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Highlights: 18 

− Reverse flow routing is solved by means of an ensemble Kalman filter technique 19 

− Inflow hydrographs in ungauged sites can be estimated using downstream information 20 

− Covariance localization and inflation techniques improve performance 21 

− Uncertainty of both parameters and reproduced observations can be quantified 22 

− The proposed technique can be coupled with almost any forward model  23 



Abstract:  24 

The reverse flow routing is an inverse procedure aimed at estimating the inflow to a hydraulic 25 

system based on information collected downstream. The hydraulic system can be a river reach or a 26 

water reservoir. In this paper, we propose a new approach for the solution of the reverse flow 27 

routing problem based on the Ensemble Smoother with Multiple Data Assimilation (ES-MDA). The 28 

objective is the estimation of an unknown inflow hydrograph discretized in time by coupling ES-29 

MDA with a given forward routing model that relates inflow hydrograph and downstream 30 

observations. 31 

Two realistic synthetic examples are presented to show the capabilities of the methodology. The 32 

first case is an application of the reverse flow routing problem to a linear reservoir, where the 33 

outflow hydrograph and the reservoir characteristics are known; the second one focuses on the 34 

estimation of the inflow hydrograph to an open channel from water level information recorded 35 

downstream. We also investigate the performance of the inverse algorithm, by looking at different 36 

ensemble sizes, and using covariance localization and inflation techniques. 37 

Our tests show that the proposed approach provides good results, comparable with those of other 38 

optimization methods presented in the recent literature. It accurately reproduces the inflow 39 

hydrographs, as well as the observations, with narrow confidence intervals. Although ES-MDA 40 

yields better results increasing the ensemble size, significant improvements in the solution are 41 

obtained for small ensemble sizes when covariance localization and inflation techniques are 42 

applied. The proposed approach can compete in accuracy and speed with other approaches, with the 43 

advantage that it is conceptually simple and can be used with almost any forward routing code.  44 
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1 INTRODUCTION 48 

The knowledge of discharge hydrographs at specific river sections is essential for flood-risk 49 

assessment, planning and management of water resource systems, or optimization of existing 50 

hydraulic infrastructures and design of new ones, among others. However, only few river sections 51 

are equipped to record data; therefore, an indirect determination of discharge hydrographs is often 52 

required. When a flood wave propagates along a river reach or passes through a reservoir, it usually 53 

experiences a delay and an attenuation. Although the forward flow routing (estimation of 54 

downstream discharge hydrographs based on information available upstream) is common and 55 

widely used by practitioners, the estimation of discharge hydrographs at ungauged sections that do 56 

not have reliable data upstream is still challenging. Discarding the use of rainfall-runoff models, due 57 

to their high uncertainty, a technique that could overcome this problem is the reverse flow routing 58 

process that couples the information recorded downstream (discharges or water levels) and the 59 

channel or reservoir characteristics to estimate the upstream inflow. The two main approaches to 60 

solve this problem in open channels are the application of hydrological routing models (see e.g. 61 

Das, 2009; Koussis and Mazi, 2016) in a reverse form, and the backward solution in time of the de 62 

Saint Venant equations (see e.g. Eli et al., 1974; Szymkiewicz, 1993; Bruen and Dooge, 2007). A 63 

more recent approach makes use of optimization procedures to determine the hydrograph that, once 64 

propagated downstream, reproduces the available observations. Saghafian et al. (2015) and Zucco et 65 

al. (2015) coupled a Genetic algorithm with a one-dimensional forward hydraulic model and with a 66 

simplified routing model, respectively. D’Oria and Tanda (2012), D’Oria et al. (2014) and Ferrari et 67 

al. (2018) applied a Bayesian Geostatistical Approach (BGA) to perform the reverse flow routing in 68 

combination with hydraulic models that solve the one-dimensional or two-dimensional shallow 69 

water equations. Zoppou (1999) and Aldama and Aguilar (2007) faced the problem of reverse 70 

routing of flood hydrographs in reservoirs inverting a simple storage equation under a level pool 71 

approximation. Spurious oscillations arise in some circumstances; D’Oria et al. (2012) and 72 

Leonhardt et al. (2014) solved this problem applying a stochastic approach based on BGA. 73 



We propose a new inverse procedure based on ensemble Kalman filtering (EnKF). Since the 74 

introduction of the EnKF by Evensen (1994a, 1994b), the method has been widely applied for data 75 

assimilation and the estimations of system states and parameters. EnKF has been applied in many 76 

fields, such as oceanography (Bertino et al., 2003; Keppenne and Rienecker, 2003), meteorology 77 

(Houtekamer and Zhang, 2016), hydrology (Chen and Zhang, 2006; Li et al., 2012; Moradkhani et 78 

al., 2005; Reichle et al., 2002; Xu et al., 2013; Xu and Gómez-Hernández 2016, 2018; Xue and 79 

