and
Hydraulic Conductivity

The ensemble Kalman filter (EnKF) (Evensen 2003) had been used for param-
eter identification in petroleum engineering and hydrogeology for some time
(Aanonsen et al. 2009; Chen and Zhang 2006; Li et al. 2011a, 2012; Xu et al.
2013a,b) but focusing on static parameters such as hydraulic conductivities.
The EnKF is an assimilation technique based on gathering observations in time
and updating the parameter estimates after each collection step. Comparison
of the forward model predictions and the observations allows the correction of
the estimates into a newly updated estimate for the next forward prediction.
However, when the parameter to be estimated is the location of a contaminant
source, an updated location cannot be incorporated into the model to predict
in time unless the forward model is restarted from time zero to account for the
updated location. This procedure is known as the restart EnKF (r-EnKF). Xu
and Gómez-Hernández (2016) demonstrated that the r-EnKF can be used for
source identification and went a step further (Xu and Gómez-Hernández 2018)
to prove that a channelized heterogeneous hydraulic conductivity spatial dis-
tribution could be jointly identified with the contaminant source parameters
(location, release time, and source strength).

At last, after many years, a true leap towards the applicability of con-
taminant source identification algorithms was done, since, for the first time,
a complex, realistic spatial distribution of hydraulic conductivity was not as-
sumed known and was subject of identification simultaneously with the source.
However, the rest of the parameters defining the aquifer, such as porosity, dis-
persivity, boundary conditions, and stresses were known.

3.13 Bayesian Model Selection

The paper by Cao et al. (2019) is the last paper that proposes a new paradigm
to address the problem of contaminant source identification. In most of the pa-
pers published before that use synthetic experiments, the reference data were
obtained adopting a specific model for the aquifer (whether deterministic or
probabilistic). Then the same model was used for the solution of the identifi-
cation problem. In a real situation, the uncertainties around the aquifer model
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are significant, and it is virtually impossible to claim that the aquifer system
known. Cao et al. (2019) adopt a probabilistic model to select among a set
of potential aquifer models using a Bayesian approach. The plausibility of the
approach will depend on the span covered by the alternative models proposed.
The authors demonstrate their proposal in two synthetic case studies. One
is a two-dimensional aquifer with a zoned spatial distribution for hydraulic
conductivity. The other is a three-dimensional experiment in a laboratory col-
umn made up of two sands arranged in two continuous blocks of very different
shapes and sizes. The different models considered are not so different after all;
in both case studies, the models only differ in the size and shape of the zones
used to describe the heterogeneity of the hydraulic conductivity, but the paper
marks a route of how to incorporate different descriptions of the aquifer sys-
tem and to identify jointly the model description and the source parameters
that best reproduce the observations.

4 But There Are More Papers

In the previous sections, the papers that marked a change in the line of re-
search towards the solution of contaminant source identification have been
discussed. However, there are more, all in all, 157 papers have been encoun-
tered, and they deserve a short analysis that will help place the whole research
field in perspective. Table 1 in the Supplementary Material lists the papers and
highlights their main contributions, while Table 2, also in the Supplementary
Material, uses the same paper numbering as Table 1 and includes some charac-
teristic features of the papers of interest. More precisely, Table 2 includes the
dimensionality of the problem, the type of source, whether the source is time
dependent or not (it is marked as time dependent if it is a continuous function
of time as in Fig. 3 or a step function that changes according to some stress
periods; it is marked as time independent if it is either a pulse or a continu-
ous injection), the type of solution algorithm used to solve the identification
problem, the state equation considered with indication of the code used to
solve it when available, the type of case study analyzed (it could be synthetic,
laboratory or field), the parameters describing the source being identified (the
most common parameters are the source locations and the release functions;
in some occasions, the locations are chosen out of a set of release candidates or
the strength of the source changes stepwise according to predefined stress peri-
ods), whether other parameters apart from the ones describing the source are
identified (some papers identify flow and transport parameters, too; although
in most of them these parameters are homogeneous or piecewise homogeneous
within the domain) and, finally, whether hydraulic conductivity was considered
as a heterogeneous parameter, and if heterogeneous, whether this heterogene-
ity was piecewise, that is, variable but homogeneous within well-defined zones,
and whether the heterogeneity was known or was subject of identification, too.

Analyzing these attributes for all the papers, we can see an evolution to-
wards applicability that looks more like the upper limb of a logistic curve
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reaching its asymptote rather than the exponential rise of the number of pa-
pers published.

Next, the different attributes will be discussed, stressing the potential ap-
plicability of the results to real problems.

4.1 Dimensionality

While the first papers presented applications in two-dimensional aquifers, there
is a substantial number of papers going on until today addressing the problem
in one dimension. Figure 4 shows the histograms of the papers classified by
their dimensionality. It is not until 1998, with the paper by Woodbury et al.
(1998) that the first three-dimensional analysis is published. The majority of
papers are for two-dimensional aquifers, and only in the last few years the
applications in three dimensions have increased.

From a practical point of view, solutions are needed in two or three dimen-
sions. The scale of the problem will mark the need to use a two-dimensional
model (regional flow) or a three-dimensional one (local flow).

