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Abstract In the mid-1980s, still in his young 40s, André Journel was already
recognized as one of the giants of geostatistics. Many of the contributions from
his new research program at Stanford University had centered around the indi-
cator methods that he developed: indicator kriging (IK) and multiple indicator
kriging (MIK). But when his second crop of graduate students arrived at Stan-
ford, indicator methods still lacked an approach to conditional simulation that
was not tainted by what André called the ‘Gaussian disease’; early indicator
simulations went through the tortuous path of converting all indicators to
Gaussian variables, running a turning bands simulation, and truncating the
resulting multi-Gaussian realizations. When he conceived of sequential indica-
tor simulation (SIS), even André likely did not recognize the generality of an
approach to simulation that tackled the simulation task one step at a time.
The early enthusiasm for SIS was its ability, in its multiple-indicator form,
to cure the Gaussian disease and to build realizations in which spatial conti-
nuity did not deteriorate in the extreme values. Much of Stanford’s work in
the 1980s focused on petroleum geostatistics, where extreme values (the high-
permeability fracture zones and the low-permeability shale barriers) have much
stronger anisotropy, and much longer ranges of correlation in the maximum
continuity direction, than mid-range values. With multi-Gaussian simulations
necessarily imparting weaker continuity to the extremes, SIS was an important
breakthrough. The generality of the sequential approach was soon recognized,
first through its analogy with multi-variate unconditional simulation achieved
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using the lower triangular matrix of an LU decomposition of the covariance
matrix as the multiplier of random normal deviates. Modifying LU simula-
tion so that it became conditional gave rise to sequential Gaussian simulation
(SGS), an algorithm that shared much in common with SIS. With nagging
implementation details like the sequential path and the search neighborhood
being common to both methods, improvements in either SIS or SGS often be-
came improvements to the other. Almost half of the contributors to this Special
Issue became students of André in the classes of 1984-1988, and several are the
pioneers of SIS and SGS. Others who studied later with André, explored and
developed the first multipoint statistics (MPS) simulation procedures, which
are based on the same concept that underlies sequential simulation. Among
his many significant intellectual accomplishments, one of the cornerstones of
André Journel’s legacy was sequential simulation, built one step at a time.

Keywords random functions · large grids · stochastic processes

1 Introduction

This paper presents a review of the evolution of conditional stochastic simu-
lation of random fields, from the early works by Journel (1974) until the most
recent multiple-point and pattern-based simulations, with sequential simula-
tion acting as the conductor. After its introduction in the late 80s of the past
century, sequential simulation has become the cornerstone of many or most of
the simulation algorithms of today. This paper, as the rest of the papers in this
issue, is a tribute to André Journel and his ingenuity and it is largely biased
towards geostatistics. It happens that the two co-authors were classmates and
wrote the first code of sequential indicator simulation that was made publicly
available under the clear understanding by André of the importance of pub-
lic domain code for its widespread use and the advancement of research and
development.

2 Before

Before simulation, there was estimation, and kriging is the paradigmatic esti-
mation method in geostatistics.

Consider a random function {Z(u),u ∈ D}, characterized by all the n-
variate distribution functions for any n-tuple of points within D

F (Z(u1), Z(u2), . . . , Z(un)), ∀n|(u1,u2, . . . ,un) ∈ D. (1)

This definition is the classical one, but a random function can also be defined
as the rule that assigns a realization z(u, θ) to the outcome θ of an experiment

Z(u) ∼ {z(u, θ)}, ∀θ ∈ S,u ∈ D. (2)



One Step at a Time 3

The interest of this definition is that the random function can be seen as
a collection of realizations, and the n-variate distribution functions for any
n-tuple of points within D could be obtained from these realizations.

With the concept of a random function as a collection of realizations, it
is simple to distinguish an unconditional random function (the one given by
Eq. (1) or (2)) from a random function conditional to a set of no observations
{z(u1), z(u2), . . . , z(uno); (u1,u2, . . . ,uno) ∈ D}. The latter is made up by
the subset of outcomes of the experiment θ ∈ S, that is, by the subset of
realizations in Eq. (2) that match observed values at observation locations,
and it will be represented by {Z(u)|(no),u ∈ D}.