Zhang., 2014) and petroleum engineering (Aanonsen et al., 2009; Gu et al., 2007). The main 80 

advantages of the EnKF methods, useful for our purposes, are summarized in three aspects. First, 81 

they are more computationally efficient than other Monte Carlo inverse modeling methods due to 82 

the way the covariances are computed (Hendricks Franssen and Kinzelbach, 2009) and their 83 

implementation is amenable to parallel computing. Second, they can easily be coupled with 84 

different forward models for the solution of inverse problems. And third, the ensemble-based 85 

methods inherently allow to assess the uncertainty associated with the estimations due to the 86 

generation of multiple alternative realizations that can be used for this purpose.  87 

In this paper, we handle a parameter estimation problem, where the parameters are represented by 88 

the temporal discretization of an upstream unknown discharge hydrograph and the observations are 89 

water levels or a flow hydrograph observed downstream. In addition of the novelty application of 90 

the EnKF to the reverse flood routing problem, another innovation of the proposed approach is the 91 

identification of parameters that are time dependent, in contrast with previous applications that only 92 

estimate time-invariant parameters. 93 

Among the ensemble-based methods (Hamill and Snyder, 2000; Moradkhani et al., 2005; Sakov et 94 

al., 2012; Zhou et al., 2011), we consider suitable for the solution of the reverse flow routing 95 

problems the Ensemble Smoother with Multiple Data Assimilation (ES-MDA). This method is a 96 

valid alternative to the EnKF, for the case in which the time sequence of state observation is all 97 

available in full at the time of the analysis; we refer to Li et al. (2018a) for a comparison between 98 



EnKF and ES methods. ES-MDA, introduced by Emerick and Reynolds (2012, 2013), is a variant 99 

of the Ensemble Smoother, initially proposed by van Leeuwen and Evensen (1996). ES-MDA 100 

iteratively assimilates the same data multiple times in order to improve the results of the ES, which 101 

assimilates all data simultaneously in a single update step. The purpose of the multiple assimilation 102 

is to avoid the problems detected by Evensen and van Leeuwen (2000) and Crestani et al. (2013) 103 

with the ES on its application to highly nonlinear problems with a single global update.  104 

We also test how some modifications on the algorithm may improve the ES-MDA performance and 105 

overcome the well-known problem of undersampling in ensemble-based methods. Undersampling 106 

occurs when the size of the ensemble is so small that it is not statistically representative of the 107 

variability of the unknowns; this leads to two main problems: filter divergence and the appearance 108 

of long-range spurious correlations. The filter divergence can be handled by covariance inflation 109 

techniques; whereas, covariance localization methods help in removing long-range spurious 110 

correlations and, at the same time, in increasing the effective ensemble size expanding the degrees 111 

of freedom available to assimilate data (Houtekamer and Mitchell 1998; Hamill et al. 2001). In the 112 

literature, localization techniques are applied to cutoff spurious correlations among spatial 113 

dependent variables; however, we deal with time series and, therefore, a temporal localization is 114 

applied considering time lapses rather than spatial distances. 115 

The paper is organized as follows: in the next section, we describe the ES-MDA implementation 116 

and the procedure for temporal localization. Then, two realistic synthetic examples are presented: 117 

(1) a reverse flow routing problem within a linear reservoir; (2) an application of the reverse flow 118 

routing in an open channel. For the second problem, which is nonlinear, the impact of the ensemble 119 

size and the localization technique are also tested; moreover, ES-MDA is coupled with the widely 120 

used HEC-RAS river analysis system (Brunner, 2010) that solves the one-dimensional shallow 121 

water equations. Finally, a comparison between ES-MDA and BGA is reported. The last section 122 

presents the conclusions of the paper. 123 



2 METHODS  124 

The objective of this paper is to show the applicability of ensemble Kalman-based methods, 125 

specifically the ES-MDA, for the solution of reverse flow routing problems. The ES-MDA is an 126 

iterative data assimilation method that updates the unknown parameters (discretized-in-time 127 

upstream hydrograph in our case) maintaining consistency with the observations (downstream 128 

hydrograph or water levels observed at specific times). The relationship between parameters and 129 

observations must be known and a forward model must be available. We do not focus on the setup 130 

of the flow and storage models used for the forward routing, due to the capability of the ES-MDA 131 

to be coupled with almost any model.  132 

In the following, we present an overview of the ES-MDA procedure, extensively described by 133 

Emerick and Reynolds (2013) and Evensen (2018), and the algorithm adaptation to use a temporal 134 

localization and a covariance inflation. 135 

2.1 ES-MDA  136 

Consider the following discrete form of a forward model 137 

𝐘 = g(𝐗);  (1) 

given a realization of the model parameters 𝐗 ∈ ℛ)*, the operator g(𝐗) predicts the system state at 138 

measurement locations, 𝐘 ∈ ℛ+. Here, 𝑁- is the number of parameters, which, in our case, depends 139 

on the duration of the unknown discharge hydrograph and the time step selected for its 140 

discretization and 𝑚 is the number of available observations. The inverse problem aims at finding 141 

the parameter vector 𝐗 making use of a set of observations 𝐃 ∈ ℛ+ of the system state 𝐘. The 142 

solution of this problem by means of ES-MDA requires an initialization phase (step 0) and two 143 

