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Abstract

The need to reduce the computational cost of stochastic groundwater flow
and mass transport predictions calls for efficient upscaling techniques which
can transfer the heterogeneity across scales while preserving similar flow and
transport behaviors. In addition, due to the scarcity of measurement data,
inverse modeling is commonly used to calibrate the parameters by conditioning
on direct and indirect data and hence reduce the uncertainty of flow and
transport predictions. In this work, an upscaling technique is developed and
applied both in a synthetic example and a real case; then upscaling and the
Ensemble Kalman Filter (EnKF, a method for inverse modeling) are coupled to
handle a high-resolution inverse model; and finally, the EnKF and its variant,
the normal-score EnKF, is applied in the context of multiGaussian and non-
multiGaussian media. The work included in this PhD can be grouped in three
blocks.

First, simple averaging, simple-Laplacian, Laplacian-with-skin, and non-
uniform coarsening upscaling techniques are reviewed and assessed in a three-
dimensional hydraulic conductivity upscaling exercise. The reference is a fine
scale conditional realization of the hydraulic conductivities at the MAcro-
Dispersion Experiment site on Columbus Air Force Base in Mississippi (USA).
This realization was generated using a hole-effect variogram model and it was
shown that flow and transport modeling in this realization (at the fine scale)
can reproduce the observed non-Fickian spreading of the tritium plume. The
purpose of this work is twofold, first to compare the effectiveness of differ-
ent upscaling techniques in yielding upscaled models able to reproduce the
observed transport behavior, and second to demonstrate and analyze the con-
ditions under which flow upscaling can provide a coarse model in which the
standard advection-dispersion equation can be used to model transport in
seemingly non-Fickian scenarios. Specifically, the use of the Laplacian-based
upscaling technique coupled with a non-uniform coarsening scheme yields the
best results both in terms of flow and transport reproduction, for this case
study in which the coarse blocks are smaller than the correlation ranges of the
fine scale conductivities. However, in some cases, we also observe the impossi-
bility of reproducing transport at the coarse scale solely on the basis of a flow
upscaling. For this reason, a methodology for transport upscaling is developed
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for three-dimensional highly heterogeneous formations. The overall approach
requires a prior hydraulic conductivity upscaling using an interblock-centered
full-tensor Laplacian-with-skin method followed by transport upscaling. The
coarse scale transport equation includes a multi-rate mass transfer term to
compensate for the loss of heterogeneity inherent to all upscaling processes.
The upscaling procedures for flow and transport are described in detail and
then applied to a three-dimensional highly heterogeneous synthetic example.
The proposed approach not only reproduces flow and transport at the coarse
scale, but it also reproduces the uncertainty associated with the predictions
as measured by the ensemble variability of the breakthrough curves.

Second, the ensemble Kalman filter is coupled with upscaling to build an
aquifer model at a coarser scale than the scale at which the conditioning data
(conductivity and piezometric head) had been taken for the purpose of inverse
modeling. Building an aquifer model at such scale is most often impractical,
since this would imply numerical models with millions of cells. If, in addi-
tion, an uncertainty analysis is required involving some kind of Monte-Carlo
approach, the task becomes impossible. For this reason, a methodology has
been developed that will use the conductivity data, at the scale at which they
were collected, to build a model at a (much) coarser scale suitable for the in-
verse modeling of groundwater flow and mass transport. It proceeds as follows:
(i) generate an ensemble of realizations of conductivities conditioned to the
conductivity data at the same scale at which conductivities were collected, (ii)
upscale each realization onto a coarse discretization; on these coarse realiza-
tions, conductivities will become tensorial in nature with arbitrary orientations
of their principal directions, (iii) apply the EnKF to the ensemble of coarse
conductivity upscaled realizations in order to condition the realizations to the
measured piezometric head data. The proposed approach addresses the prob-
lem of how to deal with tensorial parameters, at a coarse scale, in ensemble
Kalman filtering, while maintaining the conditioning to the fine scale hydraulic
conductivity measurements. The approach is demonstrated in the framework
of a synthetic worth-of-data exercise, in which the relevance of conditioning
to conductivities, piezometric heads or both is analyzed.

Finally, the ensemble Kalman filter is applied to jointly update the flow and
transport parameters (hydraulic conductivity and porosity) and state variables
(piezometric head and concentration) of a groundwater flow and contaminant
transport problem in a multi-Gaussian porous media. A synthetic experiment
is used to demonstrate the capability of the EnKF to estimate the hydraulic
conductivity and porosity by assimilating dynamic head and multiple concen-
tration data in a transient flow and transport model. In this work the worth
of hydraulic conductivity, porosity, head and concentration data is analyzed
in the context of aquifer characterization. The results indicate that the char-
acterization of the hydraulic conductivity and porosity fields is continuously
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improved as more data is assimilated. Also the groundwater flow and mass
transport predictions are improved if more and different types of data are as-
similated. The beneficial impact of accounting for multiple concentration data
is patent, particularly for the identification of the porosity field. Moreover, the
normal score Ensemble Kalman Filter (NS-EnKF) method, which was recently
developed to deal with the non-Gaussianity of parameters and state vectors
in the EnKF, is used to assess the impact of prior conceptual model uncer-
tainty on the characterization of conductivity and on the prediction of flow
in a synthetic bimodal aquifer. In addition, the effect of distance-dependent
localization functions and different set-ups of the boundary conditions in the
aquifer are also examined. The results are evaluated in terms of ensemble
means, variances and connectivities of the conditional realizations of conduc-
tivity and also looking at the uncertainty of predicted heads after solving the
flow equation in the conditional conductivity realizations. For the cases an-
alyzed it is found that (i) the patterns of simulated conductivity and flow
prediction can be reproduced close to the reference for both the correct and
wrong prior model using either the NS-EnKF or localized NS-EnKF as long
as a sufficient number of piezometric head data are used for conditioning, (ii)
coupling NS-EnKF with the localization function improves the conductivity
identification, (iii) the performance of the NS-EnKF is not affected by the
types of boundary conditions used.
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Resumen

La necesidad de reducir el coste computacional de los modelos estocasticos
de flujo de agua subterrdanea y de transporte de masa en acuiferos requieren
técnicas de escalado eficaces que puedan transferir la heterogeneidad de una
escala fina a otra gruesa, mientras que al mismo tiempo preserven el compor-
tamiento en cuanto a flujo y transporte. Ademaés, debido a la escasez de datos,
comunmente se utiliza la modelacion inversa para calibrar los parametros para
el condicionamiento de los modelos tanto a medidas directas como a medidas
indirectas, siempre con el objetivo de reducir la incertidumbre de las predic-
ciones de flujo y transporte. En este trabajo, se ha desarrollado una técnica
de escalado que se ha aplicado a un ejemplo de sintético y a un caso real, de-
spués, se ha acoplado el escalado con el filtro de Kalman de conjuntos (EnKF,
un método de modelacién inversa) para resolver un problema inverso en un
acuifero del que se dispone de datos a una escala muy pequenia y, por ultimo,
el EnKF y su variante el EnKF con transformacién gausiana, se usa para el
andlisis de medios multigausianos y no multigausianos. El trabajo desarrollado
en esta tesis puede agruparse en tres bloques.

En el primer bloque, se han revisado las técnicas de escalado que utilizan
una media simple, el método laplaciano simple, el laplaciano con piel y el escal-
ado con mallado no uniforme y se han evaluado en un ejercicio tridimensional
de escalado de la conductividad hidraulica. El campo usado como referencia
es una realizacién condicional a escala fina de la conductividad hidraulica del
experimento de macrodispersion realizado en la base de la fuerza aérea es-
tadounidense de Columbus en Misuri (MADE en su acrénimo inglés). Esta
realizacion se habia generado mediante un variograma con efecto agujero y se
habia demostrado que el flujo y el transporte, a la escala fina, pueden repro-
ducir el comportamiento no fickiano de la difusién del penacho contaminante
de tritio. El objetivo de esta seccién es doble, primero, comparar la efectividad
de diferentes técnicas de escalado para producir modelos capaces de reproducir
el comportamiento observado del movimiento del penacho de tritio, y segundo,
demostrar y analizar las condiciones bajo las cuales el escalado puede propor-
cionar un modelo a una escala gruesa en el que el flujo y el transporte puedan
predecirse con al ecuacién de adveccién-dispersién en condiciones aparente-
mente no fickianas. En concreto, el uso de la técnica de escalado basada en
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el laplaciano con piel junto con un mallado no uniforme produce los mejores
resultados tanto en términos de flujo como de transporte, para este caso con-
creto en el que los bloques gruesos tienen un tamano inferior a los rangos de
correlacion de las conductividades a escala fina. En otros casos, se observa que
la discrepancia en la prediccién del transporte entre las dos escalas persiste, y
la ecuacién de adveccién-dispersion no es suficiente para explicar el transporte
en la escala gruesa. Por esta razén, se ha desarrollado una metodologia para el
escalado del transporte en formaciones muy heterogéneas en tres dimensiones.
El método propuesto se basa en un escalado de la conductividad hidraulica
por el método laplaciano con piel y centrado en los interbloques, seguido de
un escalado de los parametros de transporte que requiere la inclusiéon de un
proceso de transporte con transferencia de masa multitasa para compensar la
pérdida de heterogeneidad inherente al cambio de escala. Los procedimientos
de escalado del flujo y del transporte se describen en detalle y se aplican a
un ejemplo sintético en tres dimensiones con gran heterogeneidad. El método
propuesto no sélo reproduce el flujo y el transporte en la escala gruesa, sino
que reproduce también la incertidumbre asociada con las predicciones segin
puede observarse analizando la variabilidad del conjunto de curvas de llegada.

