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Abstract 10 

Stochastic upscaling of flow and reactive solute transport in a tropical soil is performed 11 

using real data collected in the laboratory. Upscaling of hydraulic conductivity, longitudinal 12 

hydrodynamic dispersion, and retardation factor were done using three different 13 

approaches of varying complexity. How uncertainty propagates after upscaling was also 14 

studied. The results show that upscaling must be taken into account if a good reproduction 15 

of the flow and transport behavior of a given soil is to be attained when modeled at larger 16 

than laboratory scales. The results also show that arrival time uncertainty was well 17 

reproduced after solute transport upscaling. This work represents a first demonstration of 18 

flow and reactive transport upscaling in a soil based on laboratory data. It also shows how 19 

simple upscaling methods can be incorporated into daily modeling practice using 20 

commercial flow and transport codes. 21 
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 24 

1. Introduction  25 

Solute transport numerical modeling is a powerful tool to predict aquifer response in a 26 

remediation plan, to evaluate the impact of a radioactive underground repository on the 27 

biosphere, to verify the efficacy of geological materials to be used as liners in landfills, to 28 
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assess health risks due contaminant exposure, or to be used in decision-making 1 

processes (Bellin et al., 2004; Dagan, 2004; Feyen et al., 2003a, 2003b). Numerical 2 

models require input parameters that must be determined reliably to guarantee the quality 3 

of their predictions (Willmann et al., 2006). 4 

Hydraulic conductivity (K) and transport parameters such as hydrodynamic dispersion 5 

coefficient (D), dispersivity (α) and retardation factor (R) are, generally, determined in the 6 

laboratory at a scale of a few centimeters (fine scale) (Jarvis, 2007; Jellali et al., 2010; 7 

Logsdon Keller and Moorman, 2002; Osinubi and Nwaiwu, 2005; Tuli et al., 2005; 8 

Vanderborght et al., 2000). Modeling water flow and solute transport at a fine-scale 9 

resolution is impractical, especially when modeling must be repeated many times, such 10 

as in stochastic analyses (Feyen et al., 2003a; Lawrence and Rubin, 2007). 11 

Numerical simulations are performed in a scale of meters to kilometers (coarse scale), 12 

using equivalent parameters, homogeneous in each model cell (Wen and Gómez-13 

Hernández, 1996). This implies a simplification of the problem since not all fine-scale 14 

information is transferred to the coarse scale (Bellin et al., 2004; Fernàndez-Garcia and 15 

Gómez-Hernández, 2007). In addition, the lack of exhaustive information implies 16 

uncertainty on flow and transport predictions, which should also be taken into account 17 

when performing upscaling (Fernàndez-Garcia and Gómez-Hernández, 2007; Gómez-18 

Hernández and Wen, 1994; Li et al., 2011a). 19 

We face two main problems in solute transport modeling. The first one is how to treat 20 

parameter spatial heterogeneity and the second one is how to account for the difference 21 

of scales between measurements and modeling scales (Dagan, 1989; Gómez-22 

Hernández et al., 2006; Taskinen et al., 2008). The first problem can be tackled by using 23 

geostatistical techniques such as simulation or estimation that permit a coherent 24 

assignment of values at locations where measurements were not taken based on the 25 

values observed at measurement locations (Capilla et al., 1999; Cassiraga et al., 2005; 26 

Journel and Gomez-Hernandez, 1993; Li et al., 2011b; Morakinyo and Mackay, 2006; 27 

Wen et al., 1999; Zhou et al., 2012, 2010). The second problem can be solved by defining 28 

upscaling rules that incorporate subgrid heterogeneity of the parameters that control flow 29 

and solute transport, and that transfer the information obtained at the fine scale onto the 30 
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coarse scale to be used in the numerical code (Deng et al., 2013; Fernàndez-Garcia and 1 

Gómez-Hernández, 2007; Li et al., 2011b). 2 

The upscaling of hydraulic conductivity is well established in the literature and several 3 

approaches have been reported, showing the limitations and effectiveness of local and 4 

non-local upscaling methods for the reproduction of water flow patterns under different 5 

types of heterogeneity (Cadini et al., 2013; Cassiraga et al., 2005; Fernàndez-Garcia and 6 

Gómez-Hernández, 2007; Gómez-Hernández et al., 2006; Li et al., 2011a; Lourens and 7 

van Geer, 2016; Renard and de Marsily, 1997; Sánchez-Vila et al., 1996; Selvadurai and 8 

Selvadurai, 2014; Wen and Gómez-Hernández, 1996). However, upscaling hydraulic 9 

conductivity only is not enough to reproduce the fine-scale transport behavior at the 10 

coarse scale due to the loss of K heterogeneity present at the fine scale that influences 11 

solute transport behavior (Cassiraga et al., 2005; Journel et al., 1986; Scheibe and 12 

Yabusaki, 1998). Fernàndez-Garcia and Gómez-Hernández (2007) proposed a method 13 

to compensate for the loss of information due to hydraulic conductivity upscaling, 14 

consisting of introducing an enhanced block hydrodynamic dispersion tensor and found 15 

that the median travel times of the breakthrough curves (BTC) were well reproduced but 16 

the tails were not. 17 

While less common than flow upscaling studies, some solute transport upscaling works 18 

can be found in the literature showing the characteristics and limitations of different 19 

transport upscaling methods using deterministic and stochastic approaches of varying 20 

complexity (Bellin et al., 2004; Cadini et al., 2013; Cassiraga et al., 2005; Fernàndez-21 

Garcia et al., 2009; Fernàndez-Garcia and Gómez-Hernández, 2007; Gómez-Hernández 22 

et al., 2006; Moslehi et al., 2016; Salamon et al., 2007; Tyukhova and Willmann, 2016; 23 