A conditional estimate, z∗(u), can be obtained, for instance, as the ex-
pected value of all the conditional realizations

z∗(u) = E{Z(u)|(no)}. (3)

This is what kriging does, after imposing certain conditions to the random
function such as stationarity of second order. But kriging, which has proven
quite valuable in mining, is a locally optimal estimate (Journel, 1989); each
estimated value is the best estimate (in a least-squares sense) of the vari-
able at a location given the conditioning data, but when considered pairwise,
or in groups of three or more, the optimality is lost, and kriging maps are
characterized by a variance much smaller than that of the underlying random
function, and also a smooth spatial variability that cannot be observed in any
of the realizations. For these reasons, an estimated map should never be used
to evaluate the state of a system for which the short scale variability is of
paramount importance, such as is the case for the transport of a solute in an
aquifer, where the short scale variability of hydraulic conductivity will deter-
mine the movement of the solute plume in the aquifer and will never match
the movement of the plume in a smooth estimated map (Gómez-Hernández
and Wen, 1994). In these cases, there is a need to evaluate the system perfor-
mance on the conditional realizations, and then, from the outcomes computed
on these realizations, retrieve an estimate (as the expected value, for instance).
The travel time for a solute to go from A to B estimated in an aquifer with
conductivities obtained by kriging will be a very poor estimate of the actual
travel time, which would be better estimated by taking the average of the
travel times computed on each one of the conditional realizations.

The question is then how to generate realizations from the random func-
tion.

2.1 Unconditional realizations

The generation of unconditional realizations was addressed as early as Matérn
(1960); but, until the spread of numerical computation, it went unnoticed.
Three main approaches could be mentioned for the generation of unconditional
realizations before the advent of sequential simulation: spectral methods, ma-
trix factorization and turning bands.
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The spectral methods, lead by the work by Shinozuka and Jan (1972),
are based on the spectral decomposition of the covariance matrix. Once the
spectrum is known, finite ranges of frequencies along each dimension are deter-
mined containing as close as possible to 100% of the energy, then a realization
of the random field is generated according to the expression

z(u) =
√
2

N1

k1=1

· · ·
Nd

kd=1

A(ωk) cos(ω
′
k · u+ φk), (4)

where, d is the space dimension, N1, . . . , Nd are the number of frequency incre-
ments in which each axis is discretized, k = {k1, . . . , kd}, φk is an independent
phase randomly distributed between 0 and 2π, ω′

k = ωk + δω, with δω being
a small perturbation to avoid periodicity, and

A(ωk) = (S0(ωk)∆ω1 . . .∆ωd)
1
2 , (5)

where S0 is the spectrum, and ∆ω1 . . .∆ωd are the increments in which the
frequency axes have been discretized.

Of the matrix factorization methods, the best known is the Cholesky de-
composition of the covariance matrix (Davis, 1987), whereby any self-adjoint
positive definite matrix can be decomposed into the product of a lower trian-
gular matrix by its transpose, C = L · LT . When the matrix C represents the
covariances of any pair of points on a given set, then it can be shown that

z(u) = L · φ (6)

results in a realization of the random function with covariance C, where φ is
a vector of random uncorrelated values drawn from a distribution with zero
mean and variance of one.

The turning bands method, introduced by Matheron (1973) and described
in Journel and Huijbregts (1978) uses a clever idea that made it, at the time,
the only one capable of generating realizations over very large domains in two
and three dimensions. In the turning bands method, the multidimensional sim-
ulation is replaced by a (small) number of one-dimensional simulations along
lines oriented in different directions. The orientation of the lines is chosen
trying to keep a homogeneous density in the circle or in the sphere. The simu-
lated values are obtained by projecting each point u onto the lines and linearly
combining the values from the lines. A realization is obtained as

z(u) =
1√
N

N

k=1

z1,k(〈u, θk〉), (7)

where N is the number of lines, z1,k is a one-dimensional realization along line
k that has been generated with a covariance that is derived from the covariance
of the random function, and 〈u, θk〉 represents the projection of vector u onto
line k.
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2.2 Conditional realizations

Unconditional realizations are attractive for theoretical studies, but the practi-
tioner needs realizations that honor the data at data locations. The generation
of conditional realizations was introduced by Journel (1974) using an indirect
approach that combines unconditional simulations and kriging. It can be shown
that the deviations of a conditional realization from the map obtained by krig-
ing are independent of the values at data locations. This property permits the
computation of these deviations from an arbitrary unconditional realization
simply by kriging the values from the same locations at which the data are
sampled. Then, the deviations on the unconditional realization are added to
the kriging map obtained with the observed data. The procedure to generate
a conditional realization can be summarized with the following algorithm:

1. Generate an unconditional realization zunc(u),
2. Sample the unconditional realization at data locations and, with the sample

values as data, perform kriging z∗unc(u),
3. Subtract both fields to obtain the residual field r(u) = zunc(u)− z∗unc(u),
4. Perform kriging with the observed values z∗(u),
5. Add the residual field to the kriging map, z(u) = z∗(u) + r(u).