En el segundo bloque, el filtro de Kalman de conjuntos se acopla con el es-
calado para construir un modelo del acuifero a una escala mayor que la escala
en la que los datos condicionantes (conductividad y la altura piezométrica)
han sido tomados con el objetivo de realizar una modelacién inversa. La con-
struccion de un modelo de acuifero a la escala en la que se tomaron las medidas
es, en general, poco préctico, ya que esto implicaria modelos numéricos con
millones de celdas. Si, ademas, se requiere un anélisis de incertidumbre que se
base en un andlisis de Monte-Carlo, la tarea se convierte en imposible. Por esta
razon, se ha desarrollado una metodologia que usa los datos de conductividad,
a la escala a los que fueron recogidos, para construir un modelo a escala gruesa
adecuado para la modelacion inversa del flujo de aguas subterrdneas y trans-
porte en masa. El método procede de la siguiente manera: (i) generacién de
un conjunto de realizaciones de conductividades condicionadas a los datos de
conductividad a la misma escala a la que se recogieron, (ii) escalado de cada
realizacion a una discretizacién gruesa; en estas realizaciones a escala gruesa,
las conductividades se convertiran en parametros tensoriales con orientaciones
arbitrarias de sus direcciones principales, y (iii) aplicar el EnKF al conjunto
de relizaciones de conductividad a la escala gruesa para condicionarlas a las
medidas de altura piezométrica. El método propuesto aborda el problema de
cémo hacer frente a pardmetros tensoriales, en una escala gruesa, usando el
filtro de Kalman de conjuntos, mientras se mantiene el condicionamiento a
las escalas de conductividad fina. Se demuestra en el marco de un andlisis
sintético del valor de la informacién en el que se analiza la importancia de
condicionar en conductividades hidrdulicas, alturas piezométricas o en ambos.
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Por tltimo, en el tercer bloque, el filtro de Kalman de conjuntos (EnKF) se
aplica para condicionar de forma conjunta los pardmetros que controlan el flujo
y el transporte (conductividad hidréulica y porosidad) a las variables de estado
(altura piezométrica y concentracién). Se utiliza un experimento sintético para
demostrar la capacidad del EnKF para estimar la conductividad hidraulica y
la porosidad, por asimilacién de alturas piezométricas y concentraciones. Se
estudia el valor que tienen los datos de conductividad hidraulica, de porosidad,
de altura piezométrica y de concentracién en el contexto de la caracterizacion
de acuiferos y de la reduccién de la incertidumbre en parametros y variables
de estado. Los resultados indican que la caracterizaciéon de la conductividad
hidraulica y de la porosidad es mejor cuantos mas tipos de datos se consideren.
Las predicciones de flujo y transporte también mejoran cuanto méas datos se
usen. Es importante resaltar el impacto que tiene el condicionamiento a los
datos de concentraciéon, especialmente en la caracterizacién de las porosidades.
Por otra parte, el filtro de Kalman de conjuntos con transformacién normal
(NS-EnKF), recientemente desarrollado para hacer frente a la no gausianidad
de parametros y variables de estado, se ha usado para evaluar el impacto
que tiene la incertidumbre del modelo conceptual en la modelacién inversa.
También se ha analizado el impacto de las condiciones de contorno y del uso
de técnicas de localizacién de la covarianza en el EnKF. Los resultados de
este dltimo andlisis se han evaluado en términos de valores medios y varianzas
del conjunto de realizaciones, de las conectividades de las realizaciones, y de
la incertidumbre en las predicciones de las alturas piezométricas después del
condicionamiento. De los distintos escenarios evaluados se puede deducir que
(i) la reproduccién de los patrones de variabilidad de la conductividad como
las predicciones de flujo son buenas utilizando el NS-EnKF tanto cuando se
usa un modelo a priori correcto como aproximado, siempre y cuando el niimero
de datos de piezometria condicionantes sea importante, (ii) el uso de técnicas
de localizacién de la covarianza en el NS-EnKF mejora la identificaciéon de la
conductividad hidraulica y (iii) las condiciones de contorno no afectan a la
bondad de los resultados obtenidos por NS-EnKF'.
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Resum

La necessitat de reduir el cost computacional dels models estocastics de flux
d’aigua subterrania i de transport de massa requereixen una tecnica d’escalat
eficag que puga transferir I’heterogeneitat d’una escala fina a una altra gruix-
uda, mentre que al mateix temps es preserve el comportament quant a flux
i transport. A més, a causa de 'escassetat de dades, comunament s’utilitza
la modelitzacié inversa per a calibrar els parametres per al condicionament
dels models tant a mesures directes com a mesures indirectes, sempre amb
I’'objectiu de reduir la incertesa de les prediccions de flux i transport. En
aquest treball, s’ha desenvolupat una tecnica d’escalat que s’ha aplicat a un
exemple sintetic i a un cas real, després, s’ha acoblat ’escalat amb el filtre de
Kalman de conjunts (EnKF, un meétode de modelitzaci6 inversa) per a resol-
dre un problema invers en un aqiiifer del que es disposa de dades a una escala
molt xicoteta i, finalment, ’EnKF i la seua variant ’EnKF amb transformacié
gaussiana, s’usa per a ’analisi de mitjans multigaussians i no multigaussians.
El treball desenvolupat en aquesta tesi pot agrupar-se en tres blocs.

En el primer bloc, s’han revisat les tecniques d’escalat que utilitzen una
mitjana simple, el metode laplacia simple, el laplacia amb pell i ’escalat amb
discretitzacio no uniform i s’han avaluat en un exercici tridimensional d’escalat
de la conductivitat hidraulica. El camp de referéncia és una realitzacié condi-
cional a escala fina de la conductivitat hidraulica en I'’experiment de macrodis-
persié realitzat en la base de la forca aeria nord-americana a Columbus, Mis-
souri (MADE en el seu acronim angles). Aquesta realitzacié s’ha generat
mitjancant un variogram amb efecte forat on s’havia demostrat que el flux
i el transport, a l’escala fina, pot reproduir el comportament no fickia de la
difusié del plomall contaminant de triti. L’objectiu d’aquesta secci6 és doble,
primer comparar l'efectivitat de diferents tecniques d’escalat per a produir
models capacos de reproduir el comportament observat del moviment del plo-
mall de triti, i segon, per a demostrar i analitzar les condicions sota les quals
I’escalat pot proporcionar un model a una escala gruixuda en el qual el flux i
el transport puguen predir-se amb ’equacié d’adveccio-dispersié en condicions
aparentment no fickianes. En concret, I'as de la técnica d’escalat basada en
el laplacia amb pell juntament amb una discretitzacié no uniforme produeix
els millors resultats tant en termes de flux com de transport en aquest cas
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concret en el qual els blocs gruixuts tenen una grandaria inferior als rangs de
correlacié de les conductivitats a escala fina. En altres casos, s’observa que
la discrepancia en la prediccié del transport entre les dues escales persisteix,
i 'equacié d’adveccié-dispersié no és suficient per a explicar el transport en
I’escala gruixuda. Per aquesta rad, s’ha desenvolupat una metodologia per
a l'escalat del transport en formacions molt heterogenies en tres dimensions.
El metode proposat es basa en un escalat de la conductivitat hidraulica pel
metode laplacia amb pell i centrat en els interblocs, seguit d’un escalat dels
parametres de transport que requereix la inclusié d’un procés de transport amb
transferencia de massa multitaxa per a compensar la perdua d’heterogeneitat
inherent al canvi d’escala. Els procediments d’escalat del flux i del transport
es descriuen detalladament i s’apliquen a un exemple sintetic en tres dimen-
sions amb gran heterogeneitat. El metode proposat no solament reprodueix el
flux i el transport en 'escala gruixuda, siné que reprodueix també la incertesa
associada amb les prediccions segons pot observar-se analitzant la variabilitat
del conjunt de corbes d’arribada.

En el segon bloc, el filtre de Kalman de conjunts s’acobla amb ’escalat
per a construir un model de l'aqiiifer a una escala major que ’escala en la
qual les dades condicionants (conductivitat i altura piezometrica) han sigut
mesurats amb 'objectiu de realitzar una modelitzacié inversa. La construccio
d’un model d’aquifer a 1’escala en la qual es van prendre les mesures és, en
general, poc practic, ja que aco implicaria models numeérics amb milions de
cel-les. Si, a més, es requereix una analisi d’incertesa que es base en una analisi
de Monte-Carlo, la tasca es converteix en impossible. Per aquesta rad, s’ha
desenvolupat una metodologia que usa les dades de conductivitat, a I'escala
als quals van ser arreplegats, per a construir un model a escala gruixuda ade-
quat per a la modelitzaci6 inversa del flux d’aigiies subterranies i transport en
massa. El metode procedeix de la segiient manera: (i) generacié d’un conjunt
de realitzacions de conductivitats condicionades a les dades de conductivitat
a la mateixa escala a la qual es van arreplegar, (ii) escalat de cada realitzaci6
a una discretitzacié gruixuda; en aquestes realitzacions a escala gruixuda, les
conductivitats es convertiran en parametres tensorials amb orientacions ar-
bitraries de les seues direccions principals, (iii) aplicar 'EnKF al conjunt de
realitzacions de conductivitat a ’escala gruixuda per a condicionar-les a les
mesures d’altura piezometrica. La proposta aborda el problema de com fer
front a parametres tensorials, en una escala gruixuda, usant EnKF, mentre
es manté el condicionament a les escales de conductivitat fina. El metode
proposat es demostra en el marc d’una analisi sintetica del valor de la infor-
macié en el qual s’analitza la importancia de condicionar en conductivitats
hidrauliques, altures piezometriques o en tots dos.

Finalment, en el tercer bloc, el filtre de Kalman de conjunts (EnKF)
s’aplica per a condicionar de forma conjunta els parametres que controlen el
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flux i el transport (conductivitat hidraulica i porositat) a les variables d’estat
(altura piezometrica i concentracié). S’utilitza un experiment sinteétic per a
demostrar la capacitat de 'EnKF per a estimar la conductivitat hidraulica i la
porositat, per assimilacié d’altures piezometriques i concentracions. S’estudia
el valor que tenen les dades de conductivitat hidraulica, de porositat, d’altura
piezometrica i de concentracié en el context de la caracteritzacié d’aqiiifers i
de la reduccié de la incertesa en parametres i variables d’estat. Els resultats
indiquen que la caracteritzacioé de la conductivitat hidraulica i de la porositat
és millor quants més quantitat i més tipus de dades es consideren. Les predic-
cions de flux i transport també milloren com més dades s’usen. Es important
ressaltar 'impacte que té el condicionament a les dades de concentracio, es-
pecialment en la caracteritzacié de les porositats. D’altra banda, el filtre de
Kalman de conjunts amb transformacié normal (NS-EnKF), recentment de-
senvolupat per a fer front a la no gaussianitat de parametres i variables d’estat,
s’ha usat per a avaluar 'impacte que té la incertesa en el model conceptual en
la modelitzacié inversa. També s’ha analitzat I'impacte de les condicions de
contorn i de 1'is de tecniques de localitzacié de la covarianca en ’EnKF. Els
resultats d’aquesta ultima analisi s’han avaluat en termes de valors mitjans i
variancies del conjunt de realitzacions, de les connectivitats de les realitzacions,
i de la incertesa en les prediccions de les altures piezometriques després del
condicionament. Dels diferents escenaris avaluats es pot deduir que (i) la re-
producci6 dels patrons de variabilitat de la conductivitat com les prediccions
de flux sén bones utilitzant el NS-EnKF tant quan s’usa un model a priori
correcte com a aproximat, sempre que el nombre de dades de piezometria
condicionants siga important, (i) 1'as de técniques de localitzaci6 de la covar-
ianca en el NS-EnKF millora la identificacié de la conductivitat hidraulica i
(iii) les condicions de contorn no afecten a la bondat dels resultats obtinguts
pel NS-EnKF
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Introduction

1.1 Motivation and Objectives

In the last several decades, groundwater flow and transport modeling is rou-
tinely utilized to assess groundwater resources, understand the evolution of
contaminant plumes, and further provide the corresponding remediation strate-
gies to the decision-maker.

In the past, deterministic numerical models were commonly considered
with zoned hydrological parameters (e.g., porosity, conductivity, dispersivity),
which were inversely determined by optimizing the fit between the observed
aquifer response and the simulated values (e.g., piezometric heads, concen-
trations, temperatures and others). Trial-and-error at the beginning, and
more advanced automatic matching techniques, later, were used for the in-
verse modeling. The main shortcoming of this approach is the loss of small
scale variability of conductivity, which is usually very significant for transport
predictions. Furthermore, if an assessment of the uncertainty is needed, a
stochastic approach is needed instead of this type of deterministic model.

With the advance of geostatistics, stochastic hydrological modeling in-
creasingly becomes the research focus in the last decennia. Unlike traditional
zoned parameter values, equally-likely high-resolution parameter images are
first generated by means of geostatistical techniques such as sequential Gaus-
sian simulation or multiple point geostatistics. Then, inverse techniques such
as the self-calibration and the ensemble Kalman filter can be used to calibrate
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the parameters by conditioning on the aquifer response and hence reduce the
uncertainty on groundwater flow and mass transport predictions.

In the framework of stochastic hydrogeology, two issues have gained promi-
nence: upscaling and conditioning. The need of upscaling can be explained
by the fact that the scale of measurements is usually smaller than the com-
putational scale of the numerical models, which makes upscaling necessary
to transfer the information across scale, while maintaining flow and trans-
port predictions as accurate as possible. After upscaling, the predictions from
the upscaled numerical model will not match the observed aquifer responses,
calling for conditioning using some type of inverse model.

