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Abstract Automatic interpolation of precipitation maps combining rain gauge
and radar data has been done in the past but considering only the data collected
at a given time interval. Since radar and rain gauge data are collected at short
intervals, a natural extension of previous works is to account for temporal corre-
lations and to include time into the interpolation process. In this work, rainfall
is interpolated using data from the current time interval and the previous one.
Interpolation is carried out using kriging with external drift, in which the radar
rainfall estimate is the drift, and the mean precipitation is set to zero at the lo-
cations where the radar estimate is zero. The rainfall covariance is modeled as
non-stationaary in time, and the space system of reference moves with the storm.
This movement serves to maximize the collocated correlation between consecu-
tive time intervals. The proposed approach is analyzed for four episodes that took
place in Catalonia (Spain). It is compared with three other approaches: (i) radar
estimation, (ii) kriging with external drift using only the data from the same time
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interval, and (iii) kriging with external drift using data from two consecutive time
intervals but not accounting for the displacement of the storm. The comparisons
are performed using cross-validation. In all four episodes, the proposed approach
outperforms the other three approaches. It is important to account for temporal
correlation and use a Lagrangian system of coordinates that tracks the rainfall
movement.

Keywords rain interpolation · space-time modeling · Lagrangian extrapolation ·
automatic modeling

1 Introduction

Precipitation data are the primary input to hydrological modeling. Rain gauge
networks and meteorological radars are commonly used to measure precipitation.
Rain gauges collect point measurements (with a sampling size of about 200 cm2)
irregularly in space and with a low spatial density. Weather radar measures pre-
cipitation remotely and indirectly but with a high spatiotemporal resolution (one
observation per square kilometer and every 5 to 10 minutes). The low density of
the rain gauge networks prevents an accurate characterization of the spatial vari-
ability of rainfall. The radar rainfall estimates can improve such a characterization,
but they are prone to systematic and local errors that must be filtered out before
its usage for hydrological purposes.

Radar rainfall estimates have proven very valuable in the spatial estimation of
rainfall, even when rain gauge networks are dense (Sempere-Torres et al. 1999; Seo
1998; Sun et al. 2000). There are several implementations for the spatial estima-
tion of rainfall combining rain gauges and radar observations. They use different
techniques and algorithms, such as the simple calibration of multiplicative factors
(Chumchean et al. 2006; Harrold and Austin 1974; Wilson and Brandes 1979),
multivariate statistical analysis (Brown et al. 2001; Hevesi et al. 1992a,b), prob-
abilistic analysis of the joint distribution of rain gauge and radar observations
(Calheiros and Zawadzki 1987; Rosenfeld et al. 1993, 1994, 1995), geostatistics
(Azimi-Zonooz et al. 1989; Creutin et al. 1988; Delrieu et al. 2014; Goudenhoofdt
and Delobbe 2009; Jewell and Gaussiat 2015; Krajewski 1987; Seo 1998; Seo et al.
1990; Sideris et al. 2014; Sinclair and Pegram 2005; Velasco-Forero et al. 2009;
Yoon and Bae 2013), or Bayesian analysis (Todini 2001). More recently, a few re-
searchers have attempted to incorporate the temporal component into the analysis
Pulkkinen et al. (2016) or Sideris et al. (2014).

This work aims to present a methodology based on geostatistics capable of
estimating rain fields from rain gauge and radar data collected at two consecutive
time intervals. Kriging with external drift is the geostatistical technique chosen
with the following considerations: (i) the mean rainfall is set to zero if the radar
observation is zero, (ii) the rainfall covariance is modeled as non-stationary in
time, and (iii) the movement of the rainfall field between time steps is incorpo-
rated into the estimation process by using a Lagrangian system of reference. This
methodology is a step forward in the line of work started by Velasco-Forero et al.
(2009), who implemented a technique for the automatic estimation of rainfall fields
in space with the data collected at a single time interval.