As an alternative approach to conditioning, the matrix factorization method
was extended by Davis (1987) and Alabert (1987) for the generation of con-
ditional realizations using a smart partitioning of the covariance matrix. Con-
sider a point set split into two subsets, subset 1 contains all points where data
are located, and subset 2 all points where the conditional realization has to be
generated. Davis (1987) proves that

z(u2) = L21L
−1
11 z(u1) + L22φ (8)

results in a conditional realization, where u1 are the points where data were
observed, u2 are the points where the realization is generated, φ is a vector
of random uncorrelated values drawn from a distribution with zero mean and
variance one, and L11, L21 and L22 are the submatrices partitioning the lower
triangular matrix of the covariance factorization

C =


C11 C12

C21 C22


=


L11 0
L21 L22

 
LT
11 LT

21

0 LT
22


(9)

where the first rows and columns are associated to point subset 1 and the last
rows and columns to the point subset 2.

3 Sequential simulation

In the 1980s, while the new framework of indicator geostatistics (Journel, 1983)
was taking shape, the interest in generating realizations from a random func-
tion built on the idea of transforming a continuous variable into a collection
of indicator variables developed. The indicator formalism is quite simple, any
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random function {Z(u),u ∈ D} can be transformed into a set of K indicator
random functions, {Ik(u), k = 1, . . . ,K} corresponding to K thresholds zk
according to the following expression

Ik(u) =


1, if Z(u) ≤ zk
0, otherwise

(10)

Drawing a realization z(u) would be equivalent to drawing K realizations
{ik(u), k = 1, . . . ,K} and transforming them into z(u).

The issue of how to generate a realization from an indicator random func-
tion was solved by Journel and Isaaks (1984), who use the truncation of a
Gaussian realization to generate the indicator realization. In their paper, they
explain how to choose the truncation value zk, and how to determine the co-
variance function of the Gaussian random function that will yield the desired
covariance for the indicator realization. They also describe the conditioning
process, which is based on the technique described by Journel (1974) and
recapped at the beginning of subsection 2.2.

But the extension of Journel and Isaaks (1984) approach to generate mul-
tiple indicator realizations and then transform them into a realization z(u)
never took place. There was a fundamental need to devise a new conditional
simulation algorithm that could overcome the problems of the existing ones,
namely,

1. The difficulty of generating very large conditional realizations,
2. The difficulty of generating non-Gaussian realizations.

Of all the unconditional methods described above, only the turning bands
method coupled with the conditioning approach by Journel (1974) could gen-
erate very large conditional realizations; the problem with this method is that
it needed many bands to produce realizations that did not display artificial
continuities in the directions of the lines on which the one-dimensional ran-
dom functions are generated, and that the linear combination of random values
from many lines necessarily results in realizations of a multivariate Gaussian
random function.

It was in the Fall of 1988 during one of the Topics in Advance Geostatistics
classes at Stanford University when André presented the seminal idea of indi-
cator sequential simulation, a revolutionary concept in stochastic simulation
that would allow the generation of very large conditional realizations of non-
Gaussian random functions. We were a handful of students in the class, one
of them was Mohan Srivastava, who, over the next weekend, wrote a proto-
type in FORTRAN of the simulation algorithm. The following week, he made
a presentation of the problems he found for the implementation and showed
some of the first successful realizations; then, Jaime Gómez-Hernández picked
it up from there to write an ANSI-C code, ISIM3D, who was eventually pub-
lished (Gómez-Hernández and Srivastava, 1990) and became the first publicly
available sequential simulation code. The sequential simulation algorithm was
born to address the problem of generating conditional realizations of indicator-
based random functions, but it will quickly be evident that it could be used



One Step at a Time 7

for the generation of realizations of many other random functions, including
the multiGaussian one.