main iterative steps: (1) a forecast step in which predictions are made (by means of the forward 144 

model) for an ensemble of parameters 𝐗; (2) an update step in which parameters are corrected based 145 

on the misfit between observations 𝐃 and corresponding model predictions 𝐘.  146 



The iterative procedure of ES-MDA avoids the problem of overcorrection that may occur in the 147 

single global update of ES, leading to unrealistic estimates of some parameters especially when the 148 

misfit between prediction and observations is large. ES-MDA overcomes this problem assimilating 149 

the same data multiple times with an inflated measurement error covariance matrix. This is 150 

accomplished defining a coefficient α1 that, at each iteration i, applies to the measurement error and 151 

its covariance matrix and must satisfy the condition: 152 

2
1
α1
= 1

4

156

. 
 (2) 

where N is the total number of iterations. This condition guarantees an exact equivalence between 153 

single and multiple data assimilation methods at least for linear models (Evensen, 2018). 154 

In the following, the ES-MDA scheme is presented. 155 

0. Initialization step 156 

At the beginning of the procedure, an initial ensemble of parameters must be defined. The 157 

ensemble realizations should be generated using all the available information, but often no 158 

prior data are available. In our specific case, since a flow hydrograph is a continuous 159 

function of time, imposing some degree of continuity in the prior information (initial 160 

ensemble) can lead to a smooth solution consistent with the available data.  161 

The second preliminary step is the choice of the number of iterations N and the coefficients 162 

α1.  163 

We follow the scheme proposed by Evensen (2018) for the computation of the α1, which 164 

ensures that the constraint of Eq. (2) is satisfied. The procedure starts selecting any nonzero 165 

value for α69 , then the following α19 are computed as: 166 

α:;69 = α:9/α=>?,  (3) 



where the constant α=>? controls the extent of the change of α1 from one iteration to the 167 

next. At the end, the values from Eq (3) are scaled to obtain the final coefficients: 168 

α1 = α19 A2
1
α19

4

156

B.  (4) 

The simplest choice is to consider α=>?=1	that	leads	to	a	constant	α1 = N. However, a 169 

gradual decrease of α1, obtained with α=>?>1, can improve the performance of the method, 170 

since it reduces the magnitude of the initial updates in which the misfit between 171 

observations and model predictions is usually larger. 172 

After the initialization step, a loop is started on the number of iterations. 173 

1. Forecast step 174 

The forward model is run on each realization j of the parameter ensemble. For the first 175 

iteration, predictions are generated using the initial ensemble of parameters; for the 176 

following iterations, predictions are generated using the parameters updated at the end of the 177 

previous iteration (i is the iteration index): 178 

𝐘P,1 = 𝐠R𝐗P,1S.  (5) 

2. Update step 179 

The vector of parameters for realization j is updated at each iteration i as follows: 180 

𝐗P,1;6 = 𝐗P,1 +
𝐂𝐗𝐘1

𝐂𝐘𝐘1 + α1𝐑
× R𝐃 +Xα1𝛆P − 𝐘P,1S,  (6) 

where 𝛆P	is the measurement error, which is assumed to follow a Gaussian distribution of 181 

mean zero and covariance matrix 𝐑 ∈ ℛ+×+,𝒩(0, 𝐑). 𝐂𝐗𝐘1 ∈ ℛ]×+ is the cross covariance 182 

matrix between the vectors of parameters and predictions and 𝐂𝐘𝐘1 ∈ ℛ+×+ is the auto-183 

covariance matrix of the prediction vector. 184 



The covariance matrices are computed from the ensemble of realizations at each iteration i 185 

as: 186 

𝐂𝐗𝐘1 = 6
4^_6

2 R𝐗P,1 − 𝐗̀1SR𝐘P,1 − 𝐘̀1S
a4^

P56
, 

 
(7) 

𝐂𝐘𝐘1 = 6
4^_6

2 R𝐘P,1 − 𝐘1SR𝐘P,1 − 𝐘̀1S
a4^

P56
, 

 
(8) 

where N> is the total number of ensemble realizations and 𝐗̀1 and 𝐘̀1 are the ensemble means 187 

of parameters and predictions, respectively. 188 

The update step can be performed in a transformed space, such as the log-space, in order to 189 

prevent the appearance of unphysical negative values. In these cases, the vector of 190 

parameters is log transformed before the update step and back transformed into the 191 

parameter space after the updating. Covariances and cross-covariances must be computed in 192 

the transformed space, too. 193 

Then, return to the forecast step considering 𝐗P,1 = 𝐗P,1_6 and repeat until the last iteration. 194 