4.2 Source

The problems addressed by the different authors can be classified as single
or multiple sources and as point, areal or volumetric sources. Some authors
assume that the source locations are known or that the source locations should
be chosen out of a set of possible locations; this situation could be plausible in
some occasions when the agent originating the contamination in the aquifer is
known; but, in many occasions, this is not the case, and the location must be
treated as an unknown to identify. The case of multiple locations where the
number and coordinates of the sources have to be jointly identified has not
been addressed; always that multiple sources are considered, there are some
potential source locations to choose from, transforming a difficult continuous-
mixed integer optimization problem into a not much simpler combinatorial
one.

The papers for which the type of source is identified as areal consider
the shape of the area to identify as known and only seek the release strength,
except for Ala and Domenico (1992), Mahinthakumar and Sayeed (2005), Hos-
seini et al. (2011), Ayvaz (2016) and Zhou and Tartakovsky (2021) who also
attempt to find the shape of the areal source. Only two of these consider an
unknown generic shape.

Of the papers addressing a volumetric source, all of them assume that
the shape is known, except for Mahinthakumar and Sayeed (2006), Mirghani
et al. (2009), Aghasi et al. (2013), Jin et al. (2014) and Yeh et al. (2016) who
also attempt to identify the shape of the source, most of them using a simple
prismatic parameterization.

From a practical point of view, it does not seem feasible (because of its
difficulty) to ask for a solution in which the sources are unknown in number,
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locations, and shapes, but some degree of lack of knowledge regarding these
three attributes will always be present, and methods should aim to address all
three of them in the most general way possible.

4.3 Time dependency

When the source varies in time, even if it is a single point at a known location,
the difficulty of the identification problem increases dramatically, unless the
variation is very simple and can be parameterized with a few unknowns (as is
the case of a rectangular pulse, or a train of pulses, that only needs the pulse
beginning and end times and the pulse concentrations).

A substantial number of papers consider that the source is either an instan-
taneous injection or a continuous one of constant intensity, in which case the
number of parameters to describe it is only two, the (initial) time of the release
and its concentration. Adopting this type of release means that there is a good
knowledge of what happened, as it could be the case of an illegal overnight
dump into an abandoned well or a continuous leakage out of a deposit. These
cases are labeled as not being time-dependent.

Another important number of papers assume that the concentration his-
tory varies stepwise in time according to several stress periods. The duration
of each stress period is known, and during each period, the concentration re-
mains constant. Unless the stress periods are considered relatively short in
time, the number of parameters to describe the time dependency is relatively
small; adopting this formulation also implies that there is essential knowledge
about the history of the release and the time periods during which the re-
lease remained constant. In Table 2, care has been taken to indicate when the
case study assumes that the source strengths are identified at specified stress
periods.

Finally, another group of papers attempts to identify an unknown continuous-
time function that describes the release. This group starts with the one-
dimensional case by Skaggs and Kabala (1994) for which the location was
known, and continuous with papers in higher dimensions and the simultane-
ous identification of the source location (Todaro et al. 2021).

4.4 Solution Approach

As already said in the section describing the landmark papers, there are three
main approaches to address contaminant source identification: The simulation-
optimization approach, the backward probability tracking approach, and the
probabilistic approach.

Most of the efforts in these forty years since the publishing of the first pa-
per have focused on solving the identification problem under the premise that
some concentration observations are available (in space and time), and there is
a need to find out the parameters that describe the originating contamination,
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with little consideration on trying to account for other uncertainties inherent
to groundwater flow and mass transport. Many refinements have been pro-
posed concerning the initial papers, with the latest papers making use of the
most sophisticated techniques regarding optimization by heuristic approaches,
machine learning to build surrogate models, and innovative applications of
Markov chain Monte Carlo.

It can be concluded that the identification problem is solved, provided
that there is a perfect knowledge of the underlying aquifer in which the con-
tamination has occurred. However, when uncertainties about the parameters
describing the aquifer are considered, no approach has been able to get close
enough to real conditions to grant its routine application to field cases.

4.5 State Equation

The state equation information included in Table 2 highlights whether flow and
transport were solved, or just transport assuming the flow velocity known; it
makes reference to the codes used to solve the state equation, when known;
and, in the most recent years, whether surrogate models have been used to
speed up the multiple evaluations of the forward problem needed by most of
the solution algorithms.

4.6 Case Study

Five papers have used laboratory data, 28 papers used field data, and 113
papers used synthetic data. Although the number of papers using field data
has increased in the last few years, the corpus of the subject is mainly based
on results using synthetic aquifers.

While synthetic aquifers are necessary to test new algorithms and tech-
niques, the subject should be mature enough to prove the latest development
in closer-to-field conditions. Besides, most of the papers using field data do
not use the most elaborated techniques at the time, but, generally, they make
rather simplistic approximations, weakening the contribution of the field case
demonstration.

There is a need for more research with field data. A task that on most
occasions is hindered by the difficulty to have access to data that can be
publicly shared, which may explain the relatively low number of field papers,
but that does not explain the even lower number of papers using laboratory
data.