Vishal and Leung, 2017; Xu and Meakin, 2013).  24 

Most transport upscaling studies are based on synthetic experiments for nonreactive 25 

solute transport and focus on the upscaling of only a single transport parameter, for 26 

example, the hydrodynamic dispersion or the retardation factor. There is still a lack of 27 

studies that intend to define upscaling rules based on real data from laboratory 28 

experiments of reactive solute transport in heterogeneous soils. In addition, to the best of 29 

our knowledge, performing upscaling considering at the same time the heterogeneity of 30 
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dispersivity and retardation factor at the local scale has not been discussed in the 1 

literature. Determining equivalent transport parameters in tropical soils, present in many 2 

regions of the world and related to important engineering problems, has not been 3 

performed before; this is a gap we also aim to reduce. 4 

The purpose of this study is to propose upscaling rules for reactive solute transport, using 5 

fine-scale data obtained at the laboratory from water flow and reactive solute transport 6 

experiments using undisturbed tropical soil columns. We must clarify that in this work we 7 

are not investigating chemical reactions but only sorption (due to physical retention and/or 8 

adsorption) (Freeze and Cherry, 1979). A solute will be considered nonreactive when the 9 

retardation factor, R, is equal to one, while it will be considered reactive when is larger 10 

than one. 11 

Differently from earlier studies (Fernàndez-Garcia et al., 2009; Fernàndez-Garcia and 12 

Gómez-Hernández, 2007), we use a Simple Laplacian-with-skin method to upscale 13 

hydraulic conductivity (Gómez-Hernandez, 1990; Li et al., 2011b) in order to obtain the 14 

best reproduction of water flow as observed at the fine scale. In line with the work by 15 

Fernàndez-Garcia and Gómez-Hernández (2007), we use the Enhanced 16 

Macrodispersion Coefficient approach but, as a novelty, the determination of the 17 

macrodispersion coefficient was made by considering also the heterogeneity of 18 

dispersivity, α, at the local scale. To study the upscaling of retardation factor, the p-norm 19 

approach, i.e., power averaging of the cell values within the block, was used to compute 20 

an equivalent R after a prior analysis to determine an optimal exponent p (Gómez-21 

Hernández et al., 2006a). Contrasting with the majority of previous studies that focused 22 

on a single realization, we perform a stochastic analysis to study the variability of the 23 

upscaled parameters but also the propagation of uncertainty after upscaling. The 24 

assessment of the upscaled models is based on the reproduction at the coarse scale of 25 

the breakthrough curves (BTC) obtained at the fine scale at a selected control plane. 26 

2. Upscaled transport model 27 

The Macrodispersion method as described by Fernàndez-Garcia and Gómez-Hernández 28 

(2007) was used to upscale the local-scale hydrodynamic dispersion, thus accounting for 29 
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the reduction of within-block heterogeneity. The retardation factor was upscaled using the 1 

p-norm approach. These two methods were used for their simplicity and for its readiness 2 

to use in commercial transport codes based on the classical advection-dispersion 3 

equation (ADE). In this section, some details about them are provided. We recognize that 4 

sometimes the use of the ADE at the coarse scale may be inadequate to reproduce 5 

reactive solute transport at the fine scale, as discussed in previous studies (Fernàndez-6 

Garcia et al., 2009; Li et al., 2011b). Because of that, we also intend to show the possible 7 

limitations of the use of the ADE to upscale transport solute parameters.  8 

2.1. Hydrodynamic dispersion upscaling using the ADE 9 

At the fine scale, the flow equation, assuming steady-state flow in the absence of sinks 10 

and sources for an incompressible fluid in a saturated porous media, is given by 11 

 ∇.(Kf(x)∇h(x))=0. (1) 

This equation results of combining Darcy’s Law and the continuity equation, where h is 12 

the piezometric head, Kf is a second-order symmetric hydraulic conductivity tensor 13 

(observed at the fine scale), x represents the spatial location, ∇ is the gradient operator, 14 

and ∇ · the divergence operator. 15 

Assuming that Fick’s law is appropriate at the local scale, solute transport is given by the 16 

ADE equation, which is a mass balance equation, written, for a nonreactive solute, as 17 

 nf ∂C(x,t)
∂t =-∇.	'q(x)C(x,t)(+∇.(nf(Df∇C(x,t)), (2) 

where q is the Darcy velocity given by q(x) = - Kf (x)∇h(x), nf is the porosity, C is the 18 

solute concentration, and Df is the local hydrodynamic dispersion coefficient tensor with 19 

eigenvalues given by 20 

 Di
f=Dm+αi

|qf|
nf , (3) 

where Dm is the effective molecular diffusion coefficient and αi are the local dispersivity 21 

coefficients. The dispersivitiy values parallel and transverse to the flow direction are 22 

designated as longitudinal and transverse dispersivities, αL and αT. 23 
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Eq.(1)(1) and Eq.(2) are used to solve the water flow and transport equations at the fine 1 

scale, respectively. However, due to the need to solve those problems on a grid coarser 2 

than the scale of the measurements, it is necessary to use block equivalent parameters 3 

(hereafter, block properties will be identified by the subscript b). According to Fernàndez-4 

Garcia and Gómez-Hernández (2007), a block equivalent hydraulic conductivity tensor, 5 

Kb, must preserve the fine-scale average flux through the block. Whereas a block 6 

equivalent hydrodynamic dispersion tensor, Db, should consider not only the dispersive 7 

fluxes at the fine scale (herein referred to as fine scale hydrodynamic dispersion) but also 8 

should account for the loss of spreading caused by the homogenization of the hydraulic 9 

conductivities. The enhanced block hydrodynamic dispersion tensor Db includes an 10 

equivalent fine-scale local dispersivity (αeq) plus a macrodispersivity term (Ai), which is 11 

computed so as to increase the dispersion in the upscaled (homogeneous) block. Using 12 

αeq and Ai to compute Db is known as the Macrodispersion approach; the resulting 13 

macrodispersion tensor is  14 

  Db=Dm+'αeq+Ai(
|qf|
nf . (4) 

The term Ai is constant over time but varies in space among blocks. According to Gelhar 15 

et al. (1992), Ai can range from meters to kilometers while αeq ranges in the order of 16 

millimeters. Based on a literature review, Zech et al. (2015) showed that 17 

macrodispersivities can range from millimeters to meters. In this paper, block equivalent 18 

dispersivities will be named αb = αeq +Ai. 19 

In the macrodispersion approach, upscaling is based on the macrodispersion concept 20 

