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Abstract Assessment of uncertainty due to inadequate data and imperfect geo-
logical knowledge is an essential aspect of the subsurface model building process. In
this work, a novel methodology for characterizing complex geological structures is
presented that integrates dynamic data. The procedure results in the assessment of
uncertainty associated with the predictions of flow and transport. The methodol-
ogy is an extension of a previously developed pattern search-based inverse method
that models the spatial variation in flow parameters by searching for patterns in
an ensemble of reservoir models. More specifically, the pattern-searching algorithm
is extended in two directions: (1) state values (such as piezometric head) and pa-
rameters (such as conductivities) are simultaneously and sequentially estimated,
which implies that real-time assimilation of dynamic data is possible as in ensem-
ble filtering approaches; (2) both the estimated parameter and state variables are
considered when pattern searching is implemented. The new scheme results in two
main advantages - better characterization of parameters, especially for delineating
small scale features, and an ensemble of head states that can be used to update
the parameter field using the dynamic data at the next instant, without running
expensive flow simulations. An efficient algorithm for pattern search is developed,
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J. Jaime Gómez-Hernández
Research Institute of Water and Environmental Engineering, Universitat Politècnica de
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which works with a flexible search radius and it can be optimized for the estima-
tion of either large- or small-scale structures. Synthetic examples are employed to
demonstrate the effectiveness and robustness of the proposed approach.

Keywords multiple-point statistics · pattern · inverse method · ensemble-based
method · history matching

1 Introduction

In the past several decades, inverse methods have been developed and increasingly
utilized to estimate geological parameters and/or state values (such as conduc-
tivity, porosity and piezometric head) by conditioning to the observed state data
(such as head and concentration). The goal of these methods is to improve the
predictions of flow and transport. Examples are the pilot point method (Ramarao
et al 1995), the sequential self-calibration (Gómez-Hernández et al 1997), and the
ensemble Kalman filter (EnKF) (Evensen 2003). All the approaches mentioned
above are optimal if the prior parameter and/or state can be modeled by a multi-
Gaussian distribution meaning that their spatial variability is fully described by
a two-point covariance. However, reproduction of complex curvilinear structures
is not possible using only a two-point covariance. Examples of reservoirs exhibit-
ing such structures include fluvial carbonate and fractured systems (Huang and
Srinivasan 2012).

An alternative to covariance-constrained methods is the multiple-point statis-
tics (MPS) method, which is able to characterize curvilinear structures. In this
approach, the local conditional probability is derived from a training image, and
the modeled reservoir is sampled from the conditional probability. The training
image as the conceptual model of the geological structure could be based on a rock
outcrop or built from expert knowledge on the reservoir (Guardiano and Srivasta-
va 1993). The first effective MPS algorithm, SNESIM, was developed by Strebelle
(2002). Other variants of the MPS algorithm are available in the literature, for
example, FILTERSIM (Zhang et al 2006), SIMPAT (Arpat 2005), DS (Mariethoz
et al 2010b), IMPALA (Straubhaar et al 2011), CCSIM (Tahmasebi et al 2012a),
GROWTHSIM (Huang and Srinivasan 2012), MPCCA (Abdollahifard and Faez
2013). An extensive review of MPS method can be found in the paper by Hu and
Chugunova (2008).

History matching with MPS calls for an effective inverse method that can
not only honor the observed state data, but also preserve the curvilinear geologi-
cal structure characterizing the reservoir. Caers (2003) developed the probability
perturbation technique, in which the probability of conductivity value at a loca-
tion conditioned to the dynamic data is modeled using a deformation parameter.
This conditional probability is subsequently merged with the pattern inferred from
the training image (Caers 2002; Hoffman and Caers 2005; Kashib and Srinivasan
2006). Alcolea and Renard (2010) developed a block moving window algorithm,
an extension of the block Markov chain Monte Carlo method by Fu and Gómez-
Hernández (2009), for conditioning MPS simulations to piezometric head data as
well as to connectivity data. The posterior distribution of parameter is obtained by
sampling the prior models, which have already been conditioned to the observed
static data within each block. Mariethoz et al (2010a) proposed the iterative spatial
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resampling method to preserve the observation data, but this method is computa-
tionally expensive. Jafarpour and Khodabakhshi (2011) developed the probability
conditioning method, in which the dynamic data are first conditioned by EnKF
to derive the parameter mean values, and then used these as soft data to regener-
ate the parameter realizations using MPS. Zhou et al (2012) developed a pattern
searching inverse method to estimate both static and state parameters within an
MPS framework. They extend the Direct Sampling (DS) method by Mariethoz
et al (2010b) for inverse modeling; for this purpose they work with an ensemble of
realizations of conductivity and their associated heads as multiple training images,
this allows them to take into account patterns in the spatial fields of measured
heads and conductivities when sampling with the DS algorithm.