4.7 Source Parameters being Identified

It is important to note that not all papers attempt to identify the source
location, many assume it is known, and many assume that it could be one of a
small set of candidates. The rest of the papers identify the source coordinates,
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either a point in space or a small set of parameters that identify an areal or
volumetric source.

The time distribution of the source strength was already discussed above.

The hardest problem is the simultaneous identification of the number and
the locations of multiple sources, and it has not been addressed by anyone yet.
Only a very recent paper considers the problem of identifying the location of
two sources (the number of sources is, therefore, known) and the parameters
describing them (Zhou and Tartakovsky 2021).

4.8 Other Parameters being Identified

In practical terms, the aquifer parameters are never known, and, therefore,
they should be subject to identification. Some authors consider that all pa-
rameters other than the source ones are known, without entering into any
consideration of whether this decision is meaningful or not; some authors ar-
gue that they work with previously calibrated aquifer models, not using the
additional concentration data to refine the aquifer model calibration further;
finally, a few of the authors do perform a simultaneous identification of source
and aquifer parameters.

When in Table 2 it is indicated that other parameters are identified, these
additional parameters are described in Table 1.

4.9 Hydraulic Conductivity Heterogeneity

Hydraulic conductivity heterogeneity is of paramount importance for the proper
prediction of contaminant transport (Capilla et al. 1999; Gómez-Hernández
and Wen 1994; Li et al. 2011b). For this reason, it is necessary to include
a realistic representation of conductivity if the techniques developed are to
be applied in practice. The papers have been classified as not accounting for
heterogeneity (N), accounting for heterogeneity using a zonation with con-
stant conductivities within each zone (Z), and accounting for heterogeneous
conductivity using a stochastic realization (Y).

However, using a heterogeneous conductivity is not enough to make the
analysis realistic. The conductivity field cannot be perfectly known, so an ad-
ditional set of papers is tagged as accounting for heterogeneity but not fully
knowing the hydraulic conductivity spatial distribution (YN). Of these papers,
the subset that, in addition, attempts to identify the unknown conductivity
field contains the ones closest to applicability. The number of papers meeting
these latter conditions, that is, that assume that conductivity is fully hetero-
geneous in space, unknown (except for a few sampling points) and subject to
identification, is only 11. The techniques described in these papers are the ones
closer to be applicable in field conditions.
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4.10 Additional Information

Figure 5 shows a word cloud with the last names of all authors signing the
papers. While some of the last names of the Chinese authors may correspond
to several people, it is clear that some authors have made an imprint in the
field, with Datta being the leader and the responsible that both India and
Australia are in third and fourth positions in the number of papers published
by country.

Figure 6 shows a histogram of the number of papers published by the coun-
try of the first author institution. The USA is the country that has produced
the largest number of papers overall, but if these numbers are broken by year
of publication, it is noticeable that China is the leader in the latest years.

5 Conclusions

The productivity in terms of the number of papers published in the subject has
grown exponentially in the forty years since the first work. Unfortunately, this
exponential growth in numbers does not go in parallel with similar growth
in added value. The field seems to be stalled with only minor incremental
advances towards a solution that can be applied with reasonable expectations
to field cases.

From a practical point of view, it seems unreasonable to attempt to solve
a source contamination identification without any prior knowledge about the
source itself. The optimal method should identify all parameters at once: the
number of contaminant events, their locations, their extent, and their time
history; but nobody has tried to do it, and probably nobody will try since it is
too complex a problem. Therefore, it must be admitted that some information
about the source is available, such as the number of sources, potential locations
of them, whether it is punctual or not, and if it is not punctual, some idea
about the shape or the duration of the contamination event.

At the same time, from a practical point of view, it seems unreasonable
to develop new techniques that do not incorporate the inherent uncertainties
involved in groundwater flow and mass transport modeling. Thus, whatever
technique that wishes to have a chance to be applied in practice has to incor-
porate the uncertainty on the parameters describing flow and transport and
other variables such as infiltration, pumping, or boundary conditions. Also,
these techniques should consider a proper data acquisition since many of the
papers assume dense networks of observations already existing before detecting
the contaminant.

There is still room for improvement and new papers on the subject, but
they should either propose a radically new approach to solving the problem or
recognize previous work’s limitations regarding its applicability and advance
towards it.
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Fig. 1 Histogram and cumulative histogram of the number of papers published in the
subject of contaminant source identification. Total number of papers is 157.
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Ph.D. by Gorelick

Optimization paper by Gorelick et al.

Backward solution by Bagtzoglou et al. 
Joint identification of hydraulic conductivty by Wagner 

Time-varying injection and Tikhonov regularization by Skaggs and Kabala 

Genetic algorithms by Aral and Guan
Bayesian geostatistics by Snodgrass and Kitanidis

McMC and surrogate models by Zeng et al. 

Artificial neural networks by Singh and Datta 

Ensemble Kalman filter by Xu and Gómez-Hernández

Bayesian model selection by Cao et al.
Joint estimation of heterogeneous field by Xu and Gómez-Hernández

Network design by Jha and Datta

Three-dimensional by Woodbury et al.