(Gelhar and Axness, 1983) and the resulting transport equation to be used at the coarse 21 

scale has the same form as the local ADE at the fine scale, but replacing the local 22 

hydrodynamic dispersion tensor by the new macrodispersion tensor.  23 

2.2. Upscaling of the retardation factor  24 

The governing equation of solute transport subject to advection, hydrodynamic 25 

dispersion, and sorption in a physically and chemically heterogeneous aquifer at the fine 26 

scale can be expressed as 27 
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 ∂C(x,t)
∂t +

ρd
nf

∂S(x,t)
∂t =-

1
nf ∇.'q(x)C(x,t)(+

1
nf ∇.(Df∇C(x,t)), (5) 

where ρd is the matrix bulk density and S is the nonaqueous-phase concentration of 1 

sorbed solutes. The relation between C and S is established through a sorption isotherm. 2 

The simplest sorption isotherm function assumes that sorption is instantaneous, 3 

reversible and that the concentration of sorbed solutes onto the solid is directly 4 

proportional to the concentration of dissolved solutes (Freeze and Cherry, 1979). The 5 

constant of proportionality between C and S is the distribution coefficient (Kd)  6 

 Kd(x)=
S(x)
C(x) ≥0, (6) 

which quantifies the interaction between the contaminants and the soil particles. This 7 

parameter is spatially variable and its variation can exert a key role in the behavior of the 8 

solute plumes (Brusseau, 1998; Brusseau and Srivastava, 1999; Robin et al., 1991). 9 

There is no consensus about the cross-correlation between Kd and K. According to Robin 10 

et al. (1991), this correlation, in real fields, may range from weakly negative to mildly 11 

positive. In the studied soil, a very weakly negative correlation between lnK and Kd was 12 

found (-0.02) and because of that, we assumed no correlation between them. 13 

The retardation factor R is related to Kd by,  14 

 R (x)= 1+
ρd

nf(x)
Kd(x), (7) 

and can be interpreted as the ratio of the average fluid velocity (v) (v = q (x)/ nf ) to the 15 

velocity at which the solute propagates (vs) (Freeze and Cherry, 1979) 16 

 R(x)= 
v
vs

≥1. (8) 

When the solutes do not interact with the solid medium (i.e., they are nonreactive), R = 1. 17 

Solutes with R > 1 are called reactive solutes (Freeze and Cherry, 1979; Shackelford, 18 

1994).  19 

It is important to mention that in FEFLOW (the computer code used in this work) R is 20 

expressed as a function of the Henry's adsorption constant, k [-], as  21 
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 R (x) =1+
1-nf

nf  k(x). (9) 

Including R in the transport equation by combining Eq. (5) and Eq. (7) results in the 1 

reactive transport equation given by: 2 

 ∂C(x,t)
∂t  R(x)nf+∇. )nfv(x)C(x,t)*=∇. )Df∇C(x,t)* . 

(10) 

The information obtained at the fine scale cannot be used directly at the coarse scale and 3 

it is necessary to calculate a block equivalent retardation factor Rb representative of the 4 

heterogeneity of the retardation factor within the block. This block value must be able to 5 

reproduce the mass flux breakthrough curve (BTC) obtained at the fine scale simulation 6 

when applied to the transport equation with homogeneous parameters within model 7 

blocks at the coarse scale. 8 

Since the reproduction of the complete BTC is impossible to achieve, it is necessary to 9 

select which part of the BTC one would like to reproduce best, according to the objective 10 

of the numerical modeling (Gómez-Hernández et al., 2006). 11 

For the calculation of Rb, the p-norm (power averaging) of R(x) can be used 12 

 Rb=+
1
V, Rf

p(x)dx
V

-

1
p

, (11) 

where V indicates the volume of the block and Rf represents the retardation factors at the 13 

fine scale. Depending on the power exponent used, the p-norm will be more affected by 14 

the low values, or by the high values within the block. In this approach, the challenge is 15 

to find the exponent p that will result in an Rb that best reproduces, at the coarse scale, 16 

the transport observed at the fine scale; to find it, numerical simulations must be 17 

performed. This technique follows the line of the power averaging equation used for 18 

calculating equivalent hydraulic conductivity by (Gómez-Hernández and Gorelick, 1989; 19 

Journel et al., 1986). 20 
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3. Field characterization 1 

3.1. Studied soil 2 

The studied tropical soil is found on lithologies belonging to the Botucatu Formation in 3 

São Carlos City (21°51′38″ S, 47°54′14″ W), located in the East-Center of São Paulo State 4 

(Brazil). It consists of fine-grained to medium-sized sandstones, with a reddish color, well-5 

selected grains, high sphericity, and very friable or silicified. Cenozoic sediments are the 6 

parental material of the studied soil and cover the Botucatu Formation. These sediments 7 

are constituted by unconsolidated sands with a thickness ranging from 5 m to 7 m, and 8 

can be found in the interior of São Paulo (Azevedo et al., 1981; Giacheti et al., 1993).  9 

The study area is a parallelepiped with dimensions ∆x = 12 m, ∆y = 8 m, and ∆z = 4 m, 10 

from where the soil samples were taken. At the laboratory, the soil was characterized as 11 

clayey sand with macropores and double porosity fabric, an important characteristic in 12 

terms of water flow and solute transport. The main minerals present in the studied soil 13 

are quartz, kaolinite, and gibbsite, what is in accordance with Giachetti et al. (1993) and 14 

Kronberg et al. (1979). We found a small average amount of organic matter (2.40%) in 15 

this soil, common in lateritic acidic soils (Mahapatra et al., 1985). Average values of 5.71 16 

and 5.19 for pH in H2O and KCl, were obtained, respectively, therefore, the soil can be 17 

considered strongly acidic, a typical characteristic of Cenozoic sediments and lateritic 18 

soils (Fagundes and Zuquette, 2011; Giacheti et al., 1993). 19 

The negative ΔpH (-0.52) and a point of zero charge (PZC) (4.67) lower than the pHH2O 20 

indicate a predominance of negative charges, which can promote cation adsorption 21 

(Fagundes and Zuquette, 2011). The soil has a low cation exchange capacity (CEC) 22 