The idea behind sequential simulation is quite simple: any multidimen-
sional random function distribution can be rewritten as the product of uni-
variate distributions by recursively applying the definition of conditional prob-
ability. Indeed, Eq. (1) can be rewritten as

F (Z(u1), Z(u2), . . . , Z(un)) = F (Z(u1)) ·
F (Z(u2)|Z(u1)) ·
F (Z(u3)|Z(u1), Z(u2)) · · ·
F (Z(un)|Z(u1), . . . , Z(un−1)), (11)

where each component is the conditional distribution of a random variable
given all the random variables that appear before in the product. The problem
of drawing a realization from the multivariate distribution (1) is replaced by
the problem of drawing n values from univariate conditional distributions. This
transformation was already proposed by Rosenblatt (1952) and mentioned by
Johnson (1987). The extension to generate realizations conditional to a set of
(no) data is trivial

F (Z(u1), Z(u2), . . . , Z(un)|(no)) = F (Z(u1)|(no)) ·
F (Z(u2)|(no), Z(u1)) ·
F (Z(u3)|(no), Z(u1), Z(u2)) · · · (12)

F (Z(un)|(no), Z(u1), . . . , Z(un−1)),

there is only a need to replace the previous conditional distributions by dis-
tributions that are also conditional to the data.

The sequential simulation algorithm for the generation of a realization of a
random function over a point set of size N conditional to no observation data
would be as follows

1. Define a permutation of the numbers 1 to N that will identify the sequence
in which the conditional univariate distributions will be built,

2. Sequentially visit all nodes according to the previous ordering and compute,
at each node i, the conditional distribution of variable Z(ui) given the (no)
data and all previously simulated random variables {Z(u1) = z1, Z(u2) =
z2, . . . , Z(ui−1) = zi−1}

F (Z(ui)|(no), Z(u1) = z1, Z(u2) = z2, . . . , Z(ui−1) = zi−1)),

3. Draw a value zi from this distribution and incorporate it to the conditioning
data set for the simulation of the next node,

4. Go back to step 2 until all nodes have been simulated.

The algorithm is ready to implement if there is a way to compute the condi-
tional distribution of any of the random variables Z(ui) given any number of
conditioning random variables.
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The reason why sequential simulation was first developed for the simulation
of realizations from indicator-based random functions is because the introduc-
tion of non-parametric geostatistics (Journel, 1982, 1983) was aimed, precisely,
at the computation of the conditional distribution of a random variable given
a number of data using a non-parametric indicator-based approach. Later, it
was realized that sequential simulation could be extended to the simulation
of multiGaussian random functions, since the univariate conditional distribu-
tions, in this case, are Gaussian with mean and variance given by the solution
of a set of normal equations (Anderson, 1984).

3.1 Implementation issues

While the theory was simple and the core of the algorithm was straightforward,
some implementation issues had to be addressed.

3.1.1 Size of conditioning data set

Whether an indicator-based random function or a multiGaussian was chosen,
the calculation of the conditional distributions required the solution of a set
of kriging equations: indicator kriging for the non-Gaussian random function
and simple kriging for the Gaussian one. The kriging system has as many
equations as number of conditioning data. Therefore, it seems impossible to
strictly apply the decomposition (12) when n is large. The size of the kriging
systems must be limited to a maximum value for the algorithm to be practical
for the generation of realizations over hundreds of thousands or millions of
points.

Following a criterion similar to the standard implementation of kriging,
the system of equations is limited to the closest conditioning values within a
search neighborhood up to a predetermined maximum number.

All conditional distributions in (12) are approximated as

F (Z(ui)|(no), Z(u1) = z1, Z(u2) = z2, . . . , Z(ui−1) = zi−1)) ≈
F (Z(ui)|Z(v1) = z1, Z(v2) = z2, . . . , Z(vnmax) = znmax)), (13)

where {v1,v2, . . . ,vnmax} is a location subset selected out of the set of loca-
tions made up by the no conditioning data and the i− 1 previously simulated
points that are within the search neighborhood centered at the location for
which the conditional distribution is being estimated.

3.1.2 Random path

Once the decision of limiting the number of conditioning points is taken, the
decomposition of the multivariate random function is no longer exact. This
approximation raises the concern of whether the order in which the nodes
are visited has an adverse effect on important spatial statistical properties of
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the realizations. In the first implementations, a random path was used, and
this is the common approach used in most codes. The way to generate such a
random path is not trivial, the first approach proposed by Gómez-Hernández
and Srivastava (1990) was to use a congruential generator (Bratley et al., 1983)
to produce all numbers between 1 and a sufficiently large power of 2 to cover all
nodes. The problem with this approach is that subsequent realizations always
use exactly the same path changing only the starting point. A better approach
is to generate a random permutation of all integers between 1 and N , what
can be achieved with N random swaps in an ordered sequence (Durstenfeld,
1964).