It should be noted that the computation of the prediction vectors 𝐘P,1 requires N> simulations at each 195 

iteration. Therefore, the number of ensemble realizations should be kept as small as possible to 196 

reduce computational time. However, a small ensemble size could create spurious correlation in the 197 

covariance matrices 𝐂𝐗𝐘1  and 𝐂𝐘𝐘1  and lead to filter divergence. In the following section, we discuss 198 

covariance localization and covariance inflation techniques, since they are the standard approaches 199 

to overcome this problem. 200 

2.2 Covariance localization and covariance inflation  201 

Covariance localization (CL) is a technique developed to mitigate the problem of long-range 202 

spurious correlations that could arise when the covariances are approximated from a small number 203 

of ensemble realizations not accurately reflecting the statistics of the underlying population. At the 204 



same time, CL expands the degrees of freedom available to assimilate data since it increases the 205 

rank of the ensemble derived covariance matrices —usually rank deficient— even more so when 206 

the ensemble size is lower than the number of unknown parameters or observations. 207 

CL is done by element-wise multiplication (Schur product or Hadamard product) of the original 208 

covariance matrix and a distance-dependent correlation function 𝜌 that smoothly reduces the 209 

correlations between points for increasing distances and cuts off long-range correlations above a 210 

specific distance. CL modifies the update step of the ES-MDA by modifying the covariances in Eq. 211 

(7) and (8) as follows: 212 

𝐂c𝐗𝐘1 = 𝝆𝐗𝐘 ∘ 𝐂𝐗𝐘1 ,  (9) 

𝐂c𝐘𝐘1 = 𝝆𝐘𝐘 ∘ 𝐂𝐘𝐘𝐢 ,  (10) 

where ∘ represents the Schur product and the elements of the matrices 𝝆𝐗𝐘 ∈ ℛ]×+ and 𝝆𝐘𝐘 ∈213 

ℛ+×+ are based on temporal distances between parameters and observations (𝛿hi) and between 214 

observations and observations (𝛿jj), respectively. In this work, we use the fifth-order distance 215 

dependent localization function as defined in Gaspari and Cohn (1999):  216 

𝜌 =

⎩
⎪
⎨

⎪
⎧ −

1
4 p
𝛿
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5
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, 𝑎 ≤ 𝛿 ≤ 2𝑏;

0 𝛿 ≥ 2𝑏;

  (11) 

where the coefficient 𝑏 characterizes the time distance at which the covariances become zero; we 217 

have chosen the same value of 𝑏 for both the parameter-observation and observation-observation 218 

covariance functions.  219 

Covariance inflation is a technique developed to overcome the problem of filter divergence. The 220 

filter divergence may occur when the variance is underestimated leading to overconfidence in prior 221 

estimates and, as a consequence, the ensemble collapses into a set of too similar realizations, which 222 



could be different from the true solution. This reduces the weight given to subsequent updates and 223 

can lead to a divergence of the ensemble since the filter is not able to adjust an incorrect estimation. 224 

Covariance inflation can be achieved by different ways (see e.g. Anderson, 2007; Li et al., 2009; 225 

Liang et at., 2011; Wang and Bishop, 2003; Zheng, 2009); in this work we follow the scheme 226 

introduced by Anderson and Anderson (1999). Each realization of the ensemble (Eq. 4) at the end 227 

of each update step, 𝐗P,1, is linearly inflated around its mean, 𝐗̀1, using: 228 

𝐗�P,1 = 𝑟R𝐗P,1 	− 𝐗̀1S + 𝐗̀1,  (12) 

where 𝑟 is an inflation factor slightly larger than 1.  229 

3 APPLICATIONS AND RESULTS 230 

The application of the ES-MDA for solving reverse flow routing problems is demonstrated by 231 

means of two realistic synthetic examples. First, in order to show the capabilities of the 232 

methodology, we consider a linear inverse problem: the estimation of the inflow hydrograph to a 233 

linear reservoir based on the knowledge of the outflow hydrograph and the reservoir characteristics. 234 

In the second test we apply the methodology to a nonlinear problem of reverse flow routing in an 235 

open channel, where the unknown parameters are the discharge values of the discretized upstream 236 

hydrograph, the observations are the water levels recorded in a downstream section and a calibrated 237 

numerical model for the computation of the forward routing is available. 238 

For both applications, the inflow hydrograph,	I, to be estimated is a multi-peak wave modeled as the 239 

summation of M gamma functions, that is:  240 

I(t) = A + ∑ B� ∙ f�(t|n�, k�)�
�56 ,  (13) 

where t is the time, A [L3T-1] represents the base flow,	B [L3] the flood volume of each gamma 241 

wave r, and f [T-1] is a gamma distribution function of coefficients n (shape) and k (scale): 242 



f(t|n, k) =
1

k�	Γ(n) t
�_6e_�/�,  (14) 

where Γ(n) is the gamma function. 243 

The synthetic test cases allow the comparison between the results of the inverse algorithm and the 244 

reference solution. In our study, the performance of the methodology is evaluated using three 245 

different metrics: the root mean square error (RMSE), the Nash-Sutcliffe efficiency criterion (Nash 246 

and Sutcliffe, 1970) (NSE) and the relative error in the peak discharge (E�). RMSE is computed as:  247 