Minimum relative entropy by Woodbury and Ulrich
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Fig. 2 Timeline with the papers that marked a difference in the solution of the contaminant
source identification problem. The unlisted years are those without any published work. The
reddish years correspond to major breakthroughs and the orangish ones to minor ones.
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Fig. 3 Time varying pulse injection used by Skaggs and Kabala (1994) and repeatedly used
later as a benchmark problem.
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Fig. 5 Name cloud of all author’s last names signing the papers
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Fig. 6 Papers by country of first-author institution
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Supplementary Material

Table 1: Paper highlights

Reference Highlights
1 Gorelick (1981) The work that stated the problem and provided a solution. The

details of the work are the same as the ones in the next paper .
2 Gorelick et al.

(1983)
The first paper in the subject.

3 Hwang and
Koerner (1983)

It could have started the way for a different approach to solve the
problem using system sensitivity theory but failed to deliver two
other papers on a real case study and on a three-dimensional one.
The work also sketches a potential optimal network design.

4 Datta et al.
(1989)

Very similar approach to Gorelick’s, based on the use of response
functions and optimization with the aid of an expert system for
statistical pattern recognition.

5 Bagtzoglou et al.
(1991)

It uses a random walk solution of the transport equation backward
in time that can be interpreted as the source location probability.
The authors perform the analysis assuming that the conductivity
field is heterogeneous and that the covariance of the underlying
random function is known. In this first implementation, it is
necessary to know the time when the contaminant entered into the
aquifer.

6 Ala and
Domenico (1992)

The authors use a regression-like approach to fit observed
concentration data to analytically-derived solutions for the
transport equation. It is the first application to a field site, the Otis
Air Force Base near Cape Cod (USA). Assuming all parameters
homogeneous, the technique identifies the lateral extent of the
source area, its position, the starting time and the concentration at
the source, but also the parameters that control transport in the
aquifer, such as dispersivities, decay rate or biodegradation rate.

7 Bagtzoglou et al.
(1992)

Same concepts as in the previous paper by Bagtzoglou et al. (1991).

8 Wagner (1992) For the first time, the parameters defining the source location
(highly simplified to four unknowns corresponding to the mass
fluxes at two locations and two stress periods) together with the
parameters defining the aquifer model (all of them homogeneous in
space: two conductivities, longitudinal and transversal
dispersivities, porosity and lateral flux entering the aquifer) are
estimated simultaneously.

9 Skaggs and
Kabala (1994)

This is the first work that attempts to identify a time-dependent
release history from measurements taken downgradient.

10 Wilson and Liu
(1994)

The authors derived expressions for backward-in-time location and
travel time probabilities using a heuristic approach.

11 Macdonald (1995) The author proposes an approach for the location and strengths in
a hypothetical one-dimensional domain in which a temperature
pulse diffuses laterally. The impact of measurement errors is
analyzed, since for an idealized medium, if the observations are
error-free, the inversion is exact.

12 Skaggs and
Kabala (1995)

The plume is traced back in time from a given snapshot by solving
the diffusion equation with quasi-reversibility in a moving
coordinate system. The estimation of the originating plume, not too
far in time, from the observations is good, but it deteriorates when
it gets closer to the source.
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Reference Highlights
13 Aral and Guan

(1996)
Simulation-optimization paper in which the response function is
used to establish linear constraints for the optimization algorithm,
which is solved using a genetic algorithm.

14 Sonnenborg et al.
(1996)

Inverse modeling in the Vertskoven site (Denmark) containing a
waste residue deposit. The geometry of the site and the location of
the deposit are known, and the inversion focuses on identifying the
flow and transport parameters in a zoned-conductivity aquifer, one
of which is the contaminant concentration at the source.

15 Woodbury and
Ulrych (1996)

The problem of contaminant source identification shifts from a
deterministic inverse problem into a stochastic one.

16 Mahar and Datta
(1997)

A standard weighted least-squares optimization using the
embedding approach.

17 Snodgrass and
Kitanidis (1997)

First paper using a Bayesian approach to solve the problem of
source identification. Taking advantage of the response function
solution, the problem can be solved using the geostatistical
approach.

18 Sidauruk et al.
(1998)

Curve fitting by least-squares to analytical solutions. Parameters
fitted are location and strength of the source, but also the
dispersivity coefficient.

19 Skaggs and
Kabala (1998)

The authors perform an analysis of contaminant release function
identification using a Monte-Carlo approach to test how the
measurement errors hinder the optimization with Tikhonov
regularization.

20 Woodbury et al.
(1998)

First paper that addresses the problem in three dimensions.

21 Birchwood (1999) Breakthrough curves and release function are expressed as Fourier
series and a causality condition is imposed to determine the Fourier
coefficients of the release function .

22 Liu and Ball
(1999)

Using an analytical solution of the sorption-diffusion equation in a
two-layer system, the authors infer the time function at which PCE
has been crossing from an aquitard into an aquifer at the Dover Air
Force Base in Delaware, USA.

23 Neupauer and
Wilson (1999)

Improvement on the backward-in-time solution by Wilson and Liu
(1994) based on the use of the adjoint equation of the advection
dispersion equation.