The use of highly instrumented wells for both groundwater and hydrocarbon
recovery has become common. Dynamic data continuously obtained from on-line
sensors along wells require an inverse model that can integrate these data in real-
time so that the model is constantly updated to reflect the available data. Tradi-
tional inverse methods generally require the model to be rerun from the beginning
once new observed data are available, resulting in high computational cost and
therefore are impractical for real-time data assimilation. On the other hand, if
the state variables, such as piezometric head are updated simultaneously with the
reservoir parameters, data assimilation would be possible by simply re-running
the models from the previously updated step. This is done in the EnKF method,
which is able to simultaneously estimate the parameter and state variables us-
ing incremental observed dynamic data and thus renders possible real-time data
assimilation. The EnKF is gaining popularity in various disciplines such as me-
teorology, petroleum engineering and hydrogeology (Hamill et al 2001; Wen and
Chen 2006; Gu and Oliver 2006; Chen and Zhang 2006; Hendricks Franssen and
Kinzelbach 2008; Li et al 2012). However, EnKF has an optimal solution only
if the parameter follows a multiGaussian distribution and if the state transfer
function is linear (Aanonsen et al 2009). Sun et al (2009) coupled the EnKF and
Gaussian mixture models to handle non-Gaussian parameter distributions. Zhou
et al (2011) proposed to transform the non-multiGaussian parameter and state to
Gaussian ones through a normal-score transformation approach and then perform
updating of the transformed variables at each time step. However, their procedure
utilizes a univariate Gaussian transformation. MultiGaussianity is not ensured by
this procedure and the method may yield sub-optimal solutions. Hu et al (2012)
proposed to update the uniform random field, which is used to draw outcomes
from the conditional distribution in the MPS algorithm, using the EnKF.

In this work, a novel inverse method: Ensemble PATtern searching method (En-
PAT) is proposed, which is an extension of the pattern searching inverse method
previously proposed by Zhou et al (2012). Unlike the previous work focusing only
on the estimation of geologic parameter such as conductivity, in this study, both
the geologic parameter and reservoir state variables such as piezometric head, at
each conditioning time step, are explicitly estimated through a pattern searching
scheme. The purpose of simultaneous estimation of parameter and state is twofold:
to make updating of parameter field using incremental dynamic data possible by
executing the flow simulator only over the incremental time step, mimicking the
ensemble filtering approaches, and to better preserve the relationship between the
geologic and state variables over multiple length scales. In order to accomplish
this, a flexible pattern search strategy is implemented without specifying template
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as in the traditional MPS method. Moreover, unlike the previous study (Zhou et al
2012) that only works on a categorical parameter field, here the proposed method
is demonstrated both in the cases of categorical and continuous parameter fields.

The remaining of the paper is organized as follows. First, Sect. 2 introduces
the proposed pattern searching inverse methodology. Next, in Sect. 3, synthetic
examples are used to demonstrate the accuracy and effectiveness of the method.
In Sect. 4, there is a general discussion of the results. Finally, the main results and
conclusions of this paper are summarized.

2 Methodology

EnPAT is fully based on multiple-point pattern search and reproduction. The
algorithm utilizes DS for modeling curvilinear and complex geologic structures
and for representing spatial variations in state variables conditioned to available
dynamic data. For understanding EnPAT better, the DS algorithm (Mariethoz
et al 2010b) will first briefly revisited, and then the pattern searching inverse
method EnPAT will be introduced.

2.1 Direct Sampling Method

Unlike the MPS algorithm introduced by Strebelle (2002), DS directly samples the
patterns (data events) from the training image looking for a match to the condi-
tioning pattern, thereby avoiding the storage of data events prior to simulation.
Mariethoz et al (2010b) demonstrated that the proposed method works for both
the categorical and continuous variables as well as when multiple attributes are
jointly simulated. The basic algorithm of DS is as follows:

1. Obtain a training image.
2. Start the loop for the simulation of the kth realization.
3. Define a random path: Pi(x), i = 1, 2, · · · , n x ∈ D, with D being the reservoir

grid that has been discretized into n grid blocks.
4. To simulate the ith parameter value: Zi(x), perform the following steps:

(a) If the parameter value at the ith location is known by measurement (for
example, the location of hard data), go to step 5.

(b) Build the conditioning pattern within a given maximum search radius; the
number of data retained in the pattern is less than the predefined maximum
number of conditioning data. Note that the conditioning pattern includes
both measured data and previously simulated values (Fig. 1A and B).

(c) Define a random search path on the training image: Pj(y), j = 1, 2, · · · ,m
with y ∈ TI, TI being the training image grid that has been discretized
into m grid blocks.

(d) Loop on j in order to find the matched candidate pattern in the training
image,
i. Calculate the distance dj between the conditioning pattern and the jth

pattern in the training image.
ii. If dj is smaller than a predefined distance tolerance value, then, Zi(x) =

Zj(y). Go to step 5.
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iii. Otherwise, set j = j + 1, and go to step i.
(e) End the loop. If at the end of step (d), a training pattern matching within

the tolerance is not found, then choose the pattern with the smallest dis-
tance dmin, and assign Zi(x) = Zdmin

(y). Like other sequential simulations,
the simulated ith parameter value will be used as conditioning data from
now on.