(mean value of 2.51 cmolc Kg-1 and maximum value of 4.20 cmolc Kg-1), suggesting a 23 

low capacity to adsorb cations by electrostatic adsorption (Fagundes and Zuquette, 24 

2011).  25 

3.2. Experimental determination of water flow and transport parameters 26 

In order to characterize the hydraulic conductivity and the transport parameters, 55 27 

undisturbed cylindrical soil samples of 0.10 m diameter and 0.15 m height were taken in 28 
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the domain described earlier. In the laboratory, K was measured under constant-head 1 

conditions, with a hydraulic gradient equal to one, using a rigid-wall permeameter, at a 2 

constant temperature of 20 ºC.  3 

The total porosity was computed as nt = 1-ρd/ρs, where ρs is the particle density, calculated 4 

as 2.71 Mg·m-3. The effective porosity, used in the transport model, is equal to the total 5 

porosity minus the porosity that corresponds to the soil water content at 33 kPa, a suction 6 

equivalent to the field capacity (Ahuja et al., 1984; Brutsaert, 1967; Corey, 1977; 7 

Dippenaar, 2014).  8 

When steady-state flow was reached in the flow tests, miscible displacement tests were 9 

performed. A solution 2.56 mol m-3 KCl (made up of 100 mg L-1 K+ and 90.7 mg L-1 Cl-, 10 

and referred to as the initial concentration, C0) was continuously injected into the soil 11 

column. Solute displacement tests were also carried out under constant hydraulic head 12 

and isothermal (20 °C) conditions. The concentration (C) was measured at preset time 13 

intervals and the BTC’s were determined at the outlet. Since in this work we are interested 14 

in reactive transport, only the results related to the reactive solute (potassium ion, K+) are 15 

discussed. 16 

The advection-dispersion equation (ADE) used to interpret the BTCs is  17 

 R 
∂C
∂t =D

∂2C
∂x2 -v

∂C
∂x 	, 

(12) 

where C is the solute concentration [ML-3], D is the hydrodynamic dispersion coefficient 18 

[M2T- 1], R is the retardation factor [-], x is the distance [L], and t is the time [T].  19 

When the initial condition is C = 0 for the entire sample, and the boundary conditions are 20 

C = C0 at the inlet and C = 0 at an infinite distance from the inlet, Eq (12) has the following 21 

analytical solution, 22 

 
C(t)
C0

=
1
2 0erfc 1

RL-vt
2√DRt

34+
1
2 exp 1

vL
D 3erfc 1

RL+vt
2√DRt

3	, (13) 

where erfc(·) is the complementary error function 23 

This expression was fitted to the observed BTCs for each soil sample and values of the 24 

hydrodynamic dispersion and the retardation factor were obtained for both K+ and Cl-. 25 

The fitting was performed using the computer program CFITM (van Genuchten, 1980), 26 



11 
 

that is part of the Windows-based computer software package Studio of Analytical Models 1 

(STANMOD) (Šimůnek et al., 1999). From the values of the hydrodynamic dispersion 2 

obtained after the fitting, the dispersivity values were calculated using the relation 3 

 D= α · v	. (14) 

The fit of the experimental BTC to the ADE model was evaluated by its R2. Most BTCs 4 

presented significant tailing, R2 ranged from 0.77 to 0.99 with a mean of 0.92. We 5 

conclude that the experimental data can be properly described by the ADE model.  6 

3.3. Spatial variability 7 

The exploratory statistics of the 55 measurements of the studied variables (K, n, α, and 8 

R) are summarized in Table 1. K, R and α displayed high variability (Fu and Gómez-9 

Hernández, 2009; Robin et al., 1991; Wilding and Drees, 1983), on the contrary, the 10 

porosity presented a very low variability (Wilding and Drees, 1983). 11 

The measured K and α values are best fitted by lognormal distributions. The lognormal 12 

model implies that the natural logarithms of K (lnK) and α (lnα) are modeled by Gaussian 13 

distributions. The normality of lnK and lnα was confirmed by the Kolmogorov-Smirnov test 14 

with a 95% confidence interval. The measured porosity and retardation factor could not 15 

be fitted by a normal distribution and they were transformed into normal variables using 16 

an empirical anamorphosis (also known as a normal-score transform). All transformed 17 

variables were standardized to normal distributions of mean zero and variance one. 18 

Variogram analysis was performed in the standardized variables lnK, n, lnα, and R.  19 

Geostatistical techniques were used to build a model of the spatial variability of the 20 

parameters with the purpose of estimating the properties at unsampled locations 21 

(Goovaerts, 1999). The theory of geostatistics is based on the random function model 22 

assumption, where variables are modeled as spatially correlated random variables. 23 

Within this framework, it is possible to perform coherent inferences about a variable and 24 

its spatial variability. 25 

Using the Stanford Geostatistical Modeling Software (SGeMS) (Remy, 2004), we 26 

conclude that the 55 measurements showed a spatial variability that can be modeled by 27 

an isotropic spherical variogram of the form 28 
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 γ(h)=c0+c1.sph(|h|,a), (15) 

where a is the range, c0 is the nugget effect, c1 is the sill, h is the directional lag distance, 1 

and sph(·) is the spherical function. We have decided to use an isotropic variogram after 2 

investigating the ranges of the variograms in several directions and observing that there 3 

is no a significant difference on the continuity patterns as orientation changes. Due to the 4 

limited number of samples in the vertical direction, we assumed that the spatial correlation 5 

obtained for the horizontal direction is the same in the vertical direction. This choice can 6 

also be justified by the absence of clear anisotropies in the soil; it is well known that the 7 

spatial correlation anisotropy is, among other reasons, the responsible for the flow 8 

anisotropy (Lake, 1988). Table 2 shows the parameters of the variogram models used to 9 

fit the isotropic experimental variograms. 10 

The variograms of the solute transport parameters contain a nugget effect, which implies 11 

short-scale spatial variability and/or measurement error. According to the nugget-to-total-12 

sill ratio classification, these variables had a moderate spatial dependence (Cambardella 13 

et al., 1994). 14 

4. Numerical simulations 15 

4.1. Simulation of the random fields 16 

Within the random field theory (Griffiths and Fenton, 2008; Vanmarcke, 1983), the 17 

variables, lnK, lnα, n—actually its normal-score transform—, and R—actually, its normal-18 

score transform—are modeled as random variables at each location in space. These 19 

random variables are represented by a probability density function (pdf) that measures 20 

the likelihood that the random variable takes a specific value at a given location 21 