In the following, kriging with external drift, as applied by Velasco-Forero et al.
(2009), is presented. A modified version incorporating data from two consecutive
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time steps and accounting for a non-stationary covariance is described next. The
explanation on how to account for the motion of the rainfall field in the estimation
process follows. The description of the data set, the four case studies, and the
discussion of the results of the different estimation alternatives end the paper.

2 Theory

2.1 Kriging with External Drift for a Given Time Step

Kriging with external drift (KED) was used by Velasco-Forero et al. (2009) to
estimate rainfall by merging radar and rain gauge data accumulated during the
same time interval. The standard formulation of KED, as presented, for instance,
in Journel and Rossi (1989) or Deutsch (1991), assumes that precipitation is a
regionalized variable z(x) modeled by a random function Z(x), the expected value
of which m(x) is non-stationary and depends linearly on a known drift function
R(x) according to the following expression

m(x) = a+ b ·R(x), (1)

with unknown parameters a and b.
Under this assumption, the kriging estimate of z at location x0 is a linear

function of the n(x0) surrounding values falling within a predefined ellipse around
x0 given by

z∗KED(x0) =

n(x0)

i=1

λi(x)z(xi), (2)

with weights λi obtained from the solution of the system of linear equations
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where Cij is the covariance of Z(x), C(xi − xj) = E{(Z(xi) − m(xi))(Z(xj) −
m(xj))} between locations xi and xj , Ri is the value of the drift R at location
xi, and µ0 and µ1 are Lagrange parameters, by-products of the constrained opti-
mization that leads to Eq. (3).

In this work, the expression of the mean as a function of the drift is modified
as

m(x) = b ·R(x) (4)

to force the mean rainfall to be equal to zero when the radar estimate is zero.
With this modification, the expression for the estimate remains Eq. (2) but the
weights are the solution of the system
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The only difference between Eqs. (3) and (5) is that, in the latter, the equation
with the constrain that the sum of the weights must add up to one has disappeared.
The resulting estimate z∗KED(x0) can still be negative —because kriging is a non-
convex estimator and enforcing that the mean rainfall is zero when the radar is
zero is not enough to make the kriging estimates positive. When this happens, the
estimated value is set to zero.

The work by Velasco-Forero et al. (2009) uses the approach as described above
to estimate rainfall from rain gauge and radar data accumulated over the same
time interval. Since this estimation is two-dimensional, it will be referred to as
KED2D.

The main innovation introduced by Velasco-Forero et al. (2009) was the auto-
matic calculation of the covariance function using a non-stationary model for the
mean. This automatic calculation is based on the work by Yao and Journel (1998)
with the following considerations:

(i) It is decided that the covariance of rainfall is the same as the covariance of
radar rainfall estimates. Since radar data are exhaustively sampled, it is quick
and simple to compute an exhaustive experimental covariance.

(ii) The radar values are also modeled as non-stationary on the mean. Therefore,
there is a need to get an estimate of the radar mean to compute the radar
covariance. This estimate is obtained by ordinary kriging of the radar values
at rain gauge locations. The covariance used in this ordinary kriging step is
computed automatically using Yao and Journel’s method, assuming stationar-
ity on the mean. This stationary covariance is only a preliminary covariance
used to obtain a smooth field for the radar mean.

(iii) Once this estimate of the radar mean is known, an experimental covariance
map of radar is calculated, accounting for the non-stationarity on the mean.

(iv) The resulting experimental covariance map —computed on an exhaustive map
of radar values— will rarely be positive definite. The method by Yao and
Journel is applied to transform it into a positive-definite covariance:
(a) The correction to render the covariance map into positive definite is done in

the frequency domain. For this reason, the spatial covariance is transformed
into a frequency spectrum by Fast Fourier Transform.

(b) In the frequency domain, the two conditions that the spectrum has to
satisfy are that it is positive for all frequencies and that its integral equals
the covariance at lag zero. These two conditions are achieved by clipping
the negative values followed by a smoothing of the experimental spectrum
until its integral equals the covariance at lag zero.

(c) The back transformation of the resulting spectrum is a licit covariance map,
according to Bochner’s theorem (Bochner 1949).