5. Set i = i + 1 and go to the next grid block along the random path and then
step 4 until all block are visited.

6. Set k = k + 1 and go to step 2 until all realizations are simulated.

Note that the quality of the simulation results is dependent on a set of user-
defined parameters (maximum search radius, maximum number of conditioning
data in the pattern, distance function and distance tolerance). An extensive sen-
sitivity analysis of these parameters on the simulation results can be found in the
work by Meerschman et al (2013).The size of the pattern is determined by the
maximum search radius and maximum number of conditioning data. As described
by Mariethoz et al (2010b), at the early stage of the simulation, the condition-
ing data are usually very sparse resulting in patterns extending over a large area,
which is beneficial for the characterization of large scale structures such as chan-
nels (Fig. 1A). At the later stage of the simulation, the conditioning data become
much more dense and then the size of the conditioning pattern becomes small,
helping to reproduce structures on a smaller scale, such as the conductivity within
the channel facies or matrix or the shale drapes separating stacked channels (Fig.
1B). In this way, a flexible search strategy is achieved through two parameters: the
maximum search radius and maximum number of conditioning data. The distance
function and tolerance will be discussed in detail in Sect. 2.3.

2.2 Pattern Searching Inverse Method

In many cases, besides the hard conditioning data, auxiliary information such as
piezometric head might also be available to characterize the reservoir. Based on
idea of the DS, Zhou et al (2012) proposed to consider the pattern including both
the static variables (conductivity) and observed state data (piezometric head).
In addition, an ensemble of training images and their corresponding state real-
izations are considered for pattern searching. However, in their approach, only
the spatial conductivity field is simulated. As mentioned previously, in order for
real-time model updating to be performed efficiently, both the conductivity field
as well as the state variables such as head have to be updated simultaneously.
This will permit incremental updating to be possible (as in EnKF). Therefore, the
pattern searching inverse method is improved by simultaneously simulating both
conductivity and state variables such as head using the extended DS algorithm.

Figure 2 shows the flowchart of the proposed algorithm, which can be summa-
rized as follows:

1. Obtain an ensemble of Nr parameter training images. The total number of
assimilation time steps is nT (i.e., the dynamic data are available at nT time
steps).

2. Start the loop with nT = 1.



6 Liangping Li et al.

3. Run flow simulations from nT − 1 to nT to get the corresponding Nr state
realizations. Note that the ensemble parameter at time nT−1 and state at time
nT will be used as training images in the subsequent pattern search scheme.

4. Start the loop with realization k = 1.
5. Define a random path: Pi(x), i = 1, 2, · · · , n, x ∈ D visiting all n nodes of the

reservoir grid.
6. To simulate the reservoir parameter Zi(x) and the state variable Yi(x) values,

start the loop for node i = 1:
(a) If both reservoir parameter and state variable at the ith node are known

by measurement, go to step 6.
(b) Build the conditioning pattern within the maximum search radius; the num-

ber of data in the pattern should be less than the predefined maximum
number of conditioning data. The pattern may be composed of both pa-
rameter and state variables (Fig. 1E and F). A different maximum number
of conditioning data can be specified for parameter and state if needed.
Here, a spiral search scheme centered on the simulation location i is con-
sidered to find the conditioning data within the maximum search radius,
in order to save computational cost.

(c) Define a random permutation Pj , j = 1, 2, · · · , Nr to visit the Nr realiza-
tions. Look for the matching pattern as follows:

(d) Start a loop with realization j = 1.
i. In realization Pj , retrieve the data matching the conditioning pattern

geometry at exactly the same node i. Note that the training images
are visited in a random order but the conditioning pattern location is
fixed around the same node (Fig. 3).

ii. Calculate the distances dXj for the parameters and dYj for the state
variable between the conditioning pattern and the pattern found in the
jth ensemble realization and its corresponding flow simulation result.

iii. If dXj and dYj are both smaller than the predefined distance tolerance
values, then Zi(x) = Zj(x) and Yi(x) = Yj(x). Go to step 6.

iv. Otherwise, set j = j + 1, and go to step i.
(e) Keep track of the realization having the pattern with the smallest distance

both dXmin and dYmin. Assign Zi(x) = Zdmin
(x) and Yi(x) = Ydmin

(x). Like
other sequential simulations, the simulated ith parameter and state values
will be used as conditioning data from now on.

7. Set i = i+1 and go to step 5 until all nodes are visited in the simulation grid.
8. Set k = k + 1 and go to step 3 until all realizations are simulated.
9. Set nT = nT + 1 and go to step 2 until all time steps are simulated.