Since the need for upscaling was recognized in petroleum engineering and
hydrogeology, different upscaling approaches have been developed to improve
flow and transport predictions at the computational scale. To preserve the
flows at the fine scale, flow upscaling techniques include the simple average,
simple Laplacian, Laplacian with skin, local-global method and others have
been proposed. To preserve the transport behavior at the fine scale, such as
the early, median and late times in the breakthrough curves, transport up-
scaling techniques have been proposed such as the enhanced macrodispersion
approach or the multi-rate mass transfer-based approach.

The problem of conditioning was first solved in a geostatistical framework
and regarding the direct measurements of the parameters of interest. Con-
ditioning to indirect data, such as aquifer responses to a set of parameters
requires inverse modeling. The latest advances in inverse modeling aim at the
generation of multiple conditional realizations of non multiGaussian parame-
ters.

This thesis will elaborate on these two issues. More specifically, the objec-
tives of this thesis are to compare the different upscaling approaches applied
to the MADE site, to develop a three-dimensional multi-rate mass transfer
transport upscaling technique, to couple the upscaling with ensemble Kalman
filter to simulate the transient flow, to jointly calibrate the conductivity and
porosity by conditioning on the multiple concentration data and to assess the
normal-score ensemble Kalman filter applying in the bimodal aquifer with the
uncertainty of prior model.

1.2 Thesis Organization

The document is organized as follows. This chapter presents the introduction
and the motivation and objectives of this dissertation. Each of the following
five chapters is comprised of a separate, self-contained paper which is published
or is currently submitted for publication in a refereed international journal.
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Chapter 2 provides an extensive review of flow upscaling techniques, out-
lines the benefits and limitations of the various methods, and applies them at
the MADE site to overcome the problem of computational cost.

Chapter 3 presents a three-dimensional transport upscaling approach in
highly heterogeneous media. Basically, it couples a prior flow upscaling, so-
phisticated Laplacian-with-skin method, and a transport upscaling, multi-rate
mass transfer model-based. The methodology is demonstrated in a three-
dimensional synthetic example.

In chapter 4, the ensemble Kalman filter is coupled with upscaling to solve
a transient groundwater flow problem. This approach can deal with inverse
conditioning for a high-resolution model, something that is impossible to do
at the measurement scale. A two-dimensional synthetic example is used to
demonstrate the effectiveness of the proposed method.

In chapter 5, the EnKF is applied to jointly calibrate conductivities and
porosities by assimilating piezometric head and concentration data at different
times. When the concentration data is used for conditioning, the characteri-
zation of aquifer heterogeneity and the predictions of flow and transport are
both improved. This application is demonstrated in a two-dimensional syn-
thetic example.

Chapter 6 uses the normal-score EnKF in a bimodal aquifer to assess the
impact of prior model choice on flow and transport predictions in inverse mod-
eling. The results show that even when the wrong prior model is considered,
the localized normal-score EnKF has a capacity to identify the channels in
the reference field as long as sufficient piezometric head data is used. This is
demonstrated for two cases with different boundary conditions.

Finally, Chapter 7 summarizes the main conclusions of this thesis and
points out possible topics for future research.

Appendix A briefly presents the algorithm of a nineteen-point finite-difference
method to solve the groundwater flow equation with full conductivity tensors.
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A Comparative Study of
Three-Dimensional Hydraulic
Conductivity Upscaling at the

MA cro-Dispersion
Experiment (MADE) site,
Columbus Air Force Base,

Mississippi (USA)

Abstract

Simple averaging, simple-Laplacian, Laplacian-with-skin, and non-uniform coars-
ening are the techniques investigated in this comparative study of three-
dimensional hydraulic conductivity upscaling. The reference is a fine scale
conditional realization of the hydraulic conductivities at the M Acro-Dispersion
Experiment site on Columbus Air Force Base in Mississippi (USA). This re-
alization was generated using a hole-effect variogram model and it was shown
that flow and transport modeling in this realization (at this scale) can repro-
duce the observed non-Fickian spreading of the tritium plume. The purpose

5
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of this work is twofold, first to compare the effectiveness of different upscal-
ing techniques in yielding upscaled models able to reproduce the observed
transport behavior, and second to demonstrate and analyze the conditions
under which flow upscaling can provide a coarse model in which the standard
advection-dispersion equation can be used to model transport in seemingly
non-Fickian scenarios. Specifically, the use of the Laplacian-based upscaling
technique coupled with a non-uniform coarsening scheme yields the best re-
sults both in terms of flow and transport reproduction, for this case study
in which the coarse blocks are smaller than the correlation ranges of the fine
scale conductivities.

2.1 Introduction

In the last decades, two large-scale natural-gradient tracer tests were con-
ducted to enhance the understanding of solute transport in highly heteroge-
nous aquifers. These experiments were conducted at the Columbus Air Force
Base in Mississippi, where the hydraulic conductivity variability is very high,
with a?n i ~ 4.5 (Rehfeldt et al., 1992). The site and the experiments per-
formed are commonly referred to as MADE (MAcro-Dispersion Experiment).
The present analysis focuses on the second experiment, which was performed
between June 1990 and September 1991 using tritium as a non-reactive tracer.
The aim of the experiment was to develop an extensive field database for vali-
dating the type of geochemical models used to predict the transport and fate of
groundwater contaminants (Boggs et al., 1993). The observed tritium plume
exhibits a strongly non-Fickian, highly asymmetric spreading (at the forma-
tion scale) with high concentrations maintained near the source injection area
and extensive low concentrations downstream.

Although there exists abundant literature on the modeling of the (so
termed) anomalous spreading at the MADE site, only a few works related
with this paper will be referred to in this introduction. These works can be
classified into two groups according to the approach used for transport mod-
eling.

In a first group, a number of authors have employed the classical advection-
dispersion equation (ADE) to describe the strongly non-Fickian transport be-
havior (e.g., Adams and Gelhar, 1992; Eggleston and Rojstaczer, 1998; Bar-
lebo et al., 2004; Salamon et al., 2007). Of these works, Salamon et al. (2007)
showed that, with proper modeling of the fine-scale variability, it is possible to
generate realizations of the hydraulic conductivity capable to reproduce the
observed tracer movement, simply using the ADE. They used a hole-effect var-
iogram model to characterize the flowmeter-derived conductivities. The final
realizations displayed the apparent periodicity of the observed conductivities,
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which was enough to induce the type of spreading observed in the experiment.
However, in practice, it is difficult to work with this type of high-resolution
models, involving millions of nodes, particularly if multiple realizations are to
be analyzed. This difficulty is what motivates our paper.

In a second group, researchers have used models that go beyond the advection-
dispersion model (e.g., Berkowitz and Scher, 1998; Feehley et al., 2000; Harvey
and Gorelick, 2000; Benson et al., 2001; Bacumer et al., 2001; Schumer et al.,
2003; Guan et al., 2008; Liu et al., 2008; Llopis-Albert and Capilla, 2009).
These authors use dual-domain mass transfer models, continuous time ran-
dom walk or other alternative models capable of accounting for the strongly
delayed solute transport as an alternative to the classical ADE. However, these
approaches are able to provide a good match to the observed field data only
a posteriori; that is, they need to calibrate their model parameters once the
concentration data are collected, and then, they can reproduce, almost per-
fectly, any departure from Fickian transport. These works prove that there
are alternative transport models able to explain the MADE data; however, at
this point, they lack predictive capabilities since their parameters can only be
determined after the experiment is done.

All of these studies had varying degrees of success in reproducing the
spreading of the tracer plume. For instance, Barlebo et al. (2004) obtained a
good reproduction of the irregular plume using the ADE after calibrating the
concentration measurements and head data. However, calibrated hydraulic
conductivities resulted a factor of five larger than the flowmeter-derived mea-
surements. The authors attributed this discrepancy to a systematical mea-
surement error. The accuracy of the flowmeter-derived conductivities and of
the measured concentrations have raised further discussions (see Molz et al.,
2006; Hill et al., 2006).

Our work builds on the study by Salamon et al. (2007) with the purpose
to show that the observed transport spreading at the MADE site can also
be reproduced on a coarse model by the ADE. A high-resolution hydraulic
conductivity realization is selected from the study by Salamon et al. (2007)
and it is upscaled onto a coarser model with several orders of magnitude
less elements. This upscaling approach, if successful, would permit multiple
realization analyses since it would reduce significantly the computational effort
needed to obtain the solute evolution at the site. Unlike previous studies of
upscaling focusing on two-dimensional examples or synthetic experiments (e.g.,
Warren and Price, 1961; Gémez-Hernandez, 1991; Durlofsky et al., 1997; Chen
et al., 2003), we analyze, with real data, a variety of three-dimensional (3D)
hydraulic conductivity upscaling techniques ranging from simple averaging
over a uniform grid to sophisticated Laplacian-based upscaling approaches on
non-uniform grids. To the best of our knowledge, this is the first time that an
analysis of this type has been performed in a real 3D case. Since we will be
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testing the use of a full tensor representation of conductivities in the upscaled
model, our group had to develop a computer code (Li et al., 2010), which has
been placed on the public domain, specifically designed to solve the finite-
difference approximation of the groundwater flow equation without assuming
that the principal directions of the hydraulic conductivity tensors are aligned
to the reference axes.

The remaining of this paper is organized as follows. First, in section 2.2,
we summarize the findings by Salamon et al. (2007) who used a hole-effect
variogram model to describe the spatial variability of InK and, thus, were
able to reproduce the non-Fickian solute spreading observed in the field. Out
of the several realizations analyzed by Salamon et al. (2007), we select the
one with the best reproduction of the solute spreading. This realization will
be used as the reference to test different upscaling approaches. Second, in
section 2.3, simple average, simple-Laplacian, Laplacian-with-skin and non-
uniform coarsening upscaling methods are revisited from the perspective of
their numerical implementation. Third, in section 2.4, the flow and transport
numerical models are discussed, and the benefits/limitations of using different
upscaling methods at the MADE site are quantified and evaluated. Next, in
section 2.5, there is a general discussion. Finally, in section 2.6, we summarize
the main results and conclusions of this paper.

2.2 Modeling transport at the MADE site

In this work, we focus on the tritium data collected in the second MADE exper-
iment. An extensive discussion of the main geological features and hydrogeo-
logical characterization of the site has been given by Boggs et al. (1992), Adams
and Gelhar (1992), Rehfeldt et al. (1992), and Boggs and Adams (1992). Sala-
mon et al. (2007) found that the non-Fickian solute spreading observed in the
field could be reproduced using the standard advection-dispersion model as
long as the spatial variability of hydraulic conductivity is properly character-
ized at the fine scale. For the sake of completeness, next we briefly comment
the results by Salamon et al. (2007).