The upper left image in Fig. 1 shows the positive-definite covariance map
obtained as explained above for the 10-minute accumulated rain between 14:20
and 14:30 on September 7, 2015.

Once a valid covariance function is available, the estimation of the rain map
is performed by KED2D using the rain gauge data as the primary data and the
radar data as the drift variable.

This approach takes into account anisotropies and is fully automatic; therefore,
it can be updated every time step and be used for the real-time forecast of runoff
from rainfall.
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Velasco-Forero et al. (2009) applied this approach one time step at a time using
the information from a single time interval. However, considering that there must
also be temporal correlation, especially at 10-minute intervals, an approach is pro-
posed to incorporate the data from the previous time interval into the estimation
at the current one.

2.2 Kriging with External Drift Accounting for the Current and the Previous
Time Steps

Time is incorporated into the estimation process as an additional third dimension
but using a covariance that is non-stationary in time. Also, the search neighbor-
hood in the time dimension is constrained to one time step backward in time. Un-
der these considerations, the expressions from the previous section remain valid,
making the abstraction that now the estimation is three-dimensional instead of
two-dimensional, and taking care of the non-stationarity when building the co-
variance matrices.

For clarity, new expressions for the kriging estimate and the kriging system are
developed next in which the non-stationarity of the covariance is made explicit.
The data set is partitioned in two subsets (one for each time step), and the co-
variance matrices in the left-hand side of the kriging system are partitioned into
four submatrices

Consider the simple kriging estimate of rainfall at time step t as a linear func-
tion of the observations at the current time step t and at the previous one t− 1

z∗SK(x0, t) = m(x0, t) +

n(x0)

i=1

{λi,t(x0, t)[z(xi, t)−m(xi, t)] +

+ λi,t−1(x0, t− 1)[z(xi, t− 1)−m(xi, t− 1)]} , (6)

where z∗SK(x0, t) and m(x0, t) are, respectively, the simply kriging estimate and
the mean value of rain at location x0 and time t; n(x0) is the number of data
locations found within the search neighborhood; λi,t(x0, t) and λi,t−1(x0, t − 1)
are the weights for time steps t and t− 1, respectively; z(xi, t) and z(xi, t− 1) are
the rain gauge observations for the time steps t and t−1, respectively; and m(xi, t)
and m(xi, t − 1) are the mean values of rainfall for the rain gauge at location xi

for the time steps t and t− 1, respectively. Kriging with external drift relaxes the
simple-kriging need to know the non-stationary mean m(x, t) by postulating that
the mean is proportional to a known drift function

m(x, t) = b R(x, t), (7)

where R(x, t) is the drift function, which in this case is the radar rainfall estimate.
Notice that, similarly as done for KED2D, the mean is forced to be zero when the
radar is zero.



6 Eduardo Cassiraga et al.

Substituting (7) into (6), a new estimate is obtained

z∗KED(x0, t) =

n(x0)

i=1

[λi,t(x0, t)z(xi, t) + λi,t−1(x0, t− 1)z(xi, t− 1)]+

+ b



R(x0, t)−
n(x0)

i=1

λi,tR(xi, t)−
n(x0)

i=1

λi,t−1R(xi, t− 1)



 , (8)

where the unknown coefficient b can be filtered out imposing the following con-
straint

n(x0)

i=1

λi,tR(xi, t) + λi,t−1R(xi, t− 1) = R(x0, t). (9)

With this constrain enforced, the KED estimator results

z∗KED(x0, t) =

n(x0)

i=1

[λi,t(x0, t)z(xi, t) + λi,t−1(x0, t− 1)z(xi, t− 1)] , (10)

and the coefficients are obtained by minimizing the square of the estimation error
subject to constrain (9), which results in the following system of equations





n(x0)
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λjtCijtt + λj(t−1)Cijt(t−1) + µRit = Cit for i = 1...n(x0)
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n(x0)
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λjtRjt + λj(t−1)Rj(t−1) = R0t