Note that, for the sake of simplicity, here it is assumed that both parameter and
state are measured at the same locations. In general, the hard and soft/auxiliary
information need not be available at the same location. For example, in the case
with only state available (i.e., without hard data), the conditioning pattern is
composed of only state variable at the start of simulation, and then the parameter
and state variables both are simulated on the basis of conditioning state pattern.
Once the previous estimated parameter is found within the maximum search radius
in the subsequent simulations, the conditioning pattern is enlarged to include
both the parameter and state variables. This variation of EnPAT algorithm was
implemented in the paper by Li et al (2013).



Simultaneous estimation of parameter and state using MPS 7

EnPAT shares some features with the traditional implementation of DS: (1)
Both methods are based on sequential simulation; (2) both methods are based
on multiple-point patterns, ensuring reproduction of curvilinear geologic features
as observed in the training image; (3) patterns are directly sampled rather than
building a conditional probability distribution and then drawing from it; (4) a flex-
ible search strategy, resulting in a good characterization of large and small scale
features (Fig. 1); (5) the quality of pattern reproduction in both DS and EnPAT
is controlled by user-defined parameters such as maximum search radius, maxi-
mum number of conditioning data in the pattern, distance function and distance
tolerance.

However, EnPAT has some exclusive features: (1) by using multiple training
images, the patterns are local, that is, a pattern match is searched through the
ensemble of training images at the same exact location; this feature allows han-
dling the non-stationarity dependence of the piezometric head on the conductivity,
due to the presence of wells, sinks or boundaries (Fig. 3); (2) the pattern includes
both parameter values and state variables, thus allowing the inverse modeling of
conductivities; (3) because the conditioning pattern is composed of both conduc-
tivities and heads, two distances have to be computed, one for the conductivities
in the pattern, and the other one for the heads, each one with its own definition
and tolerance as will be explained later.

EnPAT is an extension of the work by Zhou et al (2012) resulting in an im-
proved pattern search inverse method. In the algorithm by Zhou et al (2012), the
conditioning pattern is composed of both the pattern of conductivity (original da-
ta + previously simulated values) as well as the pattern of measured state variable
values. Unlike in EnPAT, the size of the pattern that is matched during simulation
remains large because it is controlled by the spacing at which the measured state
variable values are available. At later stages of simulation, the matching pattern
consists of conductivity values in the close vicinity of the simulation node while
the measured state variables might still be available at large distances from the
simulation node (Fig 1D). Therefore, the small scale correlation between parame-
ter and state can not be captured by this approach. This can be used to explain
why the simulated conductivity fields are noisy after conditioning to the state data
in the synthetic example of Zhou et al (2012). It is our assertion that combined
simulation of both state variables and conductivity patterns will help reduce the
noise in the simulated models.

Pattern-based updating of the head state might lead to inconsistencies between
the parameter variables and the simulated head state in the form of material
balance error. These problems are common to all ensemble updating methods
such as EnKF and can be somewhat alleviated by using a larger ensemble in
order to learn the relationship between the parameter and the state variables. An
alternative is also to periodically perform full physics flow simulations over the
entire duration of the data in order to obtain the correct spatial distribution of
state variables corresponding to the current state of the parameters. In that case
the pattern search algorithm can be viewed as a piecewise interpolation scheme
between major updates of the state variables.
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2.3 Distance Function

The distance function plays a crucial role in both the DS and EnPAT algorithms.
It is used to quantify the dissimilarity between the conditional pattern and the
candidate patterns found in the training image. As described in Mariethoz et al
(2010b) and Zhou et al (2012), two kinds of distance functions are commonly used:

1. Manhattan distance:
– Categorical variables

d{d(xn), p(xn)} =
1

n

n∑
i=1

ai d ∈ [0, 1],

ai =

{
0, if d(xi) = p(xi)

1, otherwise

(1)

where n is the numbers of nodes in the pattern, d(xn) is the conditioning
pattern, p(xn) is the matching pattern, xi represents the members of the
pattern, either parameter or state variable values.

– Continuous variables

d{d(xn), p(xn)} =
1

n

n∑
i=1

|d(xi)− p(xi)|
dmax

d ∈ [0, 1], (2)

where dmax is the maximum absolute difference |d(xi)− p(xi)|.
2. Weighted Euclidean distance:

– Categorical variables

d{d(xn), p(xn)} =
1∑n

i=1 h
−1
i

n∑
i=1

h−1
i ai d ∈ [0, 1], (3)

where hi is the Euclidean distance between node i and the node being sim-
ulated, therefore giving more weight to dissimilarities of the closest nodes.

– Continuous variables

d{d(xn), p(xn)} =

(
1∑n

i=1 h
−1
i

n∑
i=1

h−1
i

|d(xi)− p(xi)|2

d2max

)1/2

d ∈ [0, 1].