The geostatistical analysis of the 2 495 flowmeter-derived hydraulic con-
ductivity measurements obtained at 62 boreholes (see Figure 2.1) indicates
that the spatial variability of InK shows a pseudo-periodic behavior in the
direction of flow (Figure 2.2). This behavior is modeled using a hole-effect
variogram, which is nested with a nugget effect and a spherical variogram as
given by:

v(h) :co—i—cl-Sph( ,—ZH)—i—CQ- 1—cos(H—x,

zy Ay Az o Qyy Oz

he hy, h he hy h.
I= = L x| (21)
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Figure 2.1: Plan view of model domain. Open circles denote multilevel sampler

wells. Triangles indicate the tracer injection wells. Solid circles correspond to
flowmeter well locations.
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Table 2.1: Variogram parameters for the model fit in Figure 2.2

Model Type  Sill Range [m)]
c gz Gy a
Nugget 0.424
Spherical 3.820 32 80 4.1
Hole effect 0.891 oo 80 o0

where h = (hg, hy, h,) is the separation vector, az,,a,,,a., are the ranges
of the spherical variogram, ag,, ay,,a., are the ranges of the hole-effect var-
iogram, || - || denotes vector modulus, ¢y is the nugget, ¢; is the sill of the
spherical model, ¢ is the sill of the hole-effect model, with the y-axis oriented
parallel to the flow direction, the z-axis is orthogonal to it on the horizontal
plane, and the z-axis is parallel to the vertical direction. The parameter values
used to fit the experimental variogram are given in Table 2.1. Notice that a,,
and a,, are equal to infinity, meaning that the hole-effect is only present along
the flow direction. The fitted model is also shown in Figure 2.2.
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Figure 2.2: Horizontal and vertical experimental variograms, and fitted model,
for the InK flowmeter data. The rotation angle of the directional variograms
is measured in degrees clockwise from the positive y-axis.
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The computational domain is a parallelepiped with dimensions of z = 110
m, y = 280 m, z = 10.5 m and it is discretized in 2 156 000 cells of size
Az = Ay = 1.0 m, and Az = 0.15 m (see Figure 2.1). Cell size, according to
Salamon et al. (2007), is similar in magnitude with the support scale of the
flowmeter measurements. The aquifer is modeled as confined with imperme-
able boundaries on the faces parallel to flow, and constant head boundaries
on the faces orthogonal to it. The values prescribed at the constant head
boundaries are obtained by kriging the head averages over one-year observed
in the nearby piezometers.

\ —0O— Mass distribution t=27 days

—O0— Mass Distribution t=328 days

Realization #26

0.1

Normalized Mass

0.001
0 50 100 150 200 250

Downstream Distance [m]

Figure 2.3: Longitudinal mass distribution profiles of the observed tritium
plume at MADE, and predictions on several realizations of hydraulic conduc-
tivity. Each realization was generated (on natural-log space) over a grid of
110 x 280 x 70 cells by sequential Gaussian simulation using the variogram
model in Equation 2.1.

Salamon et al. (2007) used the random walk particle tracking code RW3D
(Fernandez-Garcia et al., 2005) to simulate solute transport. The local-scale
longitudinal dispersivity was set as 0.1 m, which corresponds approximately
to the value calculated by Harvey and Gorelick (2000). Transverse horizon-
tal and vertical local-scale dispersivity values were chosen to be one order of
magnitude smaller than the longitudinal dispersivity, i.e., 0.01 m. Apparent
diffusion for tritium was set to 1.0 cm?/d (Gillham et al., 1984). An average
total porosity of 0.32 as determined from the soil cores by Boggs et al. (1992)
was assigned uniformly to the entire model area. The observed mass distri-
bution on the 27" day was employed to establish the initial concentration
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distribution. A simple interpolation of the initial concentrations was used to
establish the concentrations in the model cells, and then 50 000 particles were
distributed accordingly. The observed mass distribution on the 328" day was
used to obtain reference mass profile distributions to which the model is com-
pared. These longitudinal profiles were obtained by integrating the mass from
28 equally-spaced vertical slices, each of 10 m width and parallel to flow. All
results are displayed after normalizing the mass by the total mass injected.
Figure 2.3 shows the longitudinal mass distribution profiles obtained by Sala-
mon et al. (2007) after transport simulation on 40 realizations generated by
sequential Gaussian simulation. These realizations were generated using the
code GCOSIM3D, (Gémez-Hernandez and Journel, 1993) with the variogram
model given by equation (2.1) and the parameter values from Table 2.1. Out
of these 40 realizations, solute transport on realization number 26 shows a
spatial spread similar to the one observed in the field. For this reason, this
conductivity realization is chosen as the reference field to test the different
upscaling methods. Figure 2.4 shows the hydraulic conductivity field of real-
ization number 26.

In K[cm/s]

. 00

-1.0
-2.0
-3.0

Z[m]

Figure 2.4: Realization #26 of InK from Salamon et al. (2007). This real-
ization exhibits a strong solute tailing and it is used as the reference in the
upscaling exercise. (The scale of the z-axis is exaggerated seven times for
clarity.)
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Up to here, we have limited ourselves to briefly describe the specific results
from Salamon et al. (2007) that this work uses as starting point. We are not
trying to re-analyze MADE, but rather to demonstrate that careful hydraulic
conductivity upscaling can be used to model flow and transport in highly het-
erogeneous fields exhibiting, at the formation scale, a non-Fickian behavior.
To evaluate the upscaling procedure we will compare flow and transport in
realization #26 before and after upscaling, aiming at obtaining the same re-
sults. Obviously, the departure of transport results computed on realization
#26 from the experimental data will remain after upscaling. Trying to get the
best reproduction of the experimental data will require a further calibration
exercise that is not the objective of this paper.

2.3 Hydraulic conductivity upscaling

Although hydraulic conductivity upscaling has been disregarded by some re-
searchers on the basis that the increase of computer capabilities will make it
unnecessary, there will always be a discrepancy between the scale at which we
can characterize the medium, and the scale at which we can run the numerical
codes. This discrepancy makes upscaling necessary to transfer the information
collected at the measurement scale into a coarser scale suitable for numerical
modeling. The need for upscaling is even more justified when performing
uncertainty analysis in a Monte Carlo framework requiring the evaluation of
multiple realizations. Excellent reviews on upscaling geology and hydraulic
conductivity are given by Wen and Gémez-Herndndez (1996b), Renard and
Marsily (1997) and Sénchez-Vila et al. (2006). In this section, we briefly re-
visit the most commonly used upscaling techniques with an emphasis on their
numerical implementation procedures.

2.3.1 Simple averaging

It is well known that, for one-dimensional flow in a heterogeneous aquifer, the
equivalent hydraulic conductivity (K?) that, for a given hydraulic head gra-
dient, preserves the flows crossing the aquifer is given by the harmonic mean
of the hydraulic conductivities (Freeze and Cherry, 1979). In two-dimensional
flow for media with isotropic spatial correlation and a lognormal probability
distribution, the geometric mean provides good block conductivities (Math-
eron, 1967); Gémez-Hernandez and Wen (1994) and Sanchez-Vila et al. (1996)
used synthetic experiments to corroborate this conclusion.

Some heuristic rules have been proposed for three-dimensional upscaling.
Cardwell and Parsons (1945) had already shown that the block conductivity
should lie between the arithmetic mean and the harmonic mean when Journel
et al. (1986) proposed the use of power averages (also referred to as w-norms)
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to estimate block conductivities. The power average is given by:

Kb :{V(lx) /V(x)(Kz)‘”dV}l/w (2.2)

where V(x) indicates the volume of the block; K? is the block conductivity,
and K, represents the cell conductivities within the block, the power w may
vary from —1, yielding the harmonic mean, to +1, yielding the arithmetic
mean, with w = 0 corresponding to the geometric mean. Although Desbarats
(1992) demonstrated that w equals 1/3 in 3D for statistically isotropic and
mildly heterogeneous formations, the power coefficient (w) has to be obtained
by resorting to numerical flow experiments in arbitrary flow fields. The main
advantages of this method are its mathematic conciseness and the easiness of
implementation. However, there are several limitations to this power-average
approach: first, the exponent w is site-specific and cannot be predicted in a
general anisotropic heterogeneous medium except after numerical calibration
experiments; second, the shape and size of the blocks are not considered.

2.3.2 Simple-Laplacian

This approach is based on the local solution, for each block being upscaled, of
a variant of the Laplace equation (steady-state, groundwater flow with neither
sources nor sinks). In this approach, the block conductivity is assumed to be a
tensor with principal directions parallel to the coordinate axes; and therefore,
diagonal for this reference system.

To determine each component of the tensor, a local problem is solved in-
ducing flow in the component direction. For instance, in 2D, the tensor will
have two components, K ggg, and Ké’y; to determine the component correspond-
ing to the z direction, K%, the procedure would be as follows: (1) extract the
block being upscaled and solve the groundwater flow equation just within the
block, at the fine scale with no flow boundaries on the sides parallel to flow
and prescribed heads on the sides perpendicular to flow as shown in Figure 2.5;
(2) evaluate the total flow @ through any cross-section parallel to the y-axis
from the solution of the flow equation, and (3) compute the block conductivity

tensor component in the x-direction as:

ng:_(?flc—?yo)/(ziizg (23)

where 31—y is the block width; h; —hg is the difference between the prescribed
heads on the opposite sides of the block (see Figure 2.5), and x1 — x¢ is the
block length. Kgy would be obtained similarly after solving a similar local
flow problem with the boundary conditions in Figure 2.5 rotated 90°.
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Figure 2.5: Boundary conditions that would be used in 2D for the local flow
model when performing the simple-Laplacian upscaling in order to determine
the z-component of the hydraulic conductivity tensor. In the simple-Laplacian
approach, it is always assumed that the principal directions of the conductivity
tensor are parallel to the reference axes.
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The main shortcoming of this approach is that the assumption of a diagonal
tensor is not well-founded for a heterogeneous aquifer. In other words, the
heterogeneity within the block may induce an overall flux that is not parallel
to the macroscopic head gradient, a behavior that cannot be captured with a
diagonal tensor.

This method has been widely used to calculate block conductivities in
petroleum engineering and hydrogeology (e.g., Warren and Price, 1961; Bouwer,
1969; Journel et al., 1986; Desbarats, 1987, 1988; Deutsch, 1989; Begg et al.,
1989; Bachu and Cuthiell, 1990). More recently Sénchez-Vila et al. (1996)
utilized this approach to study the scale effects in transmissivity; Jourde et al.
(2002) used it to calculate block equivalent conductivities for fault zones; and
Flodin et al. (2004) used this method to illustrate the impact of boundary
conditions on upscaling. It has also been employed by Fernandez-Garcia and
Gomez-Hernandez (2007) and Fernandez-Garcia et al. (2009) to evaluate the
impact of hydraulic conductivity upscaling on solute transport. Some reasons
favoring this approach are that it is not empirical but phenomenological, i.e.,
it is based on the solution of the groundwater flow equation, and it yields a
tensor representation of the block conductivity, which would be exact for the
case of perfectly layered media, with the layers parallel to the coordinate axes.

2.3.3 Laplacian-with-skin

To overcome the shortcomings of the simple-Laplacian approach, the Laplacian-
with-skin approach was presented by Gémez-Herndndez (1991). In this ap-
proach, the block conductivity is represented by a generic tensor (not neces-
sarily diagonal) and the local flow problem is solved over an area that includes
the block plus a skin surrounding it (see Figure 2.6). The skin is designed to
reduce the impact of the arbitrary boundary conditions used in the solution of
the local flow problems letting the conductivity values surrounding the block
to take some control on the flow patterns within the block.

For a 3D block, the overall algorithm is summarized as follows: (1) the
block to upscale plus the skin is extracted from the domain; (2) flow is solved
at the fine scale within the block-plus-skin region for a series of boundary
conditions; (3) for each boundary condition the spatially-averaged specific
discharge (q) and gradient (J) are calculated as,

(i) = V(lx) /V N (2.4)
ST
U = 77 /V LA (2.5)

where i refers to the three components of the vectors (i.e., ¢z, ¢y and g¢.; J3,Jy,
and J.); and (4) the tensor components of K° are determined by solving
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the following overdetermined system of linear equations by a standard least
squares procedure (Press et al., 1988).