24 Seibert and Stohl
(1999)

This paper deals with dispersion in the atmosphere but it addresses
the same problem: the identification of a pollution source and its
time history.

25 Alapati and
Kabala (2000)

The authors claim that there is no need to include a regularization
term in the least-squares optimization process.

26 Mahar and Datta
(2000)

Another simulation-optimization approach including a performance
analysis of what happens if the solute concentration time series
have missing data.

27 Morrison (2000) Review paper of forensic techniques for age dating and source
identification.

28 Neupauer et al.
(2000)

Tikhonov regularization is less efficient in reproducing a step release
function than minimum relative entropy.

29 Sciortino et al.
(2000)

Application of least-squares optimization to identify the size and
location of a pool of DNAPL being dissolved in a sandbox.

30 Aral et al. (2001) Introduction of a variant of genetic algorithm combined with an
iterative approach to reduce the number of forward model
evaluations typically needed by heuristic algorithms such as genetic
ones.



28 J. Jaime Gómez-Hernández, Teng Xu

Reference Highlights
31 Atmadja and

Bagtzoglou
(2001a)

The authors develop a new approach for the backward-in-time
solution of the transport equation. Once the observed plume has
been traced back in time, deducing the release function is a much
harder problem solved with relative success.

32 Atmadja and
Bagtzoglou
(2001b)

Very good review paper at the time it was written.

33 Duffy and
Brandes (2001)

In a contaminated site in the Midwestern US, 184 observations are
taken on 116 chemical species. Principal component analysis help in
reducing the dimensionality of the problem and identifying
potential sources.

34 Mahar and Datta
(2001)

Simultaneous estimation of homogeneous aquifer parameters
(conductivity, porosity and dispersivities) and source locations and
strengths.

35 Michalak and
Kitanidis (2002)

Application of the geostatistical approach to the analysis of 136
measurements taken at the Gloucester landfill in Ontario, Canada.
The forward model used is an analytical solution with homogeneous
coefficients in a semi-infinite layer of given thickness.

36 Sohn et al.
(2002a)

Bayesian approach to determine the room at which an air pollution
event started in a three-story building.

37 Sohn et al.
(2002b)

Similar to the previous paper applied to a synthetic single-story
building.

38 Akçelik et al.
(2003)

The authors use a variational finite-element method for source
inversion of convective-diffusive transport.

39 Butera and
Tanda (2003)

Extension of the geostatistical approach in two dimensions.
Demonstration for point, non-point and multiple sources, the
locations of which are known.

40 Bagtzoglou and
Atmadja (2003)

The paper focuses on heterogeneous conductivity distributions in
one dimension and shows that marching-jury works better that
quasi-reversibility for these cases.

41 Michalak and
Kitanidis (2003)

Application of the geostatistical approach enforcing parameter
non-negativity to a diffusion problem from a two-layer aquifer onto
an aquitard at the Dover Air Force Base in Delaware, USA.

42 Michalak and
Kitanidis (2004b)

Coupling the geostatistical approach and the adjoint state method
allows the identification of the spatial distribution of the
contaminant at a given instant back in time.

43 Michalak and
Kitanidis (2004a)

Application of the geostatistical approach for source contaminant
identification at the Dover Air Force Base in Delaware. The problem
solved is a diffusion one using two-layers overlaying an aquitard.

44 Singh and Datta
(2004)

After training an artificial neural network, homogeneous aquifer
parameters, such as conductivity, porosity and dispersivity, as well
as the source strengths at two given locations are identified.

45 Singh et al.
(2004)

Same approach as previous one.

46 Bagtzoglou and
Atmadja (2005)

Best review paper published until then.

47 Boano et al.
(2005)

Given the conceptual similarity between source contaminant
detection in aquifers and rivers, the geostatistical approach is used
to identify the release function by Skaggs and Kabala (1994) in a
river contamination event.

48 Mahinthakumar
and Sayeed (2005)

The authors perform a comparison of many optimization
approaches, concluding that the hybrid ones work best.

49 Mahinthakumar
and Sayeed (2006)

Similar to the previous paper, now with a three dimensional
parallelepiped source.
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Reference Highlights
50 Neupauer and Lin

(2006)
Extension of the work by Neupauer and Wilson (1999) but now
conditioning on measured concentrations. The aquifer is
heterogeneous but the transmissivity distribution is perfectly
known.

51 Newman et al.
(2006)

Laboratory experiment with a DNAPL source zone. The inverse
flux plane model coupled with a hybrid simulated
annealing-minimum relative entropy is used to identify the source
and also to quantify the uncertainty on the estimates.

52 Singh and Datta
(2006)

Same as Singh and Datta (2004) and Singh et al. (2004) but
different case studies.

53 Sun et al. (2006a) Model uncertainty is considered thanks to the use of constrained
robust least squares optimization.

54 Sun et al. (2006b) In this paper, in addition to the release function, the source location
is also identified.

55 Wang and
Zabaras (2006)

The hierarchical Bayesian method is used to reconstruct
contaminant history backward in time until the time of an
instantaneous release. The authors analyze several cases with
homogeneous conductivities and one with heterogeneous, but
known, uncorrelated values.