RMSE = �∑ (I� − X̀�)z
4�
�56

N�
, 

 
 (15) 

where N�	is the number of parameters, I� is the 𝑑-th true inflow discharge and X̀� is the ensemble 248 

mean of the 𝑑-th estimated inflow discharge. 249 

NSE is defined as: 250 

NSE = A1 −
∑ (I� − X̀�)z
4�
�56

∑ (I� − I�̅)z
4�
�56

B ∙ 100,  (16) 

where I�̅ is the mean of the true inflow hydrograph. NSE=100% indicates a perfect match between 251 

estimated and actual discharges.   252 

E� is evaluated as: 253 

E� = p
I�
X̀�
− 1r ∙ 100,  (17) 

where I� and X̀� represent the true and estimated (ensemble mean) peaks of the inflow hydrographs, 254 

respectively. 255 



The results of the second synthetic example are also compared with those obtained applying the 256 

Bayesian Geostatistical Approach (BGA) proposed by D’Oria and Tanda (2012). BGA needs 257 

multiple iterations to reach an optimal solution due to the nonlinearity of the forward problem and 258 

the need to estimate the hyperparameters of the prior covariance model, which control the structure 259 

of the unknown hydrograph, in addition to the discharge values (parameters). At each inner 260 

linearization iteration, the Jacobian matrix (sensitivity of observations to unknown parameters) must 261 

be calculated and it requires, in a finite difference approximation, as many forward model runs as 262 

the number of parameters, 𝑁-, plus 1. Therefore, the total number of forward model runs, 𝑁�, 263 

required by BGA is: 264 

N� = (N� + 1)N?N1 + 1,  (18) 

where N? and N1	are the numbers of BGA iterations needed for hyperparameters (outer loop) and 265 

parameters estimation (inner loop), respectively.  266 

3.1 Case 1: Linear reservoir 267 

In this example, we try to estimate the inflow hydrographs to a reservoir based on the knowledge of 268 

the outflow hydrograph and the reservoir characteristics. 269 

Under the level pool routing approximation (reservoir dynamics are negligible and water surface 270 

inside the reservoir is horizontal), the inflow I(t) and the outflow Q(t)	in a reservoir are related by a 271 

simple continuity equation: 272 

I(t) − Q(t) =
dS
dt, 

 (19) 

where S is the instantaneous volume stored in the reservoir and t is the time. The outflow discharge 273 

is related to the storage; for a linear reservoir it can be expressed as: 274 

S(t) = KQ(t),  (20) 



where the constant proportionality factor K [T] is known as the storage coefficient.  275 

The solution of the continuity equation for the linear reservoir (starting from a steady state 276 

condition) on a continuous time scale is represented by the following convolution integral (Chow et 277 

al., 1988): 278 

Q(t) = �
1
K𝑒

_(�_¡)/¢
�

£
I(τ)𝑑𝜏.  (21) 

A solution at discrete intervals of time can be obtained by means of a discrete convolution equation.   279 

The synthetic test considers a reservoir with storage coefficient K=3 h and an inflow hydrograph 280 

with two peaks as defined by Eq. (13) (M=2) and the coefficients reported in Table 1. The resulting 281 

hydrograph has a first peak of about 500 mx/s at 3.5 h and a second peak with a discharge of about 282 

240 mx/s at 11.4 h. 283 

The total simulation time is 30h. The inflow hydrograph is discretized in equal interval of 9 min 284 

resulting in a number of parameters to be estimated N�=201.  285 

Table 1 - Case 1: coefficients of the two gamma functions used for the description of the inflow hydrograph. 286 

 A [mx/s] B [mx] n [-] k [h] 

𝑓6 
50 

5.5 ∙ 106 8 0.5 

𝑓z 4.5 ∙ 106 20 0.6 

Preliminarily, the actual inflow hydrograph is forward routed through Eq. (21) to obtain the true 287 

outflow hydrograph; this last one was observed every 6 min for a total of 301 observations (m=301) 288 

to be sued in the inverse procedure. In applying the ES-MDA procedure, we considered an 289 

observation error ε equal to 5% of the true discharge values. 290 

The initial ensemble (Fig. 1) is composed of 200 realizations of the inflow hydrograph. They are all 291 

individual gamma functions generated using Eq. (13) with M=1 and the other coefficients selected 292 

randomly over a wide range of values. In particular, the range is [10, 150] mx/s	for A, [1.5∙105, 293 



5.0∙107] mx for B, [3, 10] for n and [0.7, 4.5] h for k; the extremes of the ranges, selected on the 294 

basis of expert knowledge, guarantee that all the realizations are consistent with the considered 295 

problem. 296 

 297 

Fig. 1. Case 1: initial ensemble of inflow hydrograph (200 realizations). 298 

For the ES-MDA, we choose to perform 5 iterations with a constant α equal to 5 (α=>?=1, Eq. (3)-299 

(4)). In this case, no localization or inflation are applied, and a large ensemble is considered with 300 

the aim to show the capability of the method. 301 

Fig. 2 presents the results of the inversion at the end of the iterative process: it shows the ensemble 302 

mean of the estimated inflow and outflow hydrographs with their 95% confidence interval 303 

computed from the ensemble; the actual inflow and outflow hydrographs are reported for 304 

comparison. 305 



 306 

Fig. 2. Case 1: actual and estimated inflow and outflow hydrographs with 95% credibility intervals. 307 