The decision to implement a random path was motivated largely by the
observation of artificial stripes in the realizations when the sequence moved
from one node to an adjacent neighbour, along the rows or columns of the
grid. While immediately obvious, and usually undesirable, this was an artifact
that cannot be identified or corrected solely through two-point statistics; it
is a higher-order artifact in a simulation procedure governed by two-point
statistics.

Liu and Journel (2004) studied the possibility of using a structured path
to facilitate the reproduction of very large correlation ranges, and recently,
Nussbaumer et al. (2018) have analyzed exhaustively the impact of path choice
concluding that the traditionally-used random path generates realizations with
small biases regarding the underlying covariance functions.

3.1.3 Computational speed

With the need to solve N kriging equations, it was clear that the covariance
function had to be evaluated numerous times. A way to speed the computa-
tion time was to precalculate, and store in a lookup table, all of the covariance
values that would repeatedly be required during the simulation process. These
covariance functions can be precomputed easily when the realization is per-
formed on a regular grid and all the available conditioning data are assigned
to the nearest grid node.

These and a few other implementation issues along with verification tests
can be found in Gómez-Hernández and Cassiraga (1994); Gómez-Hernández
and Journel (1993); Journel (1989) or Deutsch and Journel (1992).

4 After

The concept of sequential simulation was so simple and so potent that it
quickly became the workhorse for the generation of realizations from many
different types of random functions.
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4.1 Sequential Gaussian simulation

After the first applications of indicator conditional simulations (Gómez-Hernández,
1989; Journel and Gómez-Hernández, 1993), it became evident that the algo-
rithm could be implemented for the multivariate simulation of multiGaussian
random functions (Deutsch and Journel, 1992; Gómez-Hernández and Journel,
1993; Verly, 1993). As already mentioned, the univariate conditional distribu-
tions associated to a multiGaussian distribution are always Gaussian, the mean
and the variance of which are obtained by the solution of a set of simple kriging
equations (Journel, 1989) built with the conditioning variables. In the case of
a multivariate simulation, the conditional distribution remains Gaussian and
its mean and variance result from the solution of a set of cokriging equations
(Gómez-Hernández and Journel, 1993).

4.2 Transition probabilities

An alternative implementation to the indicator sequential simulation was pre-
sented by Carle and Fogg (1996) and developed into a computer code by
Carle (1999). They work with transition probabilities instead of indicator var-
iograms, aware that they contain the same statistical information but are easier
to interpret when looking at the spatial distribution of facies. In addition, the
implementation of the full cokriging equations whereby, each indicator vari-
able is estimated not only using the indicator data for the given threshold, but
also for the indicator variables for all other thresholds, was easier to perform.
The concept of sequential simulation remains the same, it only changes the
way the conditional distributions in Eq. (12) are obtained.

4.3 Direct sequential simulation

Sequential Gaussian simulation would generate realizations with a given mean
and a given covariance. In theory, both the mean and the covariance could
be non-stationary, but they must be known and seldom this possibility is
considered. The realizations generated with this algorithm will have all the
Gaussian features associated to a multiGaussian distribution, in particular,
all univariate distributions will be normal. When the starting data set has
clearly a non-Gaussian histogram, it does not seem appropriate to use a Gaus-
sian simulation algorithm since the histogram of the final realizations will be
normal rather than non-Gaussian. To circumvent this problem, there exists
the possibility of transforming the original data into their normal scores (that
is, each value becomes the score of a standard Gaussian distribution with the
same cumulative probability), computing the covariance of the normal scores,
performing a Gaussian simulation in normal-score space, and then transform-
ing back the results to the original space. The final realizations would have
univariate distributions conforming with the non-Gaussian histogram of the
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data. But, the covariance deduced from the realizations would not necessarily
coincide with the one deduced from the data; since the covariance that was
used for the simulations was that of the normal scores.

The question that arose was, could sequential simulation still be used to
generate realizations with a given covariance and a given histogram different
from a Gaussian bell? The response came with the finding by Journel (1994)
that in order to reproduce a given covariance, the conditional distributions
in Eq. (12) need not be Gaussian, any univariate distribution with mean and
variance given by the solution of the simple kriging equations would yield
realizations with the desired covariance. This was a surprising claim to the
many who believed, incorrectly, that simple kriging requires normality; it was
Journel who pointed out that the second-order properties of the distribution
defined by the simple krging mean and variance are correct regardless of the
univariate distribution of the data values. All that the assumption of normality
achieves is an easy and convenient specification of the entire distribution from
its first and second order moments. Journel suggested that by smartly select-
ing the shape of the conditional distribution, the desired histogram could be
obtained without sacrificing the reproduction of the target covariance. Later,
Nowak and Srivastava (1997) demonstrated its application in a mining con-
text, Soares (2001) presented direct sequential co-simulation, and Oz et al.
(2003) wrote a software code in FORTRAN.