(Cassiraga et al., 2005). First- and second-order stationary Gaussian random fields were 22 

used to model all variables. A Gaussian random field is completely defined by its first two 23 

moments, mean and variance, and its autocorrelation function, and it is represented by 24 

the infinite set of multivariate Gaussian distributions that can be built with any combination 25 

of points within some spatial domain (Griffiths and Fenton, 2008; Vanmarcke, 1983). 26 

Thirty equally-likely and conditioned realizations of lnK, n, lnα and R were generated using 27 

the Sequential Gaussian Simulation (SGS) algorithm as implemented in the code 28 
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GCOSIM3D (Gómez-Hernández and Journel, 1993) using the variogram functions whose 1 

parameters are shown in Table 2. The lnK random field domain is a parallelepiped with 2 

dimensions of ∆x = 24 m, ∆y = 16 m and ∆z = 8 m and it is discretized in 3 072 000 cubic 3 

cells of side 0.1 m; each cell is of the magnitude of the permeameter measurements. The 4 

lnK domain is twice the size of the studied area because the lnK upscaling technique 5 

demands a skin composed by a certain number of additional elements (Gómez-6 

Hernandez, 1990). However, only the inner domain of size ∆x = 12 m, ∆y = 8 m and ∆z = 7 

4 m was used to simulate and compare flow at the coarse and fine scales. The random 8 

fields of the other variables, conditioned on the 55 measurements, were generated in a 9 

domain equal to the studied area (∆x = 12 m, ∆y = 8 m and ∆z = 4 m) and discretized in 10 

384 000 cubic cell of side 0.1 m since no skin was necessary in their upscaling methods. 11 

The number of realizations analyzed here may be considered small for performing a 12 

rigorous estimation of uncertainty. However, since our objective is to identify trends and 13 

the impact of the upscaling in uncertainty propagation, we believe that a set of 30 14 

realizations is enough. Before performing water flow and solute transport numerical 15 

simulations, all realizations were back-transformed according to the cumulative 16 

distribution functions of the measured data. Fig. 1a-d shows the realization number 1 of 17 

all variables (in real space, that is, after back transformation) K, n, α and k (Henry 18 

coefficient related to R by Eq. (9)).  19 

4.2. Flow and transport solutions 20 

The finite element method (FEM) with a pre-conditioned conjugate-gradient algorithm as 21 

implemented in FEFLOW 7.1 was used to solve the water flow and solute transport for 22 

each one of the 30 realizations (Diersch, 2014). The realizations of hydraulic conductivity 23 

were used as input parameter to the flow model while the realizations of dispersivity and 24 

retardation factor were used as input parameters to the solute transport models. We 25 

recognize that the effect of a heterogeneous variable porosity can affect the solute 26 

transport behavior, but, due to its very low variability (see Table 2) and to the necessity 27 

to reduce the dimensionality of the problem, a homogeneous value of porosity, equal to 28 

the arithmetic mean of the 55 observations, was considered for all numerical models at 29 

the fine scale. 30 
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The numerical domain is a parallelepiped discretized into 120 x 80 x 40 cubic cells of 0.1 1 

m by 0.1 m by 0.1 m for a total of 384 000 elements. The transport mapping method (also 2 

called transfinite interpolation) algorithm was used to generate the rectangular mesh.  3 

Steady-state flow was simulated by considering a confined problem under a constant 4 

gradient set to one to reproduce the laboratory conditions. The boundary conditions were 5 

no-flow at the top and bottom faces and constant-head was set equal to 50 m at the left 6 

face and to 38 m at the right face, forcing flow from left to right. The specific discharge in 7 

the x-direction (qx) was calculated for each realization at a control plane, positioned on 8 

the exit face, orthogonal to the flow direction. 9 

Reactive solute transport was simulated by adopting a first-type boundary condition at the 10 

left side, using a mass concentration of 100 mg/L (Fig. 2). At the top and bottom faces, 11 

no mass flow boundary condition was assumed. The solute transport was modeled as 12 

transient for a period of 35 days for the nonreactive problems and 100 days for the 13 

reactive ones. The time discretization was made based on a grid Courant number of 0.04. 14 

The BTCs were obtained at the exit plane of the domain (right side). 15 

4.3. Upscaling of water flow 16 

A Simple Laplacian-with-skin method was used to upscale the hydraulic conductivity 17 

(Gómez-Hernandez, 1990; Li et al., 2011b) in order to obtain the best reproduction of 18 

water flow at the fine scale. The whole domain, heterogeneous at the fine scale, was 19 

replaced by a unique homogeneous block, i.e., the size of the equivalent block coincides 20 

with the field site extension without intermediate resolutions (both for water flow and 21 

solute transport). The effectiveness of K upscaling was evaluated by comparing the mean 22 

specific discharge in the x-direction (qx) at the control plane computed at the fine and 23 

coarse scales, and it was quantified by the relative bias of the specific discharge (RBq) 24 

 RBq=
1

NR67
qf,i-qc,i

qf,i
8100

NR

i=1

, (16) 

where NR is the number of realizations; qf,i is the specific discharge through a control 25 

plane obtained from the numerical modeling at the fine-scale for realization i, and qc,i is 26 

the specific discharge through the same control plane at the coarse-scale for realization i. 27 
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4.4. Upscaling of hydrodynamic dispersion  1 

The upscaling of hydrodynamic dispersion was done by using the Macrodispersion 2 

approach. According to this, to determine the block equivalent hydrodynamic dispersion 3 

(Db) it is necessary to calculate αb, that is, the sum of the equivalent fine-scale local 4 

dispersivity (αeq) plus the macrodispersivity term (Ai). Both Ai and αeq were calculated 5 

based on the first- and second-order moments of the BTC at the exit plane (positioned on 6 

the far right of the domain), using the expression (Wen and Gómez-Hernández, 1998) 7 