The ES-MDA method accurately reproduces the inflow hydrograph (NSE = 99.94%) with a very 308 

narrow confidence interval, as well as the simulated outflow hydrograph. The RMSE at each 309 

iteration, shown in Fig. 3, slightly decreases during the procedure reaching the lowest value of 310 

2.9 m3/s at the end of the simulation. The two inflow peaks and their timing are properly reproduced 311 

with a slight underestimation (E�,6=-1.1%; E�,z=-0.4%, where the subscript 1 stands for the first 312 

peak and 2 for the second one).  313 

 314 



Fig. 3. Case 1: root-mean-square error (RMSE) of the estimated inflow hydrograph at each iteration. 315 

1.1 Case 2: Open channel  316 

The second test focuses on the estimation of the inflow hydrograph to an open channel based on 317 

water level information collected in a downstream section using a given numerical model for the 318 

forward routing. In this work, we used the Hydrologic Engineering Center's River Analysis System 319 

(HEC-RAS), developed by the US Army Corps of Engineers (Brunner, 2010), that simulates one-320 

dimensional unsteady flow by solving the Saint-Venant equations. 321 

We have considered a prismatic channel, 20 km long, with a longitudinal slope of 0.0005 and 322 

compound cross sections spaced by 250 m consisting of a trapezoidal main channel and two 323 

symmetric floodplains (Fig. 4). The main channel has a bottom width of 50 m, a side slope of 2 and 324 

a depth of 6 m; each floodplain has a width of 50 m, horizontal bottom and vertical banks. Manning 325 

coefficients of 0.05 m-1/3/s and 0.1 m-1/3/s are adopted for the main channel and the floodplain, 326 

respectively. 327 

 328 

Fig. 4. Case2: compound cross section of the prismatic channel. 329 

The true upstream hydrograph is defined by Eq. (13) (M=2) with the coefficients reported in Table 330 

2. The hydrograph has a first peak of about 1000 mx/s at 5 h, a second peak with a discharge of 331 

about 500 mx/s at 14 h and a base flow of 50 mx/s. The total simulation time is 30 h and the 332 

upstream hydrograph is discretized in equal intervals of 30 min (N�=61).  333 



Table 2 - Case 2: coefficients of the two gamma functions used for the description of the inflow hydrograph. 334 

 A [mx/s] B [mx] n [-] k [h] 

𝑓6 
50 

1.6 ∙ 107 8 0.7 

𝑓z 1.4 ∙ 107 18 0.8 

The initial condition is obtained from a steady-state simulation according to the first inflow 335 

discharge value, assuming a steady-state condition before the flood event. The upstream and 336 

downstream boundary conditions are represented by the inflow hydrograph and the normal depth 337 

based on the Manning’s equation, respectively. 338 

The actual inflow hydrograph has been forward routed by means of HEC-RAS to obtain the water 339 

levels used as observations, which are recorded in the section in the middle of the channel, located 340 

10 km downstream from the upstream section, every 30 min (m=61). We consider a random 341 

observation error ε with normal distribution, zero mean and variance 2.8∙10-4 mz, that results in the 342 

99.7% of the cases in errors in the range ±0.05m. 343 

In this work, different settings of the inverse algorithm have been tested in the estimation of the 344 

upstream hydrograph; we analyzed the impact of the ensemble size, the choice of the coefficient α 345 

during the iteration process, the covariance localization and the covariance inflation techniques. 346 

We tested three ensemble sizes equal to: half the number of parameters (N>=31), the number of 347 

parameters (N>=61) and three times the number of parameters (N>=183). All the realizations of the 348 

initial ensembles are individual gamma functions generated using Eq. (13) with M=1 and 349 

coefficients selected randomly over the same wide range of values ([2, 180] mx/s for A, [8∙104, 350 

8∙107] mx for B, [3, 18] for n,	[0.6, 4.8] h for	k). 351 

For each ensemble size, we carry out four tests: the first test (T1) is performed with a constant 352 

coefficient α (Eq. (4)) used for all iterations and without other modifications on the inverse 353 

algorithm; the second one (T2) attempts to evaluate the effect of decreasing coefficient α as 354 

iterations progress; the third one (T3) studies the effect of covariance localization and covariance 355 



inflation keeping α constant; and the last test (T4), combines covariance modification (localization 356 

and inflation) with a decreasing α.  357 

We decided to perform 6 iterations for each test, with a constant α equal to 6 (α=>?=1, Eq. (3)-(4)), 358 

for test T1 and T3 and a decreasing α	= [364; 121.33; 40.44; 13.48; 4.49; 1.50], obtained with 359 

α=>?=3 (Eq. (3)-(4)), for T2 and T4 (recall that the sum of the inverses of α values should add up to 360 

1 (Eq. (2)). Covariance localization and covariance inflation are applied using the coefficient 𝑏 361 

equal to 6 h (Eq. (9)) and the inflation factor equal to 1.01 (Eq. (12)), respectively. In this case, the 362 

update step is performed in logarithmic space to avoid the appearance of negative values. 363 