[ (o (S (S O 0 0 (@)1
0 (Jz)1 0 (Jyhr  (J)1 0 (gy)1
0 0 (Japr 0 (Jyhr (Joh [ KD, ] (@)1
(Jo)o (Jy)2 (Jz)2 O 0 0 Ky, (qz)2
0 (Ju)2 0 (Jy (J)2 0 Koo | ay)e
0 0 (Jo)2 0 (Jy2 (J2)2 Kéy (q=)2
(Jz)n <Jy>n (J2)n 0 0 0 L Kzz J (qa)n
0 (Jz)n 0 (Jy)n  (J2)n 0 (qy)n
L 0 0 <Jz>n 0 <Jy>n <Jz>n i L <C]z>n i
(2.6)
where 1,. .., n refers to the different boundary conditions; K%, --- K?, are the

components of the upscaled equivalent conductivity tensor K°. In principle, in
3D, two sets of boundary conditions are sufficient to determine K°. However,
from a practical point of view, the number of boundary conditions should be
greater than two (n > 2) to better approximate all possible flow scenarios.

Every three rows in Equation (2.6) are the result of enforcing Darcy’s
law on the average values in equations (2.4) and (2.5) for a given boundary
condition:

(@) = —K"(J) (2.7)

The block conductivity tensor must be symmetric and positive definite.
Symmetry is easily enforced by making Kgy = Ké’x, Kb = K% and ng =
K gy. Positive definiteness is checked a posteriori. In case the resulting tensor
is non-positive definite, the calculation is repeated either with more boundary
conditions or with a larger skin size (Wen et al., 2003; Li et al., 2011).

We note that the critical point in this approach is the selection of the
set of n alternative boundary conditions. In general, this set of boundary
conditions is chosen so as to induce flow in several directions (for instance, the
prescribed head boundary conditions in Figure 2.6 induce flow at 0°, 45°, 90°
and 135° angles with respect to the z-direction). For the boundary conditions,
we have chosen to prescribe linearly varying heads along the sides of the blocks,
other authors (Durlofsky, 1991) have proposed the use of periodic boundary
conditions. Flodin et al. (2004) showed that the resulting block conductivities
do not depend significantly on whether the boundary conditions are linearly
varying or periodic.
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Figure 2.6: An example of four boundary condition sets that could be used
in 2D for the local flow models when performing the Laplacian-with-skin up-
scaling. The white area is the block being upscaled, and the gray area is the
skin region; the arrows indicate the (negative) mean head gradient induced by
the prescribed head boundary conditions, and the shapes on the sides of the
block indicate the magnitude of the prescribed heads given by tilting planes
with gradients opposite to the arrows.
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2.3.4 Non-uniform coarsening

Prior to upscaling, the fine-scale realization has to be overlain with the coarse-
scale discretization that will be used in the numerical model. Each block in
the coarse discretization must be assigned an upscaled conductivity value on
the basis of the conductivity values in the fine-scale realization. Initially,
all studies on hydraulic conductivity upscaling assumed that the coarse scale
discretization was uniform, that is, all coarse blocks were of the same shape
and size, until Durlofsky et al. (1997) introduced the concept of non-uniform
coarsening. The rationale was simple, if upscaling induces smoothing, and the
petroleum engineer is most interested in the water cut (the early breakthrough
at the production wells when petroleum is being displaced by injected water)
it is important to smooth the least the areas of high displacement velocities,
whereas the smoothing in the areas of low velocities is less relevant. For this
purpose, Durlofsky et al. (1997) suggest the following steps: (1) identify the
underlying high velocity regions using a fine-scale single-phase flow simulation;
(2) on the basis of this simulation define a discretization with small blocks in
high-velocity areas and large ones elsewhere; and (3) apply the Laplacian-
with-skin upscaling technique to calculate the block conductivity tensors of
the coarse (non-uniform) blocks.

In a hydrogeological context, we can also use a non-uniform coarsening
aimed to preserve small blocks in: (1) high flow velocity zones; (2) regions
where hydraulic gradients change substantially over short distances, such as
near pumping or injection wells (Wen and Gémez-Hernandez, 1998); (3) areas
near contaminant spills within a regional aquifer where accurate simulation of
plume movement is of interest; and (4) in zones requiring a detailed representa-
tion of heterogeneity, for instance to capture channels or fractures (Durlofsky
et al., 1997; Wen et al., 2003; Flodin et al., 2004).

2.4 Coarse model and simulation results

In this section, we first present the governing equation and the solution pro-
cedures for the flow and transport models, and then we discuss the results
obtained applying the different upscaling techniques described in the previous
section. All of these techniques are applied to realization #26 of the MADE
aquifer in Salamon et al. (2007).

2.4.1 Coarse Flow and Transport Equations

Under steady-state flow conditions and in the absence of sinks and sources, the
flow equation of an incompressible or slightly compressible fluid in saturated
porous media can be expressed by combining Darcy’s Law and the continuity
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equation, which in Cartesian coordinates is (Bear, 1972; Freeze and Cherry,
1979):

V- (K(x)Vh(x)) =0 (2.8)

where h is the piezometric head, and K is a second-order symmetric hydraulic
conductivity tensor.

Most frequently, the hydraulic conductivity tensor is assumed isotropic and
therefore can be represented by a scalar. In this case, a standard seven-point
block-centered finite-difference stencil is typically employed to solve the partial
differential equation in three dimensions. This approach is also valid if, for all
blocks, the conductivity is modeled as a tensor with the principal directions
aligned with the block sides (Harbaugh et al., 2000). However, when mod-
eling geologically complex environments at a coarse scale, the assumption of
isotropic block conductivity or even tensor conductivity with principal compo-
nents parallel to the block sides is not warranted. It is more appropriate to use
a full hydraulic conductivity tensor to capture properly the average flow pat-
terns within the blocks (Bourgeat, 1984; Gémez-Herndndez, 1991; Wen et al.,
2003; Zhou et al., 2010). Recently, the commonly used groundwater model
software MODFLOW implemented a new module that allows the use of a full
tensorial representation for hydraulic conductivity within model layers (An-
derman et al., 2002) which has been successfully applied in 2D examples such
as in Fernandez-Garcia and Gémez-Hernéndez (2007).

Modeling three-dimensional flow in a highly heterogeneous environment at
a coarse scale, requires accounting for a tensorial representation of hydraulic
conductivity. We cannot assume, a priori that specific discharge and hy-
draulic head gradient will be parallel, nor that the principal directions of the
hydraulic conductivity tensors are the same in all blocks. For this reason, and
given that MODFLOW can only account for 3D tensors if one of its principal
directions is aligned with the vertical direction, Li et al. (2010) developed a
three-dimensional groundwater flow simulation with tensor conductivities of
arbitrary orientation of their principal directions. This code is based on an
nineteen-point finite-difference approximation of the groundwater flow equa-
tion, so that the flow crossing any block interface will depend not only on the
head gradient orthogonal to the face, but also on the head gradient parallel to
it.

Finite-difference modeling approximates the specific discharges across the
interface between any two blocks ¢ and j as a function of the hydraulic con-
ductivity tensor in between block centers. This tensor is neither the one of
block ¢ nor of the one of block j. For this reason, finite-difference numerical
models need to approximate the interblock conductivity; the most commonly
used approximation is taking the harmonic mean of adjacent block values.
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When block conductivities are represented by a tensor, the concept of how to
average the block tensors in adjacent blocks is not clear. To overcome this
difficulty, the code developed by Li et al. (2010) takes directly, as input, in-
terblock conductivity tensors, removing the need of any internal averaging of
tensors defined at block centers. Within the context of upscaling, deriving the
interblock conductivity tensors simply amounts to isolate the parallelepiped
centered at the interface between adjacent blocks, instead of isolating the block
itself, and then apply the upscaling techniques described in the previous sec-
tion. In other contexts, the user must supply the interblock conductivity ten-
sors directly. Several authors (Appel, 1976; Gémez-Hernandez, 1991; Romeu
and Noetinger, 1995; Li et al., 2010) have recommended to work directly with
interblock conductivities for more accurate groundwater flow simulations.

Mass transport is simulated using the advection-dispersion equation: (Bear,
1972; Freeze and Cherry, 1979):

oC (x,t)

¢ ot
where C' is the dissolved concentration of solute in the liquid phase; ¢ is the
porosity; D is the local hydrodynamic dispersion coefficient tensor, and q is
the Darcy velocity given by q(x) = —K(x)Vh(zx).

As in the works of Salamon et al. (2007) and Llopis-Albert and Capilla
(2009) at the MADE site, the random walk particle tracking code RW3D
(Fernandez-Garcia et al., 2005; Salamon et al., 2006) is used to solve the
transport equation (2.9). In this approach, the displacement of each parti-
cle in a time step includes a deterministic component, which depends only
on the local velocity field, and a Brownian motion component responsible for
dispersion. A hybrid scheme is utilized for the velocity interpolation which
provides local as well as global divergence-free velocity fields within the solu-
tion domain. Meanwhile, a continuous dispersion-tensor field provides a good
mass balance at grid interfaces of adjacent cells with contrasting hydraulic
conductivities (LaBolle et al., 1996; Salamon et al., 2006). Furthermore, in
contrast to the constant time scheme, a constant displacement scheme (Wen
and Gémez-Hernandez, 1996a), which modifies automatically the time step
size for each particle according to the local velocity, is employed in order to
reduce computational effort.

= —V-(a(x)C(x,t)) + V-(¢6DVC(x,1)) (2.9)

2.4.2 Upscaling design and error measure

In this work, we have performed both uniform and non-uniform upscaling. In
the case of uniform upscaling, the original hydraulic conductivity realization
discretized into 110 x 280 x 70 cells of 1 m by 1 m by 0.15 m is upscaled onto
a model with 11 x 28 x 14 blocks of 10 m by 10 m by 0.75 m. This upscaling
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represents going from 2 156 000 cells down to 4 312 blocks, i.e., a reduction
by a factor of 500. The reduction in model size, undoubtedly, reduces the
computational cost for flow and transport modeling. As will be shown, the flow
and transport results can be improved using a non-uniform discretization of
the coarse model. For the non-uniform upscaling, the discretization continues
to be a rectangular grid, with the following coarse block dimensions: along the
z-axis (orthogonal to flow), block dimension is 10 m, except between z = 40
m and z = 90 m where it is 5 m; along the y-axis (parallel to flow), block
dimension is 10 m, except between y = 20 m and y = 130 m where it is 5 m;
and along the z-axis, block dimension is 1.5 m between z = 0 m and z = 3
m and 0.75 m elsewhere. The final model has 16 x 39 x 12 (7 488) blocks,
with smaller blocks close to the source and along the area through which it
is most likely that the solute plume will travel. The reduction factor in size,
with respect to the initial discretization is close to 300.

The first set of upscaling runs use simple averaging rules to obtain the
block conductivity values. The second set of runs use the Laplacian-based
approaches. Within this second set of runs we carry out a first comparison
using tensor conductivity values computed at block centers versus tensor con-
ductivities computed at the interfaces; the former requires a further averaging
of adjacent block values to approximate the interblock conductivities needed
by the numerical solver, whereas the latter does not. Then, after showing that
interface-centered conductivity upscaling is more appropriate, the following
upscaling runs are always performed with interblock conductivities.

In the application of any of the Laplacian approaches for upscaling, the
local flow model that must be run for each block was solved by finite dif-
ferences using the preconditioned conjugate gradient method implemented in
MODFLOW (Hill, 1990) since we found it to be the fastest algorithm for the
same convergence criteria.