(11)
where Cijtt are the covariances for a separation lag hij = (xi − xj) at time step
t, Cij(t−1)(t−1) are the covariances for the same spatial lag at time step t − 1,
Cijt(t−1) and Cij(t−1)t are the covariances for the same spatial lag and a time lag
separation of one, and µ is a Lagrange parameter. The system can be written in
matrix form as
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(12)
where n is shorthand for n(x0); the same system can be rewritten more compactly
as 


Ct,t Ct,t−1 Rt

Ct−1,t Ct−1,t−1 Rt−1

RT
t RT
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This system of equations is a version of Eq. (5) expanded to account for two time
steps, in which the covariances are computed using Yao and Journel’s method,
with time as a third dimension and considering all t and t − 1 observations as
experimental data. In this compact expression, Ct,t is a matrix of dimensions
n(x0) × n(x0) containing the covariances between pairs of data points at time t,
and, similarly, Ct−1,t−1 is a matrix of the same dimensions with the covariances
computed at time t−1 (different fromCt,t because of the non-stationarity in time);
Ct,t−1 and Ct−1,t are the matrices of covariances between data points computed
across time for a time lag of one, also of dimensions n(x0)× n(x0); these last two
matrices, contrary to the previous two, are not necessarily symmetric since the
correlation between location xi at time t and location xj at time t − 1 will, in
general, be different from the correlation between location xi at time t − 1 and
location xj at time t; Ct is a column vector of size n(x0) with the covariances at
time t between the observation locations and location x0; and Ct−1 is a vector of
the same size with the covariances between the observation location at time t− 1
and x0 at time t; Rt is a column vector of size n(x0) with the radar values at the
rain gauge locations at time t, and Rt−1 is another column vector of the same
size with the radar values at the same locations at time t − 1, the superscript T
indicates transpose; Λt is a vector of size n(x0) with the coefficients of the linear
combination that apply to the data observed at time t, and, similarly, Λt−1 is a
vector of the same size with the coefficients of the linear combination that apply
to the data observed at time t− 1; finally, µ is the Lagrange parameter and Rt is
the radar rainfall estimate at the estimation location, x0.

With this approach, the rainfall estimation presented here depends on:

(i) The rainfall data observed at n(x0) rain gauges in time steps t and t − 1,
{z(xi, t), z(xi, t− 1), i = 1, . . . , n(x0)}.

(ii) The radar rainfall estimates at the same locations and time steps {R(xi, t), R(xi, t−
1), i = 1, . . . , n(x0)} plus the radar rainfall estimate at the location being esti-
mated for time step t, R(x0, t).

As mentioned previously, time is incorporated into the estimation process simply
considering it as a third dimension and limiting the search neighborhood to one
step backward in time. For this reason, this approach is referred to as KED3D.

For illustration purposes, Fig. 1 shows the covariance maps that should be
used to fill the values in the kriging system. They have been computed using
Yao and Journel’s method with the radar data for the rainfall on September 7,
2015, during the two ten-minute intervals between 14:10 and 14:30. Recall that
covariances are modeled as non-stationary in time. The position of the maps in
the figure corresponds with the partitioning of the covariance matrix in Eq. (13).

2.3 Accounting for the Motion of the Rainfall Field

The rainfall fields show an apparent motion, which is the result of the combined
effect of the winds at some steering level and the systematic precipitation growth
and dissipation (Germann et al. 2006). This motion suggests that working in storm
coordinates (i.e., in a Lagrangian coordinate reference system moving with the
precipitation field) will maximize the representativeness of rainfall observations
from time step t − 1 to estimate the rainfall at time t (Zawadzki 1973). Working
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in storm coordinates requires removing the effect of the motion field between time
steps t − 1 and t before the estimation process. An approach to do this is by
finding the spatial locations where the rainfall observations from time t− 1 would
have moved at time t, had they displaced along the rainfall field. This approach
has been implemented in the Nowcasting algorithm (Berenguer et al. 2011) and
is used here. The tracking algorithm is conceptually similar to Tracking Radar
Echoes by Correlation by Rinehart and Garvey (1978) and permits displacing the
rainfall observations (both rain gauges and radar) from the positions they have at
t− 1 to those that they would have at time t if they had moved with the storm.