With direct sequential simulation it is possible to generate realizations with
a given covariance and a given histogram, without the need of any forward and
back transforms to and from normal space.

4.4 Faster sequential simulation

By approximating the conditional distribution of Eq. (12) by Eq. (13), sequen-
tial simulation turned out to be a fast algorithm capable of generating multiple
realizations over very large domains. Dimitrakopoulos and Luo (2004) report
the number of floating-point operations needed to generate a realization over
N points when using an approximation to the conditional distribution using
only the closest nmax conditioning points to be in the order of O(Nn3

max), a
very substantial reduction from the O(N4) needed if the exact equation would
be used. Yet, Dimitrakopoulos and Luo (2004) claimed that further speed im-
provements could be achieved by embedding the matrix factorization approach
by Davis (1987) into the simulation process. Their main idea is to generate
the realizations, not one point at a time, but by groups of nearby points that
would be conditioned to the same subset of conditioning data. Each simulation
of a set of points would be performed using matrix factorization. There is an
optimal number of points to be simulated at once to achieve the maximum
reduction in simulation time. This value is quantified by the authors at 80%
of the maximum number of conditioning points retained. The combined use of
matrix factorization and sequential simulation is termed generalized sequential
simulation.
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4.5 Multipoint geostatistics

The International Geostatistics Conference of Tróia was memorable. Not only
some of the previous works were presented there, but, most remarkably, the
Tróia proceedings also included the seminal paper that gave birth to multi-
point geostatistics. The work by Guardiano and Srivastava (1993) established
the premises on how to generate realizations drawn from random functions
imposing higher-order statistics than a covariance. Their approach required a
dramatic shift in the computation of the univariate conditional distributions
involved in Eq. (12) from a theoretical result (i.e., the solution of a kriging
system) to a training-image-based approach.

Equation (12), or better, its approximation (13), is also the foundation of
multipoint sequential simulation. But now, computing the probability that a
random variable at a given location is below a certain threshold conditional
to a set of nearby values is not derived from the expression of a multivariate
random function, but rather experimentally calculated by searching a training
image for all places where the same pattern of conditioning data repeats. The
analysis of the values that in the training image fall at the same relative
location with respect to the conditioning pattern serves to build the local
conditional distribution.

Again, another brilliant idea coming from Journel’s lab at Stanford, easy
to describe, but not so easy to implement. It is worth pointing out that André
always refused to co-sign a paper unless he was instrumental in the implemen-
tation of the ideas presented. Multipoint geostatistics was one of those ideas,
and credit should be given to him, but André always said “ideas are worth
nothing unless they are implemented” and this is the reason why he does not
appear as co-author of any of the early papers: he did not work hands-on in
writing the code and running the tests, he was “only” a supervisor. It was not
until much later that a paper by him was published explaining why and how
multipoint geostatistics were born (Journel, 2005).

4.5.1 Training image

The concept of a training image as a substitute for a random function model
was new. It was received with skepticism, and it is still today subject of criti-
cism by some researchers. A training image is a point set, generally depicted
as a raster image over a regular grid, large enough to be able to find multi-
ple replicates of n-tuples of given values from which to construct a frequency
distribution at the nearby locations that will approximate the conditional dis-
tributions at those locations. If the size of the n-tuple is small, it will be easy
to find several replicates of it in the training image and to build a conditional
frequency distribution, but if n is large, for instance, above six or seven, the
training image must be very large to find a sufficient number of replicates to
allow a meaningful approximation of a probability distribution.

The size and shape of the set made up by the n-tuple plus the point being
simulated will determine the order of the statistics that are being extracted
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from the training image and infused into the realization, as well as the ranges
over which these multipoint statistics are under control.

The construction or the selection of a training image is another issue sub-
ject to much debate, which will not be discussed here (see, for instance, Ma-
riethoz and Caers, 2014).

4.5.2 Lookup tables

Scanning the training image for each point being simulated to find the repli-
cates of the conditioning data was very computationally intensive. Strebelle
(2000, 2002) devised a lookup table approach coupled with a tree search to
first build the conditional distributions of all possible conditioning data con-
figurations and, second, retrieve quickly a given distribution from the table.