(4)

From the previous definitions, note that: (1) distance values range from 0
to 1 making it easier to compare patterns and apply tolerances; (2) the choice
of the distance function is dependent on the type of variables to be simulated;
from our experience, the Manhattan distance is best suited for categorical variable
while the weighted Euclidean distance works well for continuous variables, which is
consistent with previous studies (Mariethoz et al 2010b); (3) in EnPAT, the pattern
may include both categorical (i.e., rock facies) and continuous (i.e., piezometric
head), in which case, the Manhattan distance should be used for the categorical
variable and the weighted Euclidean distance for the continuous one, consequently,
two distance tolerances should be defined, one for each type of data.
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3 Synthetic Examples

3.1 Reference Field and Cases

A single phase transient groundwater model is used to demonstrate the perfor-
mance of the proposed method. The model is discretized into 50 × 50 × 1 grid
cells with cell size 1 m × 1 m × 1 m. Two types of conductivity images will be used,
one will be categorical just distinguishing between high and low conductivity fa-
cies, and the other one will be continuous, in which the categorical field generated
before is filled with continuous conductivities drawn from a multiGaussian distri-
bution. For the categorical variable simulation, the reference facies is generated by
the SNESIM code using the training image from Strebelle (2002) (Fig. 4A), and
constant conductivity values equal to 10 and 10−4 m/d are assigned to sand and
shale, respectively (Fig. 4C). For the cases of continuous variable simulation, the
reference logconductivity is obtained by populating the previous facies with the
conductivities generated by sequential Gaussian simulation using the parameters
listed in Table 1, which results in a bimodal conductivity distribution (Fig. 4D).

The reservoir is assumed to be confined and with no-flow boundary conditions
on south and north, prescribed head values (h = 0 m) on the western and eastern
boundaries(Fig. 4B). A pumping well is located at the center of the reservoir
with constant flow rate 25 m3/d. The initial head values are 0 m over the whole
domain. Specific storage is assumed constant and equal to 0.01m−1. Head data are
simulated for two time steps of 1.3 days and 3.8 days and collected at nine wells.
The simulated head data collected at the nine wells as well as the conductivity
data at the same nine wells will be used as the conditioning data (Fig. 4C and
E for the categorical conductivities, and Fig. 4D and F for the continuous one).
The code MODFLOW (Harbaugh et al 2000) is utilized to solve the transient
groundwater flow problem.

Nine cases are considered, the characteristics of which are shown in Table
2. The cases are designed to investigate the impact of using different types of
conditioning information. More specifically, the impact of using only conductivity
conditioning data, only piezometric head conditioning data, or both conductivity
and piezometric conditioning data are analyzed. As a reference, the case for which
no conditioning data are used is also analyzed. Cases 1 through 4 correspond to
the categorical conductivities, and cases 5 through 8 to continuous conductivities.
Case 9 is set to demonstrate the proposed approach conditional on multiple time
step piezometric head data (i.e., jointly conditional on K, ht=1.3 and ht=3.8).

For all the cases, 2500 unconditional conductivity realizations are generated by
SNESIM as the initial fields for the data assimilation. The ensemble size in this
case is rather large in order to obtain the best results for validating the approach.
Later on, in Sect.4 some approaches for reducing the size of the ensemble are
presented and some of these have also been implemented in a paper by Li et al
(2013). The maximum search radius to build the conditioning pattern is set at 30
m for both conductivity and head, and the maximum number of elements in the
pattern is fixed at 10. The distance tolerance for categorical conductivity is 0 and
for continuous conductivity is 0.01, and for the head it is specified to be 0.00005.
The specific distance function used for each case and for each variable is given in
Table 2. This set of parameters in EnPAT are obtained by sensitivity analysis.
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3.2 Performance Evaluation

The performance of the proposed method in the synthetic examples is assessed
using the following criteria:

1. From a qualitative point of view, the following items are evaluated:
– the ensemble mean map: to check the reproduction of the main structures

of the reference.
– the ensemble variance maps: to visualize the spatial uncertainty of the

estimation.
2. From a more quantitative point of view, two metrics are calculated:

– Average absolute error (AAE). AAE measures the accuracy of the estima-
tion, and is defined as

AAE(x) =
1

n

n∑
i=1

(xi − xref,i), (5)

where xi is either log-conductivity lnK or hydraulic head h at location i,
xi represents its ensemble mean value at node i, xref,i is the reference value
at location i, n is the number of nodes.

– Average ensemble spread (AES). AES indicates the uncertainty of the
estimation and can be written as

AES(x) =
1

n

N∑
i=1

σ2
xi
, (6)

where σ2
xi

is the ensemble variance at location i.
3. The main purpose of inverse conditioning is to make a better prediction of the

future performance of the reservoir. Thus, the predictive capability of updated
models will be assessed as discussed in Sect. 3.4.