The results of all tests are compared in term of the root mean squared error (RMSE) between the 364 

estimated hydrograph and the reference solution (Fig. 4). In all cases, the RMSE significantly 365 

decreases at each iteration, reaching low values at the end of the inversion. For the smaller 366 

ensemble size (Fig. 5a) the method performs better when a decreasing α (T2) is used and when 367 

covariance inflation and localization techniques are used (T3), with the best results obtained when 368 

both options are used simultaneously (T4). For the larger ensemble size (Fig. 5b; Fig. 5c), the final 369 

RMSE is always smaller than for the smaller ensemble, and in all four experiments the final 370 

hydrograph is very close to the real one. Yet, the best performance, at the last iteration, is obtained 371 

for the experiment T4. Table 3 reports the RMSEs at the end of each test, together with the Nash-372 

Sutcliffe efficiency criterion and the relative errors in the peak discharge. 373 



 374 

Fig. 5. Case 2: RMSE of the estimated inflow hydrograph for ensemble size N>=30 (a), N>=61 (b) and N>=138 (c). 375 

All the NSE values are above 99% indicating an accurate reproduction of the shape of the upstream 376 

hydrograph; the peaks are properly reproduced with E� values lower than 2.15%, with only an 377 

exception (T1, 𝑁ª=30). Like RMSE, the metrics NSE and E� confirm that decreasing α during the 378 

iterative process and adopting covariance modification techniques improve the performance of the 379 

ES-MDA especially when a small ensemble size is used. 380 

Table 3 - Case 2: root mean square error (RMSE), Nash-Sutcliffe efficiency criterion (NSE) and relative error in the peak discharge 381 

(E�) between estimated and true inflow hydrographs for the four different tests (T1-T4) and for ensemble sizes 𝑁ª=30, 61, 183 at the 382 

end of the iterative process. 383 

 𝑵𝐞=30 𝑵𝐞=61 𝑵𝐞=183 

 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 

RMSE [m3/s] 25.47 12.12 8.57 3.32 15.17 9.53 6.71 2.56 6.11 6.17 5.17 1.89 

𝐍𝐒𝐄[%] 99.06 99.78 99.89 99.98 99.67 99.87 99.93 99.99 99.95 99.94 99.96 99.99 

𝐄𝐏,𝟏[%] 8.15 -0.18 1.79 -0.20 0.73 2.13 0.27 -0.28 1.28 1.53 -1.01 -0.66 

𝐄𝐏,𝟐[%] -0.11 1.61 2.09 -0.24 0.62 0.46 1.47 0.36 0.65 0.73 0.87 -0.10 

 384 

For the sake of brevity, we show only the hydrographs resulting from the inversion obtained when 385 

the ensemble size is small and for two of the experiments, the one with no modifications of the ES-386 



MDA algorithm (T1) and the one using a decreasing α and covariance localization and inflation 387 

techniques (T4). In Fig. 6 the true values and the ensemble means of the estimated inflow 388 

hydrographs with their 95% confidence intervals are depicted. Fig. 7 shows the true observations 389 

and the ensemble means of the estimated water levels with their 95% confidence interval. In both 390 

figures the residuals between actual and estimated values are also shown. 391 



 392 

Fig. 6. Case 2: actual and estimated upstream hydrographs with 95% confidence intervals (bottom) and residuals between actual and 393 

estimated values (top) resulting from tests T1 and T4 with N>=30. 394 

 395 

Fig. 7. Case 2: actual and estimated water levels with 95% confidence intervals (bottom) and residuals between actual and estimated 396 

values (top) resulting from tests T1 and T4 with N>=30. 397 

Test T1 reproduces the shape of the inflow hydrograph quite well (NSE = 99.06%), but with a larger 398 

error on the first peak (E�,6=8.15); the observations are not perfectly reproduced everywhere and 399 

the residuals are high in some points. Meanwhile, test T4 leads to a good match between the true 400 



and estimated inflow hydrograph (NSE = 99.98%) and the true and estimated water levels with very 401 

small residuals. The inflow peaks and their timing are properly reproduced with negligible errors 402 

(E�,6=-0.2%; E�,z=-0.4%).  403 

Finally, we compare the results of test T4, obtained with the smaller ensemble size, with those of 404 

the Bayesian Geostatistical Approach. The test is performed coupling BGA with the same forward 405 

model used for the solution of Case 2, considering the same simulation time (30 h) and 406 

discretization of the unknown hydrograph (N�=61). The true observations were perturbed with 407 

random errors with zero mean and variance 2.8∙10-4 mz. We selected a number of iterations for the 408 

linearization process (inner loop) equal to N1=5 and equal to N?=4 for the outer loop required to 409 

estimate the hyperparameters. 410 

The results of the comparison are reported in Fig 8. The BGA method accurately estimates the 411 

inflow hydrograph (RMSE=4.2 m3/s, NSE=99.97%) with small residuals and small errors in the 412 

estimation of the peaks (E�,6=-1.0%; E�,z=-0.3%). The two approaches show fully comparable 413 

results, which are confirmed by a very similar residual range and the almost equal values of the 414 

performance metrics. However, ES-MDA outperform BGA in terms of total number of forward 415 

model runs required and hence computational time: 1241 (Eq 18) runs for BGA and 182 (N> ∙ N1) 416 

for ES-MDA. 417 



 418 

Fig. 8 Case 2: actual and estimated upstream hydrographs (bottom) and residuals between actual and estimated values (top) resulting 419 

from BGA and ES-MDA (T4, N>=30) approaches.  420 

4 SUMMARY AND CONCLUSIONS 421 

In this paper, we propose a new approach for the solution of the reverse flow routing problem using 422 

an ensemble Kalman filter technique: the Ensemble Smoother with Multiple Data Assimilation (ES-423 