In the Laplacian-with-skin approach, the size of the skin was taken equal
to half the block size in each direction. A prior sensitivity analysis revealed
that this skin size was enough to capture accurately the average flow cross-
ing each of the upscaled blocks. Zhou et al. (2010) also found that half the
block size is a good choice for the skin size in most situations. The overde-
termined system of equations from which the components of the block ten-
sor are described is built after solving nine local flow problems. In each of
the local problems the prescribed heads applied to the boundaries of the
block vary linearly as a function of x, y and z so that they impose overall
head gradients parallel to the directions given by the following nine vectors
(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,0), (—1,0,1),(0,—1,1).

To evaluate the performance of the different upscaling techniques we focus
on the reproduction of the interblock fluxes and on the reproduction of the
solute transport. For the fluxes, we compare the interblock specific discharges
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obtained after solving the flow equation at the coarse scale with the corre-
sponding values derived after solving the flow equation in the reference field
at the fine scale. We focus on fluxes instead of piezometric heads because fluxes
have a larger spatial variability and have a dominant role in solute transport.
The metric we use to evaluate each technique is the average relative bias (RB)
given by:

N
1 qfi — 9ey
RB = — )7 -100 2.10
N; ar. =10

where IV is the number of block interfaces; gy ; is the specific discharge through
the block interface 7 computed from the fine scale solution, and ¢.; is the
specific discharge through the block interface ¢ resulting from the coarse scale
simulation.

Mass transport reproduction is evaluated qualitatively by comparing the
longitudinal mass distribution profiles at the 328" day obtained from the fine
scale model with the one obtained from the coarse scale model.

Notice that the same transport parameters used for the fine scale simula-
tion described in section 2.2 are also used for the coarse scale simulation.

2.4.3 Results and Comparisons

Next, we will discuss the flow and transport performance of the different up-
scaling approaches. The flow upscaling analysis excludes the interfaces of the
blocks which are adjacent to the boundaries; the reason for the exclusion is
that the boundary conditions have an impact on the results of upscaling in the
nearby blocks (Vermeulen et al., 2006). Excluding these blocks, the discrepan-
cies in flow reproduction between the coarse and fine scale simulations will be
due to the upscaling method and not to the presence of the boundaries. This
consideration is not necessary when analyzing the transport upscaling since
the plume travels far enough from the boundaries. Also, since, for transport
purposes, the flows along the y-axis are the most relevant (and of the highest
magnitude), the graphs only shows the specific discharges across the inter-
faces orthogonal to the y-axis, similar results are obtained when analyzing the
interfaces orthogonal to the z- and z-axis.

Figure 2.7 shows the scatterplots of reference versus upscaled fluxes through
the block interfaces using simple averaging methods. All circles within the dot-
ted lines have a relative bias smaller than 10% of the reference values, whereas
the circles within the solid lines have a relative bias smaller than 40%. It is
clear that, out of the different averages, the power average with a power of 0.5
gives the best results. The use of the harmonic mean (Figure 2.7A) (power
average with w = —1) tends to severely underestimate the reference fluxes,
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while the arithmetic mean (Figure 2.7C) (power average with w = +1) tends
to overestimate them. The geometric mean (power average with w = 0) does
a better work but stills tends to underestimate the fluxes (Figure 2.7B). The
best average, as already pointed out by Cardwell and Parsons (1945) should
be somewhere between the harmonic and the arithmetic averages. In this spe-
cific case, we found that the smallest bias occurs when w = 0.5 (Figure 2.7D),
resulting in a relative bias, RB, of 11%. As mentioned earlier, for isotropic,
mildly heterogeneous media, Desbarats (1992) found w = 1/3 to be the best
power average for upscaling purposes. In the MADE case, the field is neither
isotropic, nor mildly varying (InK variance is close to 5), thus it is not surpris-
ing that the optimal power value does not coincide with the value reported by
Desbarats (1992).

Figure 2.8 shows the longitudinal mass distribution profile (integrated
along the direction orthogonal to flow, and normalized by the total mass)
of the tritium plume using different simple averaging upscaling techniques at
328 days. The solid line represents the fine scale result. For reference, the
initial conditions at 27 days are also shown by the bold dashed curve. The re-
maining of the curves are the upscaled results for the different averages. Both
the upscaled models using the arithmetic mean and the 0.5 power average
are capable of reproducing the long downstream spreading of the contaminant
plume, with the power mean resulting in a better representation of the distri-
bution close to the source. Yet, none of the methods exhibits a satisfactory
accuracy.

Figure 2.9 shows the scatterplots of reference versus upscaled fluxes using
different Laplacian approaches. Figures 2.9A and 2.9B display upscaling ap-
proaches using a simple-Laplacian (i.e., without skin, and assuming diagonal
tensors) for block-centered and interblock-centered upscaling, respectively. It
is clear that it is better to upscale directly the interblock conductivity than
upscaling the block values and then let the numerical model estimate inter-
nally the interblock conductivity. This is consistent with earlier studies (Li
et al., 2010).

Figures 2.9B and 2.9C display two different Laplacian approaches without
skin. The simple-Laplacian in Figure 2.9B assumes a diagonal representation
of the tensor in the reference axes, whereas the Laplacian-with-skin but with a
skin set to zero in Figure 2.9C allows for the tensor representation to be non-
diagonal. Allowing the tensor principal components not to be aligned with the
reference axes results in a better representation of the fluxes, since it is unlikely
that all interblocks would have conductivities with principal directions parallel
to the reference axes.

Moreover, if the skin is allowed to increase up to half the block size, the
results improve even further, as can be checked by comparing Figures 2.9C
and 2.9D. This improvement can be related to the reduction of the influence
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Figure 2.7: Flow comparison at the fine and coarse scales using simple aver-
aging upscaling approaches. All circles within the dashed lines correspond to
coarse scale values that deviate less than 10% from the reference ones; simi-
larly, all circles within the outer solid lines correspond to coarse scale values
that deviate less than 40%. The average relative bias, as defined in Equation
2.10, is reported in the lower right corner of each box.
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Figure 2.8: Longitudinal mass distribution profiles of the tritium plume from
the fine scale reference realization, and predictions by some simple averaging
upscaling approaches at the coarse scale for ¢t = 328 days.

in the flow patterns within the block of the boundary conditions used in the
local flow models in favor of the influence of the nearby conductivities from
the reference aquifer.

Since most of the commonly available groundwater flow simulators only
accept diagonal tensors as input parameter values, a test was made by solving
the flow and transport in the coarse scale ignoring the off-diagonal compo-
nents of the tensors used in Figure 2.9D. The results are shown in Figure
2.9E and they are qualitatively similar to those in Figure 2.9D. In this specific
case, in which the reference axes of the numerical model are aligned with the
main directions of the statistical anisotropy of hydraulic conductivity it could
be expected that the off-diagonal components of the upscaled block conduc-
tivity tensors were small, and therefore, flow predictions neglecting them go
almost unaffected. In a general setting with complex geology, cross-beddings,
or non-uniform anisotropies, the use of a full tensor block conductivity would
be necessary for a good reproduction of the aquifer response (Bierkens and
Weerts, 1994).

Finally, Figure 2.9F shows that the best results are achieved when the
upscaling is performed on a non-uniform coarse grid, which has been refined
in the areas of highest velocities (see grid in Figure 2.15), using an interface-
centered Laplacian-with-skin upscaling. While this result is expected, since the
number of model blocks is larger in the non-uniform grid, the improvement is



CHAPTER 2. A COMPARATIVE STUDY OF THREE-. ..

27

(A) (B)
. o
09 Block o. - oe Interblock P -
08 Uniform Coarsening with 28 X 11 X 14 - e 08 Uniform Coarsening with 28 X 11 X 14 0
simple Laplacian 6 simple Laplacian
0.7 07 _,~'8 o
¢
g = ) L °
E 06 E 06 4
x ° x
3 o o 3
05 ° L o5
E] E]
2 2
s s .
2 04 2 04 sy
> > S
03 03
02 0.2
01 © - 01 -
Relative Bias 17% Relative Bias 9%
0 OH 0 &
0 0.1 02 03 04 05 06 07 08 0.9 1 0 0.1 02 03 04 05 06 07 08 09 1
Reference Flux [m/d] Reference Flux [m/d]
1 - 1 o
© o o (D) - o
09 & 09 5 o2
Interblock = - Interblock 2 -
Uniform Coarsening with 28 X 11 X 14 o o ° Uniform Coarsening with 28 X 11 X 14
08 : . . - 0.8 . : -
Laplacian with skin Laplacian with skin o,
skin size: zero skin size: half of block
07 07
g )
E 06 E 06 .
= . = e
2 2
w05 X w05
e S E o
3 R B o
2 04 2 04 e
S 5 >
03 0.3
"o
02 0.2
01 oo 0.1 ias 59
Relative Bias 7% Relative Bias 5%
0 & 0 ¢
0 0.1 02 03 04 05 06 07 08 0.9 1 0 0.1 02 03 04 05 06 07 08 09 1
Reference Flux [m/d] Reference Flux [m/d]
1 = .
® Interblock - ° ® Interblock
091 Uniform Coarsening with 28 X 11 X 14 o 7 091 Nonuniform Coarsening with 39 X 16 X 12
Laplacian with skin Laplacian with skin o
08 skin size: half of block - 08 skin size: half of block
Neglecting off-diagonal components > oA
07 ’ 07
g ey g
E 06 E 06
< 4 <
Loos Loos
2 2
K] E]
g 04 8 04
S 5
03 0.3
02 0.2
ot Relative Bias 5% o1 Relative Bias 4%
0 & 0
0 0.1 02 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06

Reference Flux [m/d]

Reference Flux [m/d]

Figure 2.9: Flow comparison at the fine and coarse scales using Laplacian-
based upscaling approaches. All circles within the dashed lines correspond
to coarse scale values that deviate less than 10% from the reference ones;
similarly, all circles within the outer solid lines correspond to coarse scale
values that deviate less than 40%. The average relative bias, as defined in
Equation 2.10, is reported in the lower right corner of each box.
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not due just to having almost twice as many blocks, but to the fact, that these
many more blocks are located in the zones where the variability of velocity
is the highest. The message to take away is that it is advantageous to use a
non-uniform coarse grid and that the definition of this grid is very important
to achieve the best upscaling results. Other authors have investigated along
these lines and have proposed the use of flexible grids which maintain a given
topology (basically keeping constant the number of rows, columns and layers)
but which are deformed so as to reduce the variability of the specific discharge
vector within each coarse block (i.e, Garcia et al., 1992; Wen and Gémez-
Hernéndez, 1998).

—[O— Mass distribution t=27 days
Realization #26
---A--- Uniform coarsening

— -0 — Nonuniform coarsening

Normalized Mass

T T
0 50 100 150 200 250

Downstream Distance [m]

Figure 2.10: Longitudinal mass distribution profiles of the tritium plume
from the fine scale reference realization, and predictions on uniform and non-
uniform coarse scale grids, for t = 328 days.