3.3 Simulation Results

Ensembles of conductivity and piezometric head are generated using the EnPAT
algorithm. Note that, for cases 1, 2, 5, and 6, piezometric head is obtained by
running the flow simulation on the conductivity fields generated, and for the other
cases, the head is directly simulated by EnPAT. Figure 5 shows the sand proba-
bility and variance for the cases 1, 2 and 4. Figure 6 displays the ensemble mean
and variance of the log-conductivity for the cases 5, 6 and 8. Figure 7 and 8 show
the ensemble mean and variance of simulated head. Figure 10 shows randomly
selected individual realizations of conductivity and head for some of the cases.
Figure 9 displays the sand probability and variance and the ensemble mean and
variance of simulated head for the case 9. The calculated metrics AAE and AES
are listed in Table 3. For the categorical variable simulation (i.e., cases 1 through
4), AAE(K) and AES(K) are calculated on the basis of the indicator transform
of the conductivities (1 for the high values, 0 for the low ones).
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3.3.1 Conditioning on Conductivity only

For cases 1 and 5, the unconditional facies fields are generated by the SNESIM
code and further populated with conductivities for each facies. As expected, the
sand probability and ensemble variance are almost constant values in the spatial
distribution because the channels are randomly distributed across the realizations
since there are no conditioning to any data (Fig. 5 and Fig. 6).

For cases 2 and 6, the conductivity fields are simulated using EnPAT condi-
tioned to the measured K data at the nine conditioning wells. The realizations
generated from case 1 and 5 are used as the ensemble training images. (Notice
that for these two cases, the original facies image could have been used to gener-
ate each of the ensemble members, since the non-stationarity problem associated
to conditioning to piezometric heads is not present here.) The results show that,
as in the traditional MPS method, (1) measured data are exactly conditioned
with zero variance at measurement locations;(2) the sand patterns disclosed by
the probability maps (for the categorical conductivities) or by the mean maps (for
the continuous conductivities) are close to the sand channels in the reference; (3)
the individual realizations in Fig. 10 show channel features that are similar to
the ones in the training images; (4) by analyzing the two metrics from Table 3,
it is evident that both AAE and AES become smaller after conditioning to the
measured conductivities than for the unconditional cases.

3.3.2 Conditioning on Piezometric Head only

Unlike the traditional MPS methods commonly focusing on the estimation of geo-
logic parameters such as conductivity, in EnPAT the state (in our case piezometric
head) is also simulated using the pattern search algorithm EnPAT. Because head
patterns are affected by boundary conditions and the presence of source or sinks,
the pattern search is implemented locally across the ensemble by analyzing only
the node being simulated in all realizations. No conductivity fields are simulated
in these cases, just the piezometric head fields, conditioned to the measured values
at the 9 wells and using the piezometric head training images calculated from the
conductivity realizations in cases 1 and 5.

For cases 3 and 7, the ensemble mean and variance of the simulated heads
are displayed in Fig. 7 and 8. The results show that: (1) measured heads are
honored exactly in both cases with zero variance at measurement locations; (2)
the ensemble mean of piezometric head displays a pattern similar to the reference
head in Fig. 4; (3) compared to the results from the cases conditioned only to
conductivity, conditioning to pattern of piezometric head drastically reduces the
uncertainty in the simulated head; (4) the simulated head fields reflect the patterns
of variability exhibited by the corresponding conductivity fields; (5) Table 3 shows
that AAE(h) and AES(h) both have an remarkable reduction compared to cases
without any conditioning;

3.3.3 Conditioning to Both Conductivity and Piezometric Head Data

Cases 4, 8 and 9 are designed to demonstrate the capability of EnPAT to condition
to conductivity and head data jointly, and also to jointly generate conductivity
and head fields.
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By analyzing the ensemble mean and variance maps in Fig. 5 to 9, the results
show that: (1) both the measured conductivity and head data are exactly honored;
(2) the pattern of ensemble mean maps is closer to the reference than for the cases
with only conditioning to conductivity; (3) the ensemble variance of conductivity
is reduced with respect to conditioning only to conductivity if the simulation is
further conditioned to head data; (4) the simultaneously simulated conductivity
and head fields exhibit patterns close to the patterns observed in the reference
fields; (5) some noise is observed in the simulated results (Fig. 10) but is considered
acceptable because a stronger constraint in the form of correlation between the
conductivity and head is enforced. It can be further reduced by either increasing
the number of ensemble members or reducing the distance tolerance values; (6)
the two metrics AAE and AES have the lowest values, indicating that the highest
accuracy and lowest uncertainty are achieved after conditioning to both measured
conductivity and head values; (7) in Fig 9, the pattern exhibiting in the sand
probability of case 9 is closer to the reference than the case with only conditioning
one time step piezometric head; Also the simulated head is close to the head
simulated from the reference displayed in Fig. 11; (8) It is noted in Table 3 that
the value of AES for the case with conditioning to head data only is smaller than
that where the conditioning is to both conductivity and head data. This is because
when both head and conductivity are used as conditioning data, the pattern search
is much more challenging and so the tolerances for the distances have to be relaxed.
Despite this, the difference in AES between the two cases is quite small.

In conclusion, the EnPAT algorithm can be used to simultaneously generate
conductivity and head realizations using a multiple-point statistics approach and
therefore is able to capture features that cannot be captured by methods solely
based on the characterization of the spatial variability by a two-point covariance.