Building the lookup table was time consuming and limited the high-order
statistics that would be used to generate the realization. This problem was
solved by Mariethoz et al. (2010) with their direct sampling approach. They
realized that exhaustively searching the training image for all replicates of a
given conditioning set and then drawing a random value from this set was the
same as doing a random search and retaining the first replicate, thus speeding
up considerably the drawing from the conditional distribution.

4.5.3 Continuous variables

Most of the first implementations of the multipoint sequential simulation was
done for a binary variable (Guardiano and Srivastava, 1993; Strebelle, 2000,
2002). It is easier to find replicates of a conditioning data set when the data
values can only be ones or zeroes. The extension to categorical variables with
more than two categories was obvious in theory, but the construct of the lookup
tables and the search tree becomes cumbersome and inefficient. Attempting to
perform the simulation of continuous variables was out of the question, even
considering a binning approach that would transform the continuous variable
into a categorical one.

Again, the direct sampling approach by Mariethoz et al. (2010) solved
the problem. Once the conditioning data set is defined, some tolerances are
applied to the conditioning data values and the training image is scanned to
find replicates in which the values are within the tolerance limits, once a match
is found, the value at the position of the point being estimated is retrieved
and assigned to the simulating node.

A thorough analysis of all the implementation issues and the sensitivities
to some of the tuning parameters in the direct sampling algorithm can be
found in the work by Meerschman et al. (2013).

4.6 Sequential simulation with patterns

The concepts of multipoint geostatistics and training images is taken one step
further by considering the simulation of blocks of neighboring points all at once
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Arpat (2005); Arpat and Caers (2007) . The concept of sequential simulation
remains but the decomposition of the multivariate random function (12) is
replaced with

F (Z(u1), Z(u2), . . . , Z(un)|(no)) = F (B(v1)|(no)) ·
F (B(v2)|(no), B(v1)) ·
F (B(v3)|(no), B(v1), B(u2)) · · · (14)

F (B(vnb
)|(no), B(v1), . . . , B(vnb−1)),

where {v1,v2, . . . ,vnb
} are the centroids of the blocks {B(v1), B(v2), . . . , B(vnb

)}
that fully tessellate the initial point set {u1,u2, . . . ,un}, with nb ≪ n. The
above expression is simplified as in Eq. (13) and only the closest simulated
blocks and conditioning data are retained to build the conditioning pattern
that is scanned on the training image in search for replicates. By simulating
blocks of points, the number of steps in the sequential simulation is reduced
and therefore the speed is increased; also, accordingly to the authors, this ap-
proach is able to capture curvilinear and complex features from the training
image.

The concept of simulation with patterns was further developed by Mahmud
et al. (2014) who used conditional image quilting.

4.7 Sequential simulation with high-order spatial cumulants

An interesting alternative to the multipoint sequential simulation approach
described above is sequential simulation using high-order spatial cumulants as
proposed by Dimitrakopoulos et al. (2010) and Mustapha and Dimitrakopou-
los (2010, 2011). Cumulants can be regarded as a generalization of the covari-
ance function to orders higher than two; as a matter of fact, the cumulant
of second order is the covariance. Any multivariate probability function can
be expressed in terms of its moments or in terms of its cumulants. Dimi-
trakopoulos et al. (2010) show that the cumulants of order three to five can
capture the same complex features as the multipoint approach. Cumulants can
also be used to determine the conditional distributions in Eq. (12). Mustapha
and Dimitrakopoulos (2010) write these conditional distributions as Legendre
polynomial expansions where the coefficients of the expansion are written in
terms of the cumulants. The cumulants are derived from the data in a sim-
ilar way as a covariance or a variogram; however, they contain higher-order
moment information and can be used for the generation of realizations from
non-Gaussian random functions. Recently, the technique has been extended to
the joint simulation of several variables (Minniakhmetov and Dimitrakopoulos,
2017) and an alternative formulation has been proposed in which, instead of
using Legendre polynomials, orthogonal splines are employed and cumulants
are replaced by alternative coefficients that can be estimated from the data
(Minniakhmetov et al., 2018).



One Step at a Time 15

A key aspect of this hihg-order spatial cumulant approach is that it is data-
driven as opposed to the multipoint approach that is training-image driven;
the latest work in this regard proposes a training-image-free approach to high-
order simulation (Yao et al., 2020).