This procedure (illustrated in Figs. 2, 3 and 4) is applied to the rainfall obser-
vations in time t− 1 prior to the estimation of the covariances in Eq. (13). In Fig.
2, two snapshots of radar rainfall estimates, ten minutes apart, are shown. These
two snapshots serve to compute the velocity field shown in Fig. 3. This velocity
field indicates how to displace the radar field and the rain gauges of time t− 1 to
their hypothetical positions had they moved with the rain. The displaced values
are shown in Fig. 4.

3 Application

3.1 Hydrological Setting

The study area is located in Catalonia (NE Spain), where three main mountain
ranges can be found, the Pyrenees, with peaks over 3000 masl, the pre-coastal line,
with summits above 1000 masl, and the litoral range, with mountains about 500
masl. The Pyrenees run approximately East-West, and the other two ranges are
more or less oriented NE-SW in parallel with the coastline. Each of these ranges
acts as a barrier for the warm and humid air coming from the Mediterranean on the
East, which favors the appearance of convective cells responsible for high-intensity
rains. In this area, the 10-year return period daily precipitation commonly exceeds
100 mm. Accumulated rainfall over 200 mm in 24 hours is observed somewhere in
the Spanish Mediterranean coast at least once per year.

Radar observations were obtained from the Creu del Vent radar, a single-
polarization C-band radar belonging to the Meteorological Service of Catalonia
located in the center of the study area. Radar observations were processed with
the Integrated Tool for Hydrometeorological Forecasting (EHIMI) (Corral et al.
2009), which includes algorithms for quality control and quantitative precipitation
estimation from radar reflectivity. In this work, 10-minute rainfall accumulations,
with a 1 km by 1 km resolution, have been used. A detailed description of the
processing of the radar data can be found in Berenguer et al. (2015).

The ground observations correspond to rain gauges from the Meteorological
Service of Catalonia network and include about 200 tipping-bucket rain gauges.
The original values reported by the rain gauges have been integrated in time to
provide rainfall accumulations over 10-minute periods (in consonance with the
radar data).
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3.2 Case Studies

The proposed methodology is applied to the four episodes listed in Table 1. All
four episodes are of high intensity and with high rainfall accumulation values.

Ep. Date # gauges 30’ [mm] 24 h [mm] Reference

1 09/07/2005 203 44.6 87.9 Bech et al. (2007)
(32.4) (89.2)

2 09/13/2006 187 57.6 216.0 Mateo et al. (2009)
(41.0) (154.4)

3 10/18/2006 188 40.2 93.6 Aran et al. (2009)
(52.1) (114.3)

4 11/02/2008 186 40.0 130.2 Bech et al. (2011)
(29.4) (88.2)

Table 1 Episode, number of rain gauges, maximum 30-minute and maximum 24-h rainfall as
observed in the rain gauges and in the radar (in parenthesis). The last column gives a reference
for the reader interested in further details of the event.

4 Results

Episode 2 is described in detail, while only summary statistics will be given for the
other three episodes. Episode 2 is the one with the largest 24-hour accumulation.
It occurred on September 13, 2006, between 01:00 and 24:00 UTC. Estimates of
rainfall are computed every ten minutes and then integrated for the entire episode.
Estimates at a given time t are obtained using four approaches: (i) the rainfall
estimate is the radar rainfall estimate, (ii) the rainfall estimate is the KED value
obtained using rain gauge and radar data at time t (referred to as KED2D), (iii)
the rainfall estimate is the KED value obtained using rain gauge and radar data at
time t and rain gauge and radar data at the previous 10-minute interval, without
accounting for the motion of the rainfall field (referred to as KED3Dnm), and
(iv) the rainfall estimate is the KED estimate obtained using rain gauge and radar
data at time t and rain gauge and radar data at the previous time step, accounting
for the motion of the rainfall field (referred to as KED3D). Fig. 5 shows the total
rainfall estimate by the four approaches.