3.4 Flow Prediction

Flow predictions are conducted for the first 8 cases for one time step. Using the
conditional realizations of both conductivity and piezometric head for all 8 cases,
piezometric head was predicted for t = 3.8 days.

Figure 11 and 12 display the head fields corresponding to the reference data,
and the ensemble mean and variance of head fields corresponding to cases 2, 4,
6, and 8. The unconditional cases 1 and 5 are not been displayed, and cases 3
and 7 have not been analyzed since for these two cases only the piezometric head
realizations were generated (no update of the conductivity fields was performed).
Table 3 shows the calculated metrics for the predicted head at the t = 3.8 days.
The results indicate that: (1) the accuracy of the predicted heads improves both
for the categorical and continuous conductivity fields as conditioning data are
taken into account; (2) similarly, the uncertainty diminishes as conditioning data
are incorporated; (3) the improvement in prediction accuracy for the categorical
conductivity cases is more significant than for the continuous cases when using
the conditioning head data. This is because the conditioning head data from the
categorical case reflect the channel structures better than in the continuous case
(Fig 4E and F) because of the particular contrast between the channel and the
mudstone assumed for these cases.
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4 Discussion

A new inverse conditioning approach was proposed and demonstrated to simul-
taneously simulate parameter and state variables in a non-multiGaussian setting.
The methodology extends the DS method for multiple-point pattern simulation
and offers the capability to achieve incremental updating of reservoir models in
real-time.

The inverse conditioning both for the measured conductivity and head data,
in the example, is carried out as a one-step procedure. A drawback of this joint
simulation, based on locally matching conditioning patterns through an ensemble
of realizations is that a large ensemble size is required for the matches to be found.
In practice, the computational cost could be reduced in the following aspects: (1)
the measured conductivity data can be conditioned with traditional fast MPS
method first followed by the conditioning to state data. This could potentially
reduce the size of the ensemble required; (2) patterns here are only searched at
the exact same location as the node simulated, which makes it more difficult to
find the matched pattern. The location could be extended to a small neighbor-
hood of simulated node as implemented in Zhou et al (2012) and Li et al (2013),
which could reduce the number of training realizations required; (3) the pattern
search scheme can be coupled with the pilot points concept as implemented in the
sequential self-calibration (Gómez-Hernández et al 1997). Specifically, the pattern
search is applied on the predefined pilot points with constraints of both K and h,
and then a fast MPS method (i.e., only constraint of K) is used to complete the
simulation conditional on the pilot points. Li et al (2013) used a synthetic exam-
ple to demonstrate that the computational cost is reduced and the corresponding
updated parameter are improved with regard to the quality; (4) As done in DS
by Rezaee et al (2013), EnPAT could also be extended to past a bunch of node
at a time instead of only a single point when the matched pattern is found; (5) a
parallel implementation of the EnPAT algorithm is straightforward, both for the
flow simulations and for the generation of the conductivity and state variables
(Tahmasebi et al 2012b).

EnPAT is initially inspired by the EnKF real-time data assimilation algorithm
(Evensen 2003). As in EnKF, both the parameter and state variables are continu-
ously updated, and thus it is well suitable for real-time updating using incremental
data. In both methods, the correlation between parameter and state variables is
explicitly estimated through the ensemble. A spurious correlation could be ob-
served when the ensemble size is small and/or the transfer function is extremely
non-linear such as multiple phase flow, which results in the inconsistency between
the updated state and parameter (i.e., it does not honor the flow equation). Two
approaches are commonly used to resolve this issue: (1) the most straightforward
way is to increase the ensemble size, however the high computational cost of flow
simulations could be a deterrent; A fast proxy of flow simulator coupling with the
data assimilation algorithm could improve the results (He et al 2013); (2) only the
geologic parameter is updated, and the corresponding state is obtained by running
the forward simulator based on the estimated parameter so that the consistency
is ensured; this approach has already been used in the EnKF-based method (Wen
and Chen 2006; Jafarpour and Khodabakhshi 2011; Hu et al 2012) and in EnPAT
(Li et al 2013). Here, in the synthetic example, as shown in Fig. 13, the simulated
head field from EnPAT is consistent with the head simulated from MODFLOW
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using the updated conductivity from the EnPAT for the two randomly selected
individual realizations in the case of categorical conductivity. Recall that, here the
pattern is matched through a large ensemble size of training images. An extensive
comparison between the current implementation of EnPAT and the one by run-
ning forward simulation to derive the state variable is expected in the future work,
including the impact of the ensemble size of training images and the evolution of
simulated head when new data are conditioned.

Also, similar to EnKF, the ensemble updated parameter and state can be used
for the prediction, and the uncertainty can be assessed by running the flow sim-
ulation on the corresponding ensemble. Whether the uncertainty after the data
conditioning could represent the posterior probability remains further investiga-
tion. For example, the uncertainty could be evaluated by comparing the EnPAT
with rejection sampling.