5 Not sequential simulation

Sequential simulation is a widely spread concept for the drawing of realiza-
tions from random functions of different kinds, from Gaussian to indicator-
based to training-image-based to non-Gaussian of other types. But there are
other approaches that are also being used that are not based on the sequential
simulation concept. Without trying to be exhaustive, some of those alterna-
tive methods are gradual deformation (Hu, 2000), pluriGaussian simulations
(Armstrong et al., 2011; Galli et al., 1994), or Markov chain Monte Carlo (Fu
and Gómez-Hernández, 2009).

6 Conclusion

The sequential simulation algorithm has dominated the field of stochastic sim-
ulation of spatial random functions since the late 1980s. Its implementation
for the generation of realizations drawn from random functions defined non-
parametrically on the basis of indicator variables was the sparkle that initiated
a surge of variants aimed at the simulation from random functions that were
getting far from the standard stationary multiGaussian one. The co-authors
of this paper witnessed the birth of sequential indicator simulation and were
fundamental during the first stages of that new algorithm, an algorithm that is
based in the simple concept of breaking a complex problem into many simple
ones and then progressing one step at a time.

One of the great talents of André Journel is that, throughout his career,
he was able to find the core of an idea, to understand why it worked well (or
didn’t work so well), and to construct a generalization that allows the idea
to flourish in other applications. And so it was with sequential simulation:
what began as a method for indicator simulation that was freed from the
constraints of an unnecessary intermediate Gaussian random function soon
became recognized by André as a rich paradigm, the idea that you can create
a simulation simply by correctly sequencing a series of random drawings, one
step at a time. When the first multipoint simulation algorithm was written,
it was André who recognized that it was, at its core, a sequential algorithm
which opened up many new branches of inquiry based on all that had already
been learned about other sequential algorithms.
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18 J. Jaime Gómez-Hernández, R. Mohan Srivastava

Mariethoz G, Caers J (2014) Multiple-point geostatistics: stochastic modeling
with training images. John Wiley & Sons

Mariethoz G, Renard P, Straubhaar J (2010) The direct sampling method to
perform multiple-point geostatistical simulations. Water Resources Research
46(11)

Matérn B (1960) Spatial variation, volume 36 of. Lecture Notes in Statistics
Matheron G (1973) The intrinsic random functions and their applications.
Advances in applied probability 5(3):439–468

Meerschman E, Pirot G, Mariethoz G, Straubhaar J, Van Meirvenne M, Re-
nard P (2013) A practical guide to performing multiple-point statistical
simulations with the direct sampling algorithm. Computers & Geosciences
52:307–324

Minniakhmetov I, Dimitrakopoulos R (2017) Joint high-order simulation of
spatially correlated variables using high-order spatial statistics. Mathemat-
ical Geosciences 49(1):39–66

Minniakhmetov I, Dimitrakopoulos R, Godoy M (2018) High-order spatial
simulation using legendre-like orthogonal splines. Mathematical geosciences
50(7):753–780

Mustapha H, Dimitrakopoulos R (2010) High-order stochastic simulation
of complex spatially distributed natural phenomena. Mathematical Geo-
sciences 42(5):457–485

Mustapha H, Dimitrakopoulos R (2011) Hosim: a high-order stochastic simula-
tion algorithm for generating three-dimensional complex geological patterns.
Computers & geosciences 37(9):1242–1253

Nowak M, Srivastava R (1997) A geological conditional simulation algorithm
that exactly honours a predefined grade-tonnage curve. Proceedings of the
Geostatistics Wollongong 96:669–682

Nussbaumer R, Mariethoz G, Gloaguen E, Holliger K (2018) Which path
to choose in sequential gaussian simulation. Mathematical Geosciences
50(1):97–120

Oz B, Deutsch CV, Tran TT, Xie Y (2003) DSSIM-HR: A FOR-
TRAN 90 program for direct sequential simulation with histogram
reproduction. Computer and Geosciences 29(2003):39–51, URL
http://www.iamg.org/CDEditor/index.htm

Rosenblatt M (1952) Remarks on a multivariate transformation. The annals
of mathematical statistics 23(3):470–472

Shinozuka M, Jan CM (1972) Digital simulation of random processes and its
applications. Journal of sound and vibration 25(1):111–128

Soares A (2001) Direct sequential simulation and cosimulation. Math Geology
33(8):911–926

Strebelle S (2000) Sequential simulation drawing structures from training im-
ages. PhD thesis, Stanford University. 187pp

Strebelle S (2002) Conditional simulation of complex geological structures us-
ing multiple-point statistics. Mathematical geology 34(1):1–21

Verly GW (1993) Sequential gaussian cosimulation: A simulation method in-
tegrating several types of information. In: Soares A (ed) Geostatistics Tróia
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