56 Liu and Zhai
(2007)

Although in the field of air pollution, the paper includes an
extensive review of groundwater literature plus a few references
from air pollution.

57 Milnes and
Perrochet (2007)

Backtracking a predicted concentration contour line until its point
of disappearance. The underlying conductivity field is binary and
heterogeneous.

58 Sun (2007) Conductivity is only known in some statistical sense, the robust
geostatistical method incorporates this uncertainty. The
conductivity field is not subject to identification, though.

59 Yeh et al. (2007) Tabu search is used to detect trial source locations, then simulated
annealing is used to identify strength and release period. In one of
the case studies, conductivity is considered heterogeneous and
unknown. Several realizations are generated to conclude that only
in 50% of them it was possible to identify the source. No attempt to
identify conductivities.

60 Sun (2008) CONSID, a program that implements nonnegative least squares,
constrained robust least squares and robust geostatistical inversion.

61 Datta et al.
(2009)

Simultaneous identification of aquifer and source parameters.
However, aquifer parameters are homogeneous except for a case in
which the aquifer is divided in two homogeneous known zones.

62 Dokou and
Pinder (2009)

A stochastic flow and transport model is used to generate multiple
realizations of the plume evolution. These realizations are averaged
to obtain mean plumes that are then used to decide on the
potential source location using an iterative approach.

63 Jin et al. (2009) An application at the Canadian Force Base Borden site, near
Toronto, of a simulation-optimization method to identify, with
reasonable accuracy, a contaminant source under field conditions. A
heterogeneous conductivity field that had been previously used
elsewhere is used here and assumed known.

64 Liu and Zhai
(2009)

Another application from a groundwater solution to the field of
indoor airborne contaminant source locations.

65 Mirghani et al.
(2009)

A simulation-optimization approach with emphasis in the
parallelization of the computations. A heterogeneous conductivity
field is used but it is assumed known.

66 Ayvaz (2010) A new heuristic approach comes into play. Conductivity is, at most,
zoned, but with known values. Source locations are known.
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Reference Highlights
67 Cheng and Jia

(2010)
Another extension of the adjoint method by Neupauer and Wilson
(1999), in this case, to a point contamination in an open-surface
water body.

68 Datta et al.
(2011)

The authors claim that gradient-based optimization approaches can
beat heuristic ones, which need too many evaluations of the forward
problem.

69 Hosseini et al.
(2011)

The paper focuses in determining the geometry of a DNAPL pool
using wells inside and outside the pool. In the process,
heterogeneous conductivity fields are calibrated, as well as other
homogeneous transport parameters.

70 Jha and Datta
(2011)

The authors claim that simulated annealing is better than genetic
algorithms for source identification.

71 Li and zhong Mao
(2011)

The novelty of the paper is the use of a new way to solve for
concentrations using the global space-time multiquadric.

72 Telci and Aral
(2011)

A paper dealing with identification of multiple instantaneous spills
in a river network from a large set of potential locations. It is
demonstrated in the Althamah river in Georgia, USA.

73 Chadalavada
et al. (2012)

The novelty of the paper is the use of feedback information obtained
from sequentially-designed monitoring networks. An application to
a contaminated farmland in South Australia is shown.

74 Zeng et al. (2012) First paper to use a surrogate model to speed up forward model
evaluation.

75 Aghasi et al.
(2013)

Multi-objective optimization combined with level set functions to
determine a DNAPL pool. Conductivity is heterogeneous and
known.

76 Amirabdollahian
and Datta (2014)

Good review paper.

77 Butera et al.
(2013)

For the first time, the geostatistical approach was applied to the
identification of the release function and the source location in a
known heterogeneous aquifer.

78 Jha and Datta
(2013)

Comparison between genetic algorithm and simulated annealing.

79 Wang and Jin
(2013)

A synthetic case based on the Borden site using a heterogeneous
known distribution of conductivities.

80 Amirabdollahian
and Datta (2014)

Another simulation-optimization approach. Conductivities are
interpolated from spare data using inverse-distance weighting.

81 Gzyl et al. (2014) A combination of integral pumping tests to identify the sources,
then the release history is recovered by the geostatistical approach.
The method is applied in a chemical plant at southern Poland in
the city of Jaworzno in the valley of the Wawolnic river that has
been contaminated with lindane. The aquifer model had been
calibrated with homogeneous parameters.

82 Jha and Datta
(2014)

Multi-step approach involving an intelligent network design.

83 Jin et al. (2014) The authors focus in determining the best monitoring network for
the purposes of source identification.

84 Srivastava and
Singh (2014)

An artificial neural network is trained by running many
contamination scenarios originating in one or two potential sources.

85 Yeh et al. (2014) Demonstration of a hybrid heuristic approach. The aquifer is
divided in three zones of known parameters.

86 Cupola et al.
(2015)

The minimum entropy approach works equally well for source
identification in two-dimensional homogeneous and heterogeneous
conductivity fields.

87 Gurarslan and
Karahan (2015)

Application of the differential evolution algorithm as the best
genetic algorithm for source identification.
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Reference Highlights
88 Jha and Datta

(2015)
Adaptive simulated annealing is used for contaminant source
identification including surface-subsurface water interaction. The
flow model had been previously calibrated with PEST using a zoned
conductivity. The method is applied to the upper Macquarie
Groundwater Management Area in New South Wales, Australia.