 αeq or A
i
=

L
2

σt
2

Ta
2	, (17) 

where L is the block length, Ta is the average of the arrival times, and σt2 is the variance 8 

of the arrival times.  9 

The determination of the αeq and Ai was made by solving a local transport problem 10 

releasing solute mass from one side of the block and collecting it at the opposite side, 11 

then, Ta and σt2 were computed from the BTC at the exit plane. We used two scenarios 12 

of nonreactive solute transport to obtain αb. In scenario 1, first, for each realization at the 13 

fine scale, purely advective transport was solved by using a heterogeneous K, allowing 14 

us to calculate the macrodispersion coefficients associated with the heterogeneity of K 15 

(Ai). Second, K was assumed homogeneous, and transport was solved with a 16 

heterogeneous α, allowing us to calculate the equivalent dispersivities (αeq). Lastly, Ai and 17 

αeq were summed up to give the αb. In short, in scenario 1, we determined separately αeq 18 

and Ai and then added them up to calculate αb. In scenario 2, the heterogeneity at the 19 

local scale of both K and α was simultaneously considered and, for each realization, a 20 

transport problem at the local scale was solved from which αb was directly determined 21 

using Eq. (17). Table 3 summarizes the conditions adopted in each scenario. Fig. 3 shows 22 

a cross-plot between the αb determined in both scencarios. The results show that 23 

approach in scenario 2 can be used to quantify directly the effects of the local-scale 24 

heterogeneity of both α and K, since the results obtained by the two scenarios are very 25 

similar, with a relative bias of only 4.2 %. 26 
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The performance of hydrodynamic dispersion upscaling was evaluated by comparing the 1 

BTCs at the exit plane obtained from the fine- and coarse-scale models. These 2 

comparisons were also done for a few points of the BTC, more precisely, at the mean 3 

(Tmean), 5% (early, T05%), 50% (median T50%) and 95% (late, T95%) arrival times. It is 4 

important to mention that the selection of the part of BTC used to calculate the upscaled 5 

transport parameters is a very important step for the correct application of upscaled 6 

transport parameters in daily practice. According to Fu and Gómez-Hernández (2009) 7 

and Gómez-Hernández et al. (2006), early arrival times must be well reproduced if, for 8 

example, the objective of the transport model is the design of an underground repository 9 

for toxic or radioactive waste; median arrival times, if the objective is to asses health risks 10 

associated with contaminant exposure by drinking water (Lemke et al., 2004), and late 11 

arrival times, if the objective is to design a remediation plan. Failing to take this into 12 

account will yield under- or overestimation of the arrival times critical for the purposes of 13 

the study. 14 

For each arrival time mentioned before, the mismatch between the concentrations 15 

obtained at the fine and coarse scales was quantified by the relative bias of the 16 

hydrodynamic dispersion (RBd), expressed as 17 

 RBd=
1

NR67
cf,i-cc,i

cf,i
8 100 

NR

i=1

, (18) 

where cf,i is the concentration through a control plane obtained from the numerical 18 

modeling of a nonreactive solute at the fine scale for realization i, and cc,i is the 19 

concentration of the same nonreactive solute through the same control plane at the 20 

coarse-scale for the same realization. 21 

The uncertainty analysis of the nonreactive solute transport modeling was performed by 22 

comparing the ensembles of BTCs obtained at the fine and coarse scales at the exit 23 

plane. Also, the cumulative frequency distributions obtained at the fine and coarse scales 24 

for the mean, early, median and late arrival times were compared. 25 
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4.5. Upscaling of retardation factor  1 

The upscale of retardation factor was performed by solving the reactive solute transport 2 

at the fine scale considering K, α and R as heterogeneous and uncorrelated. Solute mass 3 

was released from one side of the block and collected at the opposite side and then the 4 

BTCs at the exit plane were computed. From these BTCs, R was inversely determined 5 

by using Eq. (13). The resulting values were considered as the equivalent ones (Req), 6 

and, from them, the exponent p that yields a p-norm of the fine values that gives results 7 

as close to Req as possible is chosen. Since the purpose is to observe only the effects of 8 

chemical heterogeneity, R was subdivided into physically driven (related to hydraulic 9 

conductivity heterogeneity) and chemically driven.  10 

When solute arrived earlier in the coarse scale transport model than in the fine scale 11 

solution, a calibration parameter named “fictitious” retardation factor (Rf) was added to 12 

each solute transport model to retard the arrival times and improve the prediction capacity 13 

of the macrodispersion method as suggested by Cassiraga et al. (2005). This retardation 14 

factor does not represent chemical heterogeneity, but rather a delay associate with the 15 

physical heterogeneity that is removed after upscaling. To calculate Rf, we measured the 16 

solute velocity at the early, mean, median and late arrival times relative to the velocity of 17 

the same problem solved with a homogeneous R = 1, and then we quantified Rf as the 18 

ratio between the “apparently” retarded solute and the non-retarded solute for each arrival 19 

time. 20 

We determined an exponent p for each realization individually. The optimization of the 21 

value of p was obtained using the MATLAB function called “fminbnd” based on a golden-22 

section search and parabolic interpolation (Brent, 1973; Forsythe et al., 1976) that 23 

minimizes the objective function  24 

 error(p)=9Req- Rb9. (19) 

Solute transport models were then solved at the coarse-scale using the Rb determined by 25 

the best p-norm. The assessment of the R upscaling was made by comparing the BTC 26 

obtained at the coarse scale to the ones obtained at the fine scale. These comparisons 27 
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were made for the entire BTC, and for the mean, early, median and late arrival times. It 1 

was quantified by the relative bias of retardation factor (RBR), given by 2 

 RBR=
1

NR67
cfr,i-ccr,i

cfr,i
8100

NR

i=1

, (20) 

where cfr,i is the reactive solute concentration through a control plane obtained from the 3 

numerical modeling at the fine scale for realization i, and ccr,i is the reactive solute 4 

concentration through the same control plane at the coarse scale for the same realization. 5 