Figure 2.11 compares the mass longitudinal profile of the upscaling ap-
proaches in Figures 2.9A (uniform grid, simple-Laplacian, block-centered),
2.9B (uniform grid, simple-Laplacian, interblock-centered) and 2.9D (uniform
grid, Laplacian-with-skin, interblock-centered) with the reference profile at
day 328. The improvement in the reproduction of the reference values by the
difference upscaling techniques shows a similar progression as the improve-
ment seen in the reproduction of the fluxes in Figure 2.9. Comparing these
curves to any of the curves in Figure 2.8, which were obtained with simple
averaging upscaling rules, it is clear that any upscaling approach based on a
local solution of the flow equation provides a better representation of the hy-
draulic conductivity distribution and yields better transport predictions. The
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Figure 2.11: Longitudinal mass distribution profiles of the tritium plume from
the fine scale reference realization, and predictions by some Laplacian-based
upscaling approaches at the coarse scale, for ¢t = 328 days.

two interblock-aimed upscaling approaches are able to capture both the peak
concentration near the source and the downstream spreading.

Figure 2.10 shows the mass longitudinal profile of the upscaling approaches
in Figures 2.9D (uniform grid, Laplacian-with-skin, interblock-centered) and
2.9F (non-uniform grid, Laplacian-with-skin, interblock-centered). It is evi-
dent that the non-uniform coarsening gives again the best results: up to a
downstream distance of 200 m, the reproduction is almost perfect, and the
very low concentrations for distances farther than 200 m are adequately re-
produced.

A final comparison of the different approaches can be performed by ana-
lyzing the spatial distribution of the contaminant plume, both in plan view
(depth integrated) and lateral view (integrated along the x-axis). Figure 2.12
shows the contaminant plume in the reference fine-scale conductivity realiza-
tion. Figures 2.13, 2.14, and 2.15 show the corresponding distributions for the
mass transport simulation in the upscaled fields using a block-centered, simple-
Laplacian upscaling approach, an interblock-centered, Laplacian-with-skin ap-
proach, and the non-uniform coarsening, interblock-centered, Laplacian-with-
skin approach, respectively. It is evident that the block-centered approach is
not capable to produce a field in which the solute travels as far downstream as
in the reference field, while the most elaborated upscaling approach of Figure
2.15 gives results which quite closely resemble the reference values.
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Figure 2.12: Transport in the fine scale reference realization for ¢t = 328 days.
(A) Depth-integrated normalized concentration distribution. (B) Laterally-
integrated normalized concentration distribution.
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Figure 2.13: Transport at the coarse scale after upscaling the reference real-
ization on a uniform grid using a block-centered simple-Laplacian approach
for ¢t = 328 days. (A) Depth-integrated normalized concentration distribution.
(B) Laterally-integrated normalized concentration distribution.
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Figure 2.14: Transport at the coarse scale after upscaling the reference realiza-
tion on a uniform grid using an interblock-centered simple-Laplacian approach
for ¢t = 328 days. (A) Depth-integrated normalized concentration distribution.
(B) Laterally-integrated normalized concentration distribution.
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Figure 2.15: Transport at the coarse scale after upscaling the reference realiza-
tion on a non-uniform grid using an interblock-centered Laplacian-with-skin
approach for ¢ = 328 days. (A) Depth-integrated normalized concentration
distribution. (B) Laterally-integrated normalized concentration distribution.
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2.5 Discussion

We have shown that flow and transport can be modeled at the MADE site
by the advection dispersion equation on relatively coarse discretization if the
spatial variability of hydraulic conductivity at the fine scale is properly char-
acterized and a careful upscaling approach is applied to it. But, why is this
so? and why is the non-uniform grid interblock-centered Laplacian-with-skin
upscaling the approach to use?

Let’s first analyze the progression in the reproduction of the specific dis-
charges with the upscaling approaches. It is well known that the coarse-
scale representation of conductivity as a tensor is mostly due to the statistical
anisotropy at the fine scale (Lake, 1988). In the limit, with infinite correlation
in the horizontal plane, the medium would be perfectly layered and the tensor
conductivity will have arithmetic average for the horizontal components and
the harmonic average for the vertical ones. At the MADE site, the horizontal
continuity is not infinity, but it is quite large compared with the size of the
domain, this is the reason why, for the reproduction of the specific discharges
across the interfaces which are orthogonal to the direction of maximum con-
tinuity, the best average is a power-average with exponent in between those
corresponding to the geometric and arithmetic averages, and larger than the
theoretical value for statistically isotropic media. Yet, assuming that the con-
ductivity is a scalar (as is done when a simple average is used) implies that
it is isotropic to flow. At the MADE site there is still enough anisotropic
heterogeneity within the blocks to warrant the need of a tensor to describe
hydraulic conductivity at the coarse scale. This is why all the Laplacian-based
approaches perform better than the simple averaging ones.

Of the Laplacian-based approaches, it is shown that computing tensor
conductivities at block centers and then taking the harmonic average of the
components corresponding to the directions orthogonal to adjacent interfaces
introduces a noise that can be eliminated by aiming directly at upscaling the
interblock conductivity tensor to feed directly into the numerical simulator.
This is why all interface-centered approaches outperform the block-centered
approach.

Of the interblock-centered approaches, analyzing the local flow within an
area extending beyond the limits of the block being upscaled (that is, includ-
ing a skin) also improves the upscaling. The reason being, that the upscaled
conductivities are always nonlocal (Neuman and Orr, 1993; Indelman and
Abramovich, 1994), that is, they depend not only on the fine-scale conduc-
tivities within the block, but on the ones outside, too. Extracting the block
to upscale, plus a skin area surrounding it, and applying the boundary con-
ditions of the local flow problems outside the skin, reduces the impact of the
boundary conditions inside the block and allows the immediately surrounding
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fine scale conductivities to impose some control on the flow patterns within
the block (as it will happen when the block is embedded in the aquifer).

The Laplacian-with-skin approach provides a tensor with arbitrary orien-
tation of its principal directions. For the MADE site, it appears that assuming
that the principal directions of the block hydraulic conductivity tensors are
parallel to the reference axes for all blocks, does not seem to introduce too
large an error (compare Figures 2.9D and 2.9E), something that could be ex-
plained on the basis that the statistical anisotropy model used has its principal
directions of continuity aligned with the reference axes for the entire domain.
In cases such as cross-bedded formations, or aquifers with a heterogeneity de-
scription for which anisotropy varies locally with the domain, the assumption
that the principal directions are parallel to the reference axes could not be
sustained.

Upscaling induces heterogeneity smoothing, by defining a non-uniform
coarse grid that tries to reduce the smoothing on those areas with the highest
velocities, and also on areas where fluid velocity will have the largest impact
in transport predictions, the results after upscaling will be better than if we
define a uniform coarse grid. Although this may appear as a trivial result, it
often is disregarded.

But a good reproduction of the fluxes at the coarse scale is not guarantee
that transport predictions will be equally good. It has been shown (Fernandez-
Garcia and Gomez-Hernandez, 2007; Fernandez-Garcia et al., 2009; Li et al.,
2011) that, in some occasions, after coarsening a hydraulic conductivity grid,
the removal of the within-block heterogeneity requires some type of transport
upscaling, either modifying the transport parameters (such as enhancing dis-
persivity) or including transport processes besides advection and dispersion
(such as mass transfer). Recall that in our work we kept the same transport
equation, with the same parameter values for the fine and coarse scale simu-
lations. But, for the MADE site this is not necessary. The reason is related
on how much smearing out of the within-block heterogeneity is induced by
the conductivity upscaling. When this smearing out is important, then, there
is a need to include other processes; but for the MADE site and the chosen
upscaling, this is not the case. The ratio between the coarse block size and the
correlation ranges of the fine scale conductivities is substantially smaller than
one, in the direction of flow, the ratio is 1/8, in the horizontal plane orthogo-
nal to flow, the ratio is 1/3.2 and in the vertical direction is 1/5.5; this means
that the variability of logconductivity within the block is much smaller than
the overall variance of 4.5, and therefore the heterogeneity wiped out by the
upscaling process is not as large as to require a further transport upscaling. In
the references cited above, the size of the block was on the order of magnitude
of the correlation range of the underlying hydraulic conductivity if not larger,
and, therefore, upscaling on those cases implied an important smoothing of
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heterogeneity that had to be taken into account in the transport simulation
at the coarse scale.

Can the findings from this work be extrapolated to other case studies?
We believe that, regarding flow upscaling, yes they can. In fact, the findings
from this paper are in agreement with similar works in other case studies.
However, regarding transport upscaling, they can be extrapolated only under
the same conditions considered here, that is, using coarse blocks smaller than
the correlation range, and, using a non-uniform grid with smaller blocks in the
areas with highest velocities and in the areas through which the plume will
travel.

The final point of discussion is why we have worked trying to reproduce flow
and transport on a realization from Salamon et al. (2007) instead of trying to
reproduce the available experimental data. This paper did not try to perform
a calibration exercise of the MADE site, but rather to help in performing such
a calibration in the future. With the work in this paper we show that a coarse
scale model, obtained by careful upscaling of a fine scale one, can reproduce
the type of transport behavior observed at the MADE site simply using the
advection dispersion equation. Trying to calibrate a two-million cell model as
obtained by Salamon et al. (2007) is not an easy task, it would require running
many times the flow and transport models in many realizations of the site; but
those runs would be possible on the coarse models used in our work. The next
step in this direction would be to develop a calibration approach that would
account for the upscaling step needed to reduce the numerical modeling effort.
In its application of such an approach, considering heterogeneity in porosity
may also help in obtaining the best calibration; something not needed in our
upscaling exercise, since we assume constant porosity attached to the reference
conductivity realization.

2.6 Summary and Conclusions

In this paper, we have presented a detailed analysis of the impact of different
upscaling techniques on the reproduction of solute transport at the MADE site.
We use as a reference a fine scale realization taken from the work by Salamon
et al. (2007) that is able to reproduce the contaminant spreading observed in
the experiment using an advection-dispersion model. The techniques analyzed
span from simple averaging to the estimation of block tensors by local flow
models. We have also analyzed the impact that non-uniform coarsening may
have in the quality of the results.
This work has three main and important conclusions:

1. In complex environments, such as the MADE site, with hydraulic con-
ductivities which vary over many orders of magnitude, and display an
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intricate spatial variability, carefully choosing the upscaling technique is
very important. The hydraulic conductivity full tensors obtained using
the interblock-centered Laplacian-with-skin upscaling technique with a
skin size of half block performs best among the different upscaling meth-
ods analyzed, although, at the MADE site, the superiority of the full-
tensor upscaling over diagonal tensors upscaling is very limited. This
can be explained by the fact that the principal directions of hydraulic
conductivity are parallel with the reference axes.

2. A non-uniform coarsening focused in the refinement of the regions through
which the solute plume travels can further improve the results.