89 Ngamsritrakul
et al. (2015)

Simulation-optimization approach.

90 Prakash and
Datta (2015)

Application at the Macquarie Groundwater Management Area, the
authors claim that the feedback provided by the new monitoring
wells drilled as a result of the optimal network design improves the
final results.

91 Srivastava and
Singh (2015)

Simultaneous identification of aquifer and source parameters.
However, aquifer parameters are homogeneous.

92 Zhang et al.
(2015)

Coupling experimental design and source identification for the
optimal placement of observation wells. In the final case study, the
authors show a joint identification problem of heterogeneous
conductivities and source parameters. The conductivity field is
represented with only five parameters using a Karhunen-Loève
expansion.

93 Ayvaz (2016) Identification of a distributed source of arbitrary shape. The
conductivity is heterogeneous but known.

94 Bashi-Azghadi
et al. (2016)

Application to the Tehran aquifer in the Tehran refinery region.

95 Borah and
Bhattacharjya
(2016)

The paper includes a comparison of genetic algorithms and artificial
neural networks.

96 Hansen and
Vesselinov (2016)

Unsupervised machine optimization to evaluate the most likely
location and time of point contamination .

97 Koch and Nowak
(2016)

Conditional realizations of conductivity are generated and used to
build probabilistic estimates of DNAPL presence.

98 Xu and Gómez-
Hernández
(2016)

First application of the ensemble Kalman filter for the identification
of the space-time coordinates of a contaminant source.

99 Yeh et al. (2016) Application of simulated annealing to fit some analytical functions
to observed concentrations to reconstruct the release function of a
contaminant of known location.

100 Zanini and
Woodbury (2016)

Application of the method developed by Woodbury and Ferguson
(2006) for heat flow inversion to contaminant release function
identification.

101 Zhang et al.
(2016a)

Application of surrogate models to Markov chain Monte Carlo
implemented in a two-stage manner to improve the accuracy of the
surrogate model.

102 Zhang et al.
(2016b)

Backward tracking with a fractional advection-dispersion model
applied to the MADE-2 tracer tests.

103 Zhao et al. (2016) A kriging surrogate model is used to solve a simulation-optimization
problem with known source locations in a conductivity-zoned
aquifer.

104 Gu et al. (2017) Many realizations of conductivity are generated and plumes are
computed from potential sources. These plumes are weighted to
approximate the observed values. From these weights the most
likely source location and strength are determined.

105 Hamdi (2017) Self-organized maps are used to build the surrogate models. In one
of the applications, conductivity is only known at a few locations
and it is interpolated by inverse distance weighting over the rest of
aquifer.
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Reference Highlights
106 Long et al. (2017) A standard application of the geostatistical approach including a

thorough sensitivity analysis to different kinds of errors.
107 Onyari and

Taigbenu (2017)
Use of the Green element method.

108 Rajeev Gandhi
et al. (2017)

Application to the identification of the source of a virus in a
three-dimensional unconfined aquifer.

109 Zhang et al.
(2017)

Application at the MADE-2 site of backward probabilities
computed using a fractional advection dispersion equation.

110 Chen et al. (2018) Application of the ensemble Kalman filter to identify a source but
also the position and length of a plank that was inserted in a
laboratory sandbox.

111 Esfahani and
Datta (2018)

Adaptive simulated annealing for the identification of source
concentrations in a contaminated mine site in Queensland,
Australia.

112 Guneshwor et al.
(2018)

Application to an industrial site in Gujarat, India. Model is
homogeneous and known.

113 Hou and Lu
(2018)

A comparison of support vector regression, kernel extreme learning
machine and kriging for multiphase flow .

114 Huang et al.
(2018)

Very simplistic model to test a new optimization algorithm: the
shuffled complex evolution algorithm.

115 Jiang et al. (2018) A concentration field library is constructed and used as a surrogate
during the identification. Conductivities are heterogeneous but
known.

116 Stanev et al.
(2018)

Application of blind source separation to identify the number of
sources. The authors also identify key parameters such as advective
velocity and dispersivity, although they are homogeneous.

117 Vesselinov et al.
(2018)

Non-negative matrix factorization is applied to synthetic and real
data to identify the original source from a series of observations
that include different geochemical constituents. Unsupervised
machine learning is used. Application at the regional aquifer
beneath Los Alamos National Laboratory.

118 Xu and Gómez-
Hernández
(2018)

First attempt to identify jointly contaminant source and
conductivity field without simplifications.

119 Amirabdollahian
et al. (2019)

The authors apply the adaptive simulated annealing to the
Eastlakes Experimental Site at the Botany Sands aquifer, South
Wales, Australia.

120 Ayub et al. (2019) After presenting a groundwater model of the Duplin county
research site in North Carolina, the authors build a synthetic
exercise based on this model to demonstrate their application of
Markov chain Monte Carlo for the sampling of the posterior
distribution of source contaminant concentrations.