The performance of each approach is evaluated by cross-validation. A rain
gauge is removed from the data set; then, rainfall is estimated at the location of
the removed rain gauge from the remaining data. This process is repeated for all
rain gauge locations, at 10-minute intervals, to end with rainfall estimates at all
rain gauge locations and time intervals. These estimates are compared with the
(true) observed values to discern which approach performs best. Fig. 6 shows four
scattergrams of total accumulation at rain gauge locations, one for each approach,
radar data alone, KED2D, KED3Dnm, and KED3D. The horizontal axes are for
the (true) values observed at the rain gauges, and the vertical axes are for the
estimated values by each approach. It can be observed that the KED estimates
are always better than the radar estimates and that KED3D is marginally better
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than KED2D and KED3Dnm. Fig. 7 shows the same results but for all 10-minute
accumulated rainfall estimates during the entire episode. Similar conclusions can
be reached, all the kriging estimates outperform the radar rainfall estimates, and
KED3D is slightly better than KED2D and KED3Dnm.

This cross-validation analysis has been performed in all four episodes. To sum-
marize the resulting scattergrams, the following statistics have been computed:

(i) The ratio between the average of all estimations and the average of all obser-
vations

R/G =
mVe

mVo

.

The optimal value is 1.
(ii) The Pearson coefficient of linear correlation

corr =
1
n

n
i=1(Voi −mVo

)(Vei −mVe
)

σVo
σVe

.

The optimal value is 1.
(iii) The Nash-Sutcliffe efficiency

NS = 1−
n

i=1 (Voi − Vei)
2

n
i=1 (Voi −mVo

)2
.

The optimal value is 1.
(iv) The root mean square error

RMSE =

 1

n

n

i=1

(Vei − Voi)
2.

The optimal value is 0 mm.
(v) The standard deviation of the error i = Vei − Voi

Std dev =

 1

n− 1

n

i=1

(i −m)2.

The optimal value of is 0 mm.

In all the previous equations, n is the number of rain gauges where cross-
validation was performed, Voi is the observed value at rain gauge i, Vei is the
estimated value at rain gauge i, mVo

is the mean value of the n observed rainfall
values, mVe

is the mean value of the n estimated values, σVo
is the standard devi-

ation of the observed values, σVe
is the standard deviation of the estimated values

and m is the mean value of the error . The summary statistics for the scatter-
grams of the cross-validation of the the total accumulation for all four episodes
are shown in Table 2 and the summary statistics for the scattergrams of the cross-
validation of the 10-minute accumulations are shown in Table 3.

After the analysis of Tables 2 and 3, it is concluded what was apparent by
merely looking at the scattergrams of Episode 2: that any of the radar-rain gauges
blending approaches (KED2D, KED3Dnm, or KED3D) is better than using the
radar alone. The results of the different KED approaches show that including
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Sep 7, 05 Sep 13, 06 Oct 18, 06 Nov 2, 08

RADAR 0.83 0.67 0.99 0.68
R/G KED2D 0.97 0.95 0.98 0.91
(-) KED3Dnm 0.98 0.96 1.01 0.91

KED3D 1.01 0.98 1.01 0.94

RADAR 0.75 0.87 0.82 0.79
corr KED2D 0.86 0.89 0.89 0.74
(-) KED3Dnm 0.86 0.89 0.89 0.74

KED3D 0.87 0.90 0.89 0.75

RADAR 0.51 0.50 0.64 0.30
NS KED2D 0.73 0.78 0.79 0.51
(-) KED3Dnm 0.73 0.78 0.80 0.52

KED3D 0.74 0.81 0.80 0.56

RADAR 13.20 26.68 10.92 15.47
RMSE KED2D 9.78 17.77 8.33 12.89
(mm) KED3Dnm 9.70 17.70 8.22 12.90

KED3D 9.49 16.32 8.20 12.34

RADAR 12.49 20.83 10.95 11.47
Std dev KED2D 9.78 17.64 8.34 12.58
(mm) KED3Dnm 9.71 17.66 8.24 12.61

KED3D 9.51 16.34 8.21 12.23

Table 2 Summary statistics of the cross-validation scattergrams for total rainfall accumula-
tion

the rainfall data from the previous time step and accounting for the motion of
the rainfall field improves the scores systematically for all the events. Still, the im-
provement seems to be marginal (similarly as found by other authors who included
the time component using different techniques, e.g., Sideris et al., 2014).