The uncertainty analysis of the reactive solute transport modeling was performed in the 6 

same way as that of the nonreactive solute transport.  7 

5. Results and discussion 8 

5.1. Hydrodynamic dispersion upscaling 9 

The relative bias of the specific discharge during hydraulic conductivity upscaling was 10 

only 0.8% indicating that the upscaling method worked well at the coarse scale in 11 

reproducing the water flow obtained at the fine scale. Fig. 4 shows the BTCs of realization 12 

number 30 at the fine scale and after upscaling for three situations: 1) upscaling only K, 13 

2) upscaling using macrodispersion approach, and 3) upscaling using macrodispersion 14 

approach with a calibration term named fictitious retardation factor that will be discussed 15 

further on. 16 

As demonstrated by others in the literature (Cassiraga et al., 2005; Journel et al., 1986; 17 

Scheibe and Yabusaki, 1998), upscaling only K, even using an advanced non-local 18 

method, is not enough to reproduce the BTCs at the coarse scale. When only the K 19 

upscaling is done, the coarse scale BTC overestimates the early arrival times and 20 

underestimate the late arrival ones. Since the K upscaling worked very well, the 21 

overestimation of the equivalent K could not explain such behavior. This finding was also 22 

reported by Li et al. (2011b) and Fernàndez-Garcia and Gómez-Hernández (2007). 23 

Homogenization produces a reduction of dispersion due to a loss of K heterogeneity, 24 

therefore justifying the inclusion of a term that will represent this loss: the macrodispersion 25 

coefficient.  26 
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The macrodispersion approach was used to upscale transport at the fine scale, in order 1 

to take into account the loss of dispersion caused by hydraulic conductivity upscaling. 2 

Block equivalent dispersivities from scenario 2 (see Fig. 3) were used in the transport 3 

equation at the coarse scale and BTCs at the control plane were determined. In Fig. 4, it 4 

is noticeable that the inclusion of the macrodispersion coefficient in the transport equation 5 

at the coarse scale was not enough to properly describe the heterogeneous processes 6 

taking place within a block to reproduce the BTC obtained at the fine scale, as also 7 

mentioned by others (Fernàndez-Garcia et al., 2009; Fernàndez-Garcia and Gómez-8 

Hernández, 2007; Frippiat and Holeyman, 2008). The slope of the BTC is almost the 9 

same, indicating that the dispersion was quantified correctly, however, it seems that the 10 

solute arrives earlier in the coarse scale transport model, underestimating the arrival 11 

times. A similar result was also mentioned by Fernàndez-Garcia et al. (2009) and can be 12 

related to anomalous (non-Fickian) solute transport. To correct the underestimation of the 13 

arrival times, the calibration parameter Rf was added. In Fig. 4, it is noticeable that the 14 

reproduction at the coarse scale of the fine scale BTC is more precise and presents 15 

smaller errors after the inclusion of Rf. 16 

From Fig. 4, we can notice that the efficiency of the macrodispersion method is not the 17 

same for the entire BTC, and, according to the solute modeling objective, the ADE 18 

approach can be more or less suitable. For this reason, we investigated the results for 19 

the early, mean, median and late arrival times to quantify the differences between arrival 20 

times at the fine and coarse scales after macrodispersion upscaling. Fig. 5 (a - d) shows, 21 

for each of the thirty realizations, the comparison of the mean time and the times when 22 

5%, 50% and 95% of the concentration has arrived at the control plane computed at the 23 

fine scale, and at the coarse scale after  upscaling using the Macrodispersion approach. 24 

It is remarkable that none of the arrival times was well reproduced at the coarse scale by 25 

the macrodispersion upscaling, with the worst reproduction obtained for the early times 26 

and the best one for the mean arrival times. In all situations analyzed, the 27 

Macrodispersion method overestimates the concentrations at any given time. Different 28 

results were obtained by Fernàndez-Garcia et al. (2009), Fernàndez-Garcia and Gómez-29 

Hernández (2007) and Cassiraga et al., (2005), where the macrodispersive model was 30 

capable of reproducing T05%. In the works by these researchers, the late arrival time (T95%) 31 
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of the BTC at the coarse scale was the most poorly reproducing the fine scale values, 1 

contrary to our results. 2 

The performance of upscaling after the inclusion of a fictitious retardation factor was also 3 

investigated for the early, mean, median and late arrival times. The results are shown in 4 

Fig. 6 (a-d). Although the inclusion of a Rf improved the results, it was not enough to 5 

reproduce the transport at the coarse scale for the early arrival times. Again, the best 6 

results were obtained for the mean arrival times, indicating that this approach can be best 7 

suited for performing, for instance, health risk analysis of contamination by drinking water. 8 

Results obtained for the median and late arrival times were also good with small relative 9 

bias (4.38 % and 3.92 %, respectively).  10 

These results show that without the inclusion of Rf there is no R that can represent the 11 

apparently anomalous transport at the coarse scale. As an alternative, upscaling may be 12 

done including memory functions to describe the processes leading to slow advection 13 

within a block (Fernàndez-Garcia et al., 2009; Li et al., 2011b). However, after the 14 

correction using a Rf, a good reproduction of the transport at the coarse scale was 15 

obtained for the median, mean and late arrival times. This simple method could promptly 16 

be used in daily practice, improving the quality of the solute transport predictions. 17 

5.2. Retardation factor upscaling 18 

Fig. 7 illustrates that different retardation factors must be used to reproduce different parts 19 

of the BTC. Since a single Req is not able to reproduce the entire BTC, retardation factor 20 

upscaling was performed considering different Req for the early, median, mean and late 21 

arrival times. The equivalent retardation factor represents not only the chemical 22 

heterogeneity, but also the heterogeneity related to hydraulic conductivity, evidenced by 23 

the need to include a fictitious retardation factor to properly upscale hydrodynamic 24 

dispersion after hydraulic conductivity upscaling. However, as here the aiming was to 25 

observe only the effects of chemical heterogeneity, the effect of K heterogeneity on R, 26 

represented by Rf, was removed before the calculation of Rb (Rb  = Req / Rf). 27 

We investigated the determination of an exponent p for the ensemble of 30 realizations 28 

considered altogether. The arithmetic mean (p=1) resulted in the smallest RBR and, 29 
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therefore, was found to be the best approximate for the median, mean and late arrival 1 

times. Differently, for the early arrival time the geometric mean (p=0) was the best 2 

average. There is no clear indication of systematic under or overestimation of the results, 3 

however, using a single p-exponent to predict all the curves gives errors as large as 21%. 4 