121 Cao et al. (2019) First attempt to bring model uncertainty into play. Although the
alternative models analyzed only differ on the geometry of the
zonation of the conductivity spatial distribution.

122 Jiao et al. (2019) A heterogeneous aquifer of known conductivities based on the Texas
High Plain is used to test a new inverse method based on local
approximation solutions of the transport equation.

123 Li et al. (2019) Improved Kalman filter coupled with 0-1 mixed-integer nonlinear
programming and simulated annealing.

124 Mo et al. (2019) Joint identification of a heterogeneous conductivity field and the
contaminant source parameters. Unfortunately, the authors use a
Gaussian covariance function to characterize the spatial
heterogeneity of the log-conductivities, which is completely
unrealistic but helps in the inversion process.
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Reference Highlights
125 Vesselinov et al.

(2019)
Continuation of paper by Vesselinov et al. (2018) to further analyze
the use of blind source separation coupled with non-negative matrix
factorization applied at the Los Alamos Laboratories
chromium-contaminated site.

126 Xia et al. (2019a) Another simulation-optimization approach using genetic algorithms.
127 Xia et al. (2019b) The self-organized map-based surrogate model can solve the

identification problem without using a simulation-optimization
approach.

128 Xing et al. (2019) Ensemble of three surrogate models in which each model is weighted
according to an adaptive Metropolis-Markov chain Monte Carlo.

129 Yan et al. (2019) Bayesian approach with a very efficient kriging surrogate model.
130 Zhang et al.

(2019)
Bayesian approach coupled with Markov chain Monte Carlo using
an improved Metropolis-Hastings algorithm.

131 Chaubey and
Srivastava (2020)

Artificial neural networks in one dimension.

132 Colombo et al.
(2020)

Interesting application of backward tracking to identify potential
PCE sources in Milan, Italy.

133 Essouayed et al.
(2020)

Gaussian-Levenberg-Marquardt algorithm using pilot points to
identify a heterogeneous conductivity field, homogeneous
dispersivity and the source location.

134 Han et al. (2020) Genetic algorithm applied to a laboratory experiment and then to a
gas station in Beijing .

135 Jamshidi et al.
(2020)

Simulation-optimization approach in a groundwater-river integrated
system.

136 Kang et al. (2020) Joint inversion of hydraulic heads and self-potential measurements
to improve conductivity estimation, followed by the inversion of
tracer mean travel times to identify the source.

137 Li et al. (2020) Use of several surrogate models with extreme learning machine.
138 Lu et al. (2020) Heuristic search to determine the coordinates of the source and the

strength of the release together with the discrete values of a zoned
conductivity, and homogeneous porosity and dispersivities.

139 Wang et al.
(2020)

Extremely similar to the previous one.

140 Wang and Lu
(2020)

Extremely similar to the two previous ones.

141 Zhang et al.
(2020)

Very ingenious combination of the ensemble smoother and deep
learning for the joint identification of source parameters and
non-Gaussian heterogeneous conductivity distributions.

142 Zhao et al.
(2020b)

Identification of the contaminant source by the interpretation of
concentration time series after an artificially enhanced catchment is
generated. Application to a low natural flow velocity in the city of
Cangzhou, China.

143 Zhao et al.
(2020a)

Application in the valley of the Wawolnica river to identify the
source of lindane.

144 Ayaz (2021) Artificial neural network application.
145 Ayaz et al. (2021) Genetic algorithm application.
146 Chakraborty and

Prakash (2021)
Evolutionary search algorithm application.

147 Dodangeh et al.
(2021)

Contaminant source identification in a coastal aquifer using the
ensemble Kalman filter and artificial neural networks.

148 He et al. (2021) Fitting an analytical solution to observed concentration by
least-squares. Application to a gas station site in Beijing .

149 Hou et al. (2021) Comparison of several heuristic algorithms.
150 Jiang et al. (2021) Simultaneous identification of hydraulic conductivity using pilot

points and source strengths for two known contaminant sources.
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Reference Highlights
151 Liu et al. (2021) Application of the ensemble smoother to identify source and

conductivities. Conductivity fields are built using multipoint
geostatistics conditioned at some pilot points that are subject to
identification by the ensemble smoother

152 Todaro et al.
(2021)

Ensemble smoother applied to a calibrated model of a laboratory
experiment

153 Wang et al.
(2021a)

Multiphase flow case with joint identification of source strengths
and aquifer parameters, although the later are homogeneous within
the aquifer. A surrogate model based on an adaptive chaotic
particle swarm optimization and extreme learning machine is used.

154 Wang and Zhang
(2021)

A case of contamination source detection in a lake where the state
equation is the diffusion equation.

155 Wang et al.
(2021b)

Combination of heuristic approaches to solve the joint identification
of the source strengths plus zone conductivity values

156 Yuan and Liang
(2021)

One-dimensional exercise.

157 Zhou and
Tartakovsky
(2021)

The source is instantaneous and described by two Gaussian pulses,
the parameters to identify are those that define the Gaussian bells.
The posterior distribution is sampled using Markov chain Monte
Carlo using a fast surrogate model based on deep convolutional
networks. Conductivity is treated as heterogeneous but known.
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