MDA). The unknown parameters, represented by the temporal discretization of the upstream 424 

hydrograph, are estimated based on discharge or water level information recorded downstream. 425 

Two synthetic examples are considered to test the methodology. The first case shows the capability 426 

of the inverse procedure in estimating the inflow hydrograph to a linear reservoir, where the outflow 427 

hydrograph and the reservoir characteristics are known. It is noteworthy that for linear problems the 428 

ensemble smoother methods should lead to the exact solution in a single update step, provided that 429 

the observations are free of errors and the initial ensemble is statistically representative of the 430 

variability of the unknowns. In our case, due to the presence of corrupted observations, the ES-431 

MDA updates the vector of parameters in multiple iterations. At the end of the process, the true 432 

inflow hydrograph is accurately reproduced; the Nash-Sutcliffe efficiency criterion (NSE) is 433 



99.94%, the errors in the peak discharges are less than 1.1% and the RMSE reaches the small value 434 

of 2.9 m3/s. 435 

The second case study validates the method for non-linear problems by estimating the inflow 436 

hydrograph to an open channel based on water level information collected in a downstream section 437 

and for given forward routing model. Four tests were performed to investigate the effect of different 438 

settings of the inverse algorithm: the ensemble size, the decreasing α during the iterative process 439 

and the temporal localization and inflation of the covariances. In all tests, the NSE exceeds 99% 440 

and, as expected, the ES-MDA reaches a better solution increasing the ensemble size. However, as 441 

the ensemble becomes larger, the computational time increases, since, at each iteration, the method 442 

requires a number of forward runs equal to the number of realizations. The results of our tests show 443 

that a significant improvement in the inverse solution is obtained if a decreasing α and the 444 

covariance modifications are applied, the ensemble size being equal. This is particularly clear 445 

working with small ensemble sizes, since covariance localization and inflation overcome the 446 

problem of undersampling that occurs when a low number of realizations is used. The test 447 

performed with the smaller ensemble size using a decreasing α and the covariance modifications 448 

reproduces very well the inflow hydrograph with negligible errors. The NSE is 99.98 % and the 449 

relative error in the peak discharges are less than 0.3%; these values are fully comparable with those 450 

obtained with the larger ensemble size. The RMSE is 3.32 m3/s, which corresponds to a reduction 451 

of about 87% compared to test with constant α and the basic algorithm for the same ensemble size. 452 

In summary, the modified ES-MDA method allows to solve the reverse flow routing problems 453 

using also small ensemble sizes (with a total number of realizations less than the number of 454 

parameters) leading to a significant reduction of the computational burden. The modified algorithm 455 

provides results comparable with those of the other optimization methods presented in the recent 456 

literature, although ES-MDA achieves the solution with a lower number of forward runs. In 457 

addition, the forward runs related to the ensemble realizations can be easily parallelized allowing an 458 



additional reduction of the computational time. Moreover, another important advantage of the 459 

method is the capability to assess the uncertainty in the estimations from the realizations of the 460 

ensemble. It allows to quantify the uncertainty associated with both the unknown parameters and 461 

the reproduction of the observations, which is a novelty in the solution of the reverse flow routing 462 

problem.  463 

It is noteworthy to point out that one can handle non-Gaussian distributed parameters, and it is well 464 

known that the ensemble Kalman filter methods are optimal for multiGaussian distributed variables. 465 

Our results, for the analyzed case studies, show that ES-MDA was able to reach a good solution in 466 

all cases. However, for those cases in which the method may fail due to the non-Gaussianity of the 467 

parameters, different approaches are presented in the literature to overcome the problem; we 468 

suggest to couple ES-MDA with the Normal-Score transformation, which it is shown to work 469 

properly with ensemble Kalman filter methods (Zhou et al., 2011; Li et al., 2018b). 470 

Finally, another aspect that should be taken into account is the uncertainty in the forward model. 471 

Since the inverse methodology requires a numerical model able to accurately describe the forward 472 

processes, the errors in the model structure (likely systematic and correlated, see e.g. Gaganis and 473 

Smith, 2001) could add to the measurement noise. Therefore, in real applications, a proper and 474 

calibrated forward model is crucial to obtain a reliable inverse solution and an examination of the 475 

most uncertain model parameters is advisable. Approaches that quantitatively account for structural 476 

model uncertainties will be investigated in a future work. 477 
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