A key criticism against EnPAT could be that the method needs the flow re-
sponse corresponding to an ensemble of models in order to search for the pattern
of state variables such as head and this could be CPU-time intensive. However,
this is not the case, as the flow simulation has only to be performed for one time-
step using the updated state variables from the previous time step as the starting
state. This is exactly the same as implemented in EnKF.

5 Conclusions

With the increasing use of MPS methods to characterize complex geological for-
mations, developing an innovative inverse method by integrating dynamic data
within the MPS framework is important. In this paper, a novel inverse method
(termed EnPAT) was proposed to handle data assimilation within the MPS frame-
work. Parameters and state variables are simultaneously estimated using a pattern
search approach. The method offers the additional advantage of incremental data
assimilation as in EnKF. The important characteristics of the pattern simulation
algorithm (EnPAT) are: (1) parameter and state variables do not have to be model
by multiGaussian distributions; (2) the relationship between parameters and state
variables do not have to be linear; (3) the algorithm can use real-time data from
on-line sensors in order to perform incremental updating of reservoir models.

The EnPAT algorithm is demonstrated for both categorical and continuous
conductivity fields by conditioning to the observed conductivity and head data.
The results show that the measured conductivity and head data can be honored in
the updated model and flow predictions are more accurate, and more importantly,
curvilinear geologic structures are preserved after data integration.
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Table 1 Parameters of the random functions describing the spatial continuity of the sand and
shale log-conductivities.

Mean Standard deviation Variogram type λx [m] λy [m] sill
[ln md−1] [ln [md−1]]

Sand 2 1 exponential 60 30 1
Shale -3 1 exponential 30 30 0.7

Table 2 Definition of cases based on the different sets of conditioning data.

Case Cate.(K) Cont.(K) Cond. K Cond. ht=1.3 Cond. ht=3.8 Dist. func. (K) Dist. func. (h)

1 ×
2 × × Manhattan
3 × × Euclidean
4 × × × Manhattan Euclidean
5 ×
6 × × Euclidean
7 × × Euclidean
8 × × × Euclidean Euclidean
9 × × × × Manhattan Euclidean

Table 3 AAE and AES of conductivity and head for the different cases. Notice that the values
for t = 1.3 are after updating the realizations using EnPAT, and the values for t = 3.8 are
for the predicted heads, prior to sampling new data and updating again the conductivity and
head realizations.

Case 1 2 3 4 5 6 7 8

AAE(K) 0.422 0.269 - 0.239 2.184 1.513 - 1.471
AES(K) 0.210 0.155 - 0.123 6.234 4.363 - 3.789
AAE(ht=1.3) 1.088 0.294 0.233 0.225 0.422 0.143 0.169 0.107
AES(ht=1.3) 357.091 13.234 0.105 0.145 7.518 0.215 0.032 0.051
AAE(ht=3.8) 2.052 0.401 - 0.302 0.772 0.207 - 0.205
AES(ht=3.8) 1041.721 35.917 - 0.294 17.859 0.496 - 0.366
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conditioning data set after having being simulated. PSINV is the acronym for the pattern
search inverse method developed by Zhou et al (2012).
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through the MPS method while for cases 2 (conditioning on K) and 4 (jointly conditioning on
K and ht=1.3), the conductivity is simulated by running EnPAT.



Simultaneous estimation of parameter and state using MPS 23

Mean Variance

Case 5 Case 5

.

Case 6
Case 6

Case 8Case 8

1

2

3

4

6

7

8

9

5

1

2

3

4

6

7

8

9

5

1

2

3

4

6

7

8

9

5

1

2

3

4

6

7

8

9

5

1

2

3

4

6

7

8

9

5

1

2

3

4

6

7

8

9

5

(m)

(m)

(m)
(m)

(m)

(m)

(m)

(m)

(m)

(m)

(m)

lnK(m/d) lnK(m/d)
2

(m)

Fig. 6 Mean and variance of simulated continuous conductivity. For case 5 (without any
conditioning), the conductivity is obtained through the MPS method while for cases 6 (condi-
tioning on K) and 8 (jointly conditioning on K and ht=1.3), the conductivity is simulated by
running EnPAT.



24 Liangping Li et al.

Mean Variance

Case 3 Case 3

1

2

3

4

6

7

8

9

5

Case 4

1

2

3

4

6

7

8

9

5

1

2

3

4

6

7

8

9

5

Case 2 Case 2

Case 1
Case 1

Case 4

1

2

3

4

6

7

8

9

5

1

2

3

4

6

7

8

9

5

1

2

3

4

6

7

8

9

5

1

2

3

4

6

7

8

9

5

1

2

3

4

6

7

8

9

5

(m)

(m)

(m)

(m) (m)

(m)

(m)

(m)

(m)

(m) (m)

(m)

(m) (m)

(m) (m)

h(m) h(m)
2
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Fig. 12 Flow predictions for the continuous conductivity case 6 (conditioning on K) and 8
(jointly conditioning on K and ht=1.3).
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Fig. 13 Comparison of simulated head (ht=1.3) between EnPAT and MODFLOW for the
categorical conductivity case