The proposed methodology is more realistic than previous attempts to include
time in the estimation process since: (i) the covariances are computed and updated
automatically for each time step, (ii) the expected value of rainfall is set to zero
when the radar observation is zero, and (iii) the motion of the precipitation front
is accounted for before doing any estimation.

The improvement obtained by the inclusion of the time component into the
estimation process would be more significant when the method is applied in an
area with a smaller density of rain gauges. The effect of the network density on
the results of KED2D and KED3D shall be analyzed in future studies.

5 Conclusions

A new approach for the estimation of rainfall fields in real time has been proposed.
The novelties of the approach include accounting for rain gauge and radar obser-
vations during two consecutive time steps and accounting for the motion of the
rainfall to maximize the correlation across time steps. A moving coordinate system
is used to displace the rainfall observations from time t− 1 to time t according to
an estimated motion field. The automatic computation of the covariances, using



12 Eduardo Cassiraga et al.

Sep 7, 05 Sep 13, 06 Oct 18, 06 Nov 2, 08

RADAR 0.83 0.67 0.99 0.68
R/G KED2D 0.97 0.95 0.98 0.91

KED3Dnm 0.98 0.96 1.01 0.92
KED3D 1.01 0.98 1.01 0.94

RADAR 0.72 0.80 0.80 0.76
corr KED2D 0.78 0.83 0.80 0.79

KED3Dnm 0.79 0.83 0.81 0.79
KED3D 0.80 0.84 0.81 0.80

RADAR 0.48 0.58 0.63 0.53
NS KED2D 0.60 0.67 0.63 0.60

KED3Dnm 0.61 0.68 0.65 0.61
KED3D 0.63 0.70 0.65 0.63

RADAR 0.56 0.91 0.62 0.45
RMSE KED2D 0.49 0.82 0.61 0.41
(mm) KED3Dnm 0.49 0.80 0.60 0.41

KED3D 0.47 0.78 0.60 0.40

RADAR 0.56 0.91 0.62 0.44
Std dev KED2D 0.49 0.81 0.61 0.41
(mm) KED3Dnm 0.47 0.78 0.60 0.40

KED3D 0.47 0.78 0.60 0.40

Table 3 Summary statistics of the cross-validation scattergrams for rainfall accumulation in
10-minute intervals

the same approach as in Velasco-Forero et al. (2009), allows its application in real
time.

The results obtained for four rainfall events show that including the obser-
vations from the previous time step always has a positive effect (although the
improvement seems to be small). Of the two approaches using the observations
of the prior time step (KED3Dnm and KED3D), the one working in moving co-
ordinates (i.e., accounting for the motion of the rainfall field) produces the best
results.
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Fig. 1 Covariance maps for two time steps for the first episode analyzed
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Fig. 2 Example of two radar images taken 10-minute apart. Rain gauge locations are shown,
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Fig. 3 Rainfall velocity field derived from the two radar images in the previous figure
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Fig. 4 Radar field at t−1 before (left) and after (right) displacement according to the velocity
field of the previous figure. The displaced rain gauges are also shown (pink circles)
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Fig. 5 Total rainfall as obtained by accumulating the 10-minute estimates using four ap-
proaches: radar alone, KED2D, KED3Dnm (without accounting for advection) and KED3D
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Fig. 6 Cross-validation scattergrams comparing the observed total accumulated rainfall at the
187 rain gauges vs. an estimated value obtained using four approaches: radar alone, KED2D,
KED3Dnm and KED3D
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Fig. 7 Cross-validation scattergrams comparing the observed 10-minute accumulated rainfall
at the 187 rain gauges vs. an estimated value obtained using four approaches: radar alone,
KE2D, KE3Dnm and KE3D