Because of that, to improve the prediction quality, the block retardation factor was 5 

determined using the best p exponent for each realization. Fig. 8 shows the cumulative 6 

frequency distribution function of the p exponents from the different realizations found for 7 

the early, median, mean and late arrival times. We can observe that they present high 8 

variability, ranging from -10.25 to 12.60 with a very similar shape of their CDFs. Fig. 9 9 

presents the comparison of the early, median, mean and late arrival times obtained 10 

computed at the fine scale vs. the results obtained after upscaling using a different (the 11 

best) p-exponent for each realization. All arrival times have a small relative bias and the 12 

best result was obtained for the mean arrival time. Our result showed that the upscaling 13 

of the retardation factor using a best p-exponent for each realization resulted in a very 14 

good coarse-scale reproduction of the reactive transport at the fine scale. 15 

5.3. Uncertainty propagation 16 

Since exhaustive knowledge of the area of interest is unattainable due to the large spatial 17 

variability of the parameters and limited sampling, we need to use a stochastic approach 18 

for the quantification of uncertainty, where multiple possible scenarios (realizations) are 19 

considered. When performing solute transport upscaling, the uncertainty in the upscaled 20 

model must be investigated. In this sense, we evaluated how uncertainty propagates after 21 

solute transport upscaling.  22 

The cumulative frequency distribution function (CDF) is used to measure the uncertainty 23 

about each of the different arrival times. Fig. 10 (a to d) shows the results of the 24 

uncertainty reproduction after macrodispersion upscaling by comparing the CDFs of the 25 

early (a), median (b), mean (c) and late (d) arrival times at both scales, with and without 26 

inclusion of the fictitious retardation factor. We can see that the CDF without Rf is 27 

displaced to the left, indicating an overestimation of the concentrations. The inclusion of 28 

Rf resulted in a much better reproduction of all arrival times. The uncertainty, related to 29 

the slope of the CDF, was well reproduced for all arrival times for the models with and 30 



22 
 

without the inclusion of the fictitious retardation factor. However, for the early arrival time, 1 

even with the inclusion of the fictitious retardation factor there was an overestimation of 2 

the concentrations. These results show that the inclusion of Rf in hydrodynamic dispersion 3 

upscaling was necessary for the correct reproduction of all arrival times but had no 4 

influence on the uncertainty propagation.  5 

We also evaluated the uncertainty propagation after R upscaling. The results are shown 6 

in Fig. 11, where the CDF of the early, median, mean and late arrival times obtained at 7 

the fine scale are compared with those obtained at the coarse scale using the best 8 

exponent p for each realization. We can notice that the larger the arrival time, the larger 9 

the uncertainty. The uncertainty was properly propagated for all arrival times. However, 10 

the upscaling of R at the late arrival time showed an overestimation of the concentrations. 11 

6. Conclusions 12 

Stochastic solute transport upscaling using real data from a tropical soil was performed. 13 

Upscaling of hydraulic conductivity, hydrodynamic dispersion, and retardation factor were 14 

done using different techniques of varying complexity. Macrodispersion coefficients were 15 

determined considering heterogeneous hydraulic conductivities and dispersivities at the 16 

local scale. Upscaling of retardation factor was made by using the p-norm approach. 17 

Uncertainty analyses were also performed to evaluate how uncertainty propagates after 18 

upscaling. 19 

Upscaling of hydraulic conductivity only, even when using a non-local method, was not 20 

enough to reproduce the BTCs at the coarse scale; there is a need to include a 21 

macrodispersion coefficient. The Macrodispersion method can be used directly to quantify 22 

both the effects of heterogeneity of dispersivity and hydraulic conductivity at the local 23 

scale with a small relative bias. However, the inclusion of the macrodispersion coefficient 24 

in the transport equation at the coarse scale was not enough to properly describe the 25 

heterogeneous processes at the coarse scale. There is a need to include a calibration 26 

parameter, a fictitious retardation factor, for the macrodispersion model to get a small 27 

relative bias. The retardation factor was well reproduced at the coarse scale when a 28 

specific p exponent was used for each realization. The best results were obtained for the 29 
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mean arrival times, while the early arrival time resulted in the worst relative bias. The 1 

uncertainty was properly propagated after hydrodynamic dispersion upscaling, however, 2 

only when a fictitious retardation factor was included there was no overestimation of the 3 

contamination. Retardation factor upscaling propagated well the uncertainty for all arrival 4 

times. Lastly, the results show that solute transport upscaling can be incorporated into 5 

practice by the numerical modeler even using commercial codes, but it may need some 6 

corrections with the need to include a fictitious retardation factor in some cases. 7 

8 
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Table 1 1 

Variable Mean SD CV 

K [m d-1] 1.35 1.65 1.26 

lnK [ln(m d-1)] -0.38 1.25 n.d 

n [ ] 0.25 0.02 0.08 

α [m] 0.18 0.19 1.05 

lnα [ln(m)] -2.21 1.11 n.d 

R [ ] 5.37 5.10 0.95 

SD: standard deviation, CV: coefficient of variation, n.d: undetermined, K: hydraulic conductivity; 2 

n: porosity, R: retardation factor, α: dispersivity  3 
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Table 2 1 

Variable Model Nugget Sill 
Range 

(m) 

lnK Spherical 0.00 1.0 4.0 

n  Spherical 0.00 1.0 3.0 

lnα Spherical 0.50 0.50 3.0 

R Spherical 0.55 0.45 3.3 

K: hydraulic conductivity; n: porosity, R: retardation factor, α: dispersivity 2 
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Table 3 1 

Scenario K (at fine scale) α (at fine scale) 
Initial 

Result 
Result 

Scenario 1 
Homogeneous Heterogeneous αeq 

αb 
Heterogeneous Homogeneous Ai 

Scenario 2 Heterogeneous Heterogeneous αb αb 

αeq: equivalent fine-scale local dispersivity; Ai: macrodispersivity term; αb: block equivalent 2 

dispersivity. 3 