3. Modeling of flow and transport at the MADE site has been the object of
debate for many years, and many complex transport models have been
proposed to reproduce the plume spreading observed. We show that the
advection-dispersion model can be used on a coarse model to explain
the plume migration in the highly heterogeneous MADE site if careful
modeling/upscaling of the flow field is performed, as long as the block
size remains smaller than the correlation ranges of the underlying fine
scale conductivities.
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Transport Upscaling Using
Multi-Rate Mass Transfer in
Three-Dimensional Highly
Heterogeneous Media

Abstract

A methodology for transport upscaling of three-dimensional highly hetero-
geneous formations is developed and demonstrated. The overall approach
requires a prior hydraulic conductivity upscaling using an interblock-centered
full-tensor Laplacian-with-skin method followed by transport upscaling. The
coarse scale transport equation includes a multi-rate mass transfer term to
compensate for the loss of heterogeneity inherent to all upscaling processes.
The upscaling procedures for flow and transport are described in detail and
then applied to a three-dimensional highly heterogeneous synthetic example.
The proposed approach not only reproduces flow and transport at the coarse
scale, but it also reproduces the uncertainty associated with the predictions
as measured by the ensemble variability of the breakthrough curves.
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3.1 Introduction

Upscaling flow and transport has been disregarded by some on the basis that it
is not needed because our computers are capable of handling larger and larger
numerical models. However, we know by experience that there will always be
a discrepancy between the scale at which we can characterize the medium,
and the scale at which we can run our numerical codes. This discrepancy
renders upscaling necessary in order to transfer the information collected at the
measurement scale into a coarser scale better suited for numerical modeling.
In the last decades, many reviews have been published dealing with up-
scaling but mostly focusing on hydraulic conductivity upscaling (e.g., Wen
and Gomez-Hernandez, 1996b; Renard and Marsily, 1997; Sanchez-Vila et al.,
2006). In comparison with the effort devoted to the upscaling of hydraulic
conductivity, less attention has been paid to upscaling for solute transport
modeling. For example, Dagan (1994) noted that hydraulic conductivity up-
scaling induces a loss of information and advised to compensate for this loss by
splitting the solute plume into subplumes with effective dispersivities derived
from stochastic theory. Rubin et al. (1999) developed an upscaling method to
derive effective block-scale dispersivities using a perturbation method, which
accounts for the loss of subgrid variability in the upscaled numerical model.
These two approaches are based on analytical techniques, which have a lim-
ited range of application because of their underlying assumptions. Numerical
methods, on the contrary, are more general, since they are not restricted by
the geometry of the domain, the type of boundary conditions, or the degree of
heterogeneity. Scheibe and Yabusaki (1998) examined the impact of hydraulic
conductivity upscaling using the power-averaging method with different expo-
nents (Journel et al., 1986). They found that although flows and heads can
be preserved after upscaling the hydraulic conductivities, the discrepancy on
transport predictions is substantial. Cassiraga et al. (2005) applied the simple-
Laplacian technique (Wen and Gémez-Herndndez, 1996b) to upscale hydraulic
conductivity and evaluated the impact of upscaling on solute transport for var-
ious degrees of heterogeneous media in two dimensions. They concluded that
the prediction of solute transport at the coarser scale will provide reasonably
good estimates of the early particle arrival times but will largely underesti-
mate the late travel times; the explanation for this behavior was the existence
and connectedness of extreme-valued hydraulic conductivities at the fine scale,
which are lost after upscaling. To overcome this inability, Fernandez-Garcia
and Gémez-Herndndez (2007) extended this study and introduced an enhanced
block dispersion tensor to compensate for the loss of information. They found
that, with this approach the median travel time could be reproduced but that
the tails of the breakthrough curves were largely underestimated. They sug-
gested that a mass transfer process should be introduced at the coarse scale
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to make up for the information at the small scale that cannot be resolved by
the upscaled model in heterogenous media. Fernandez-Garcia et al. (2009) ex-
amined the use of a mass transfer process with different memory functions as
part of the constitutive transport equation at the coarse scale, in conjunction
with hydraulic conductivity upscaling with the simple-Laplacian technique in
2D. The results showed that considering a double-rate or a truncated power-
law mass transfer model at the coarse scale was enough to properly describe
the ensemble average behavior of the main features associated with the break-
through curves. However, the uncertainty associated with the predictions is
underestimated after upscaling due to the lack of memory in space during the
upscaling process.

It is important to note that the use of a mass transfer process as part
of the constitutive equation for transport at the coarse scale model has also
been proposed by Guswa and Freyberg (2002), Zinn and Harvey (2003), Will-
mann et al. (2008) and Frippiat and Holeyman (2008). However, these studies
mainly focus on upscaling up to a completely homogeneous aquifer. Guswa
and Freyberg (2002) conclude that a mass exchange term is needed only if
the equivalent hydraulic conductivity is larger than the geometric mean of
the underlying conductivity field, Zinn and Harvey (2003) suggest that a
mass exchange is necessary and conclude that the multi-rate model should
better compensate for the loss of resolution than the single-rate model, and
later Fernandez-Garcia et al. (2009) demonstrated that, indeed, the double-
rate model and the power-law mass transfer model outperform the single-rate
model for upscaling purposes.

In the current work, we extend to 3D the study by Fernandez-Garcia et al.
(2009), who proposed a transport upscaling method using a multi-rate mass
transfer. We also introduce an elaborated interblock Laplacian-with-skin hy-
draulic conductivity upscaling approach, for optimal reproduction of the flows
at the coarse scale. Although the extension of the methodology to three-
dimensions may appear as conceptually straightforward, we have found that
it is necessary to make some adjustments to efficiently reproduce the break-
through curves. Additionally, unlike most studies that focused primarily on
a single realization analysis, the present study analyzes the upscaling at the
ensemble level in order to analyze also how prediction uncertainty upscales.

The outline of this paper is as follows. We first introduce the flow and
transport governing equations at two different support scales. Next, the im-
portance of using an interblock Laplacian-with-skin hydraulic conductivity
upscaling is illustrated, with emphasis on the numerical implementation in
three-dimensions. We then describe the transport upscaling with mass trans-
fer in two dimensions and discuss the modifications of the method for its appli-
cation in three-dimensions. Finally, numerical tests demonstrate the accuracy
and efficiency of the method. We end with a discussion on the weaknesses
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and strengths of the proposed approach, with an indication of avenues for
improvement.

3.2 Methodology

3.2.1 Background
Fine scale equations

At the fine scale, denoted herein by the superscript f, under steady-state
flow conditions and in the absence of sinks and sources, the flow equation of
an incompressible fluid in saturated porous media in a Cartesian coordinate
system can be obtained by combining the continuity equation and Darcy’s law
(Bear, 1972):

V- [K/ (x")VRI (x/)] =0 (3.1)

where hf[L] is the piezometric head; K/ [LT '] is a symmetric positive-definite
rank-two tensor; x/ represents the fine scale coordinates.

Similarly, using the solute mass conservation equation and assuming that
Fick’s law is appropriate at the local scale, the three-dimensional advective-

dispersive equation (ADE) for solute transport is often written as (Freeze and
Cherry, 1979):

of ac (x7,1)

o = V[ (xN) T (x!,1)] + V- [¢/ DIV (x,1)] (3.2)

where C/[M L73] is the dissolved concentration of solute in the liquid phase;
¢/ [dimensionless] is the porosity; qf[LT~!] is the Darcy velocity given by
q/ (x) = —K/(x)Vh/(x); D/[L?T~!] is the local hydrodynamic dispersion
coefficient tensor with eigenvalues (associated with the principal axes, which
are parallel and perpendicular to the direction of flow) given by (Burnett and
Frind, 1987):

Df =Dy + o= (3.3)

where «; are the local dispersivity coefficients, more specifically, ozL,ozjlf and
047‘{ are, respectively, the longitudinal dispersivity coefficient and the transverse
dispersivity coefficient in the directions parallel and orthogonal to flow, and
D, is the effective molecular diffusion coefficient.

The fine scale transport equation (3.2) is only valid if the Fickian assump-
tion is satisfied at the small scale. Here, we assume that the ADE is capable
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of reproducing the tracer spreading at the fine scale. Salamon et al. (2007) at
the MADE site and Riva et al. (2008) at the Lauswiesen site have shown that
for cases in which, apparently, the transport spreading does not look Fickian
at the macroscopic scale, the ADE equation is applicable if the small-scale
variability of hydraulic conductivity is properly modeled at the smallest scale
possible.

Coarse scale equations

There are two main approaches to get the coarse scale equations. On one
hand, those who work analytically from the fine scale equations and apply
regularization techniques to derive the equations that would express the state
of the system on a larger scale. Examples of these works can be found in
Cushman (1984); Neuman and Orr (1993); Indelman and Abramovich (1994);
Guadagnini and Neuman (1999). On the other hand, those who empiri-
cally postulate the coarse scale expression (after the fine scale one) and then
try to determine the parameter values of the postulated coarse scale ex-
pressions. FExamples of these works can be found in Rubin and Gémez-
Hernandez (1990); Gémez-Hernandez and Wen (1994); Gémez-Hernandez and
Rubin (1990); Guswa and Freyberg (2002). In the first approach, the authors
generally obtain equations which are nonlocal, that is, the parameters asso-
ciated to a given block at the coarse scale depend not only on the fine scale
parameters values within the block, but also on the values outside the block.
This fact is recognized by some authors using the second approach when the
coarse block parameters are computed on local flow and/or transport models
which extend beyond size of the block being upscaled, so that the influence
of the nearby cells is captured Wen and Gémez-Hernandez (1996b). We have
opted, in this paper, for the second approach.

At the coarse scale, denoted herein by the superscript ¢, the flow equation
is taken to have the same expression as the fine scale equation, but with K/
replaced by an upscaled hydraulic conductivity tensor K¢:

V- [K(x*)Vh(x®)] =0 (3.4)

where h°[L] designates the coarse scale piezometric head, and x° refers to the
coarse scale coordinates.

In earlier studies of transport at the coarse scale, only upscaling of the flow
controlling parameters was performed (e.g., Scheibe and Yabusaki, 1998; Cas-
siraga et al., 2005; Li et al., 2010a). That is, upscaled K¢ values were derived,
and the same advection dispersion equation was used both at the fine and
coarse scales. However, recent findings have demonstrated that the transport
equation to be used at the coarse scale should include an enhanced dispersion
tensor and a fictitious mass exchange process as a proxy to represent the mass
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transfer processes taking place within the coarse block and largely associated
with the within-block heterogeneity (e.g., Zinn and Harvey, 2003; Fernandez-
Garcia and Gémez-Herndndez, 2007; Willmann et al., 2008; Fernandez-Garcia
et al., 2009).

We have chosen the multi-rate mass transfer model (MRMT) (Haggerty
and Gorelick, 1995; Carrera et al., 1998) as the mass exchange expression to
be used at the coarse scale. Alternative models such as the continuous time
random walk (Berkowitz and Scher, 1998) or fractional derivatives (Benson
et al., 2000) could be used as well. Fernandez-Garcia et al. (2009) discussed
the use of the MRMT for upscaling purposes in 2D, and its versatility to
treat complex heterogeneities; furthermore, it was successfully applied at the
MADE aquifer by Feehley et al. (2000) and at the Lauswiesen site by Riva
et al. (2008). Many transport codes based on the MRMT model (e.g., Zheng
and Wang, 1999; Carrera et al., 1998; Salamon et al., 2006a; Silva et al., 2009)
indicate the great potential of this approach.

The upscaled transport equation, including the MRMT model, can be
described by the following governing equation (Haggerty and Gorelick, 1995;
Carrera et al., 1998):

C 8C’fcn(xc7 t) C (& C (& C (& C C C C
¢mT = —V-[q (X )Cm(x 7t)] + v[¢mD ch(x 7t)] - ¢mF(X 7t)
(3.5)
where ¢¢, [dimensionless] defines the pore volume fraction of the mobile do-
main; C¢,[M L3 is the solute concentration in the mobile region of the coarse
block; q¢[LT~!] is the Darcy velocity derived from the upscaled hydraulic con-
ductivity; D[L?T~!] is an enhanced block dispersion tensor, which includes
the fine scale local hydrodynamic dispersion («;) and a macrodispersivity term
(A;) (Fernandez-Garcia and Gémez-Hernandez, 2007; Fernandez-Garcia et al.,

2009):

C
DE = Dy + (s + A 1L (3.6)
P
where DY are the eigenvalues of D¢ associated with the principal axes, which
are parallel and perpendicular to the flow direction. The additional mass
exchange term I'(x¢,t) [M L™3T 1] can be expressed in terms of mobile con-
centrations by using a convolution product with a memory function g(x¢,t)
[T—1] (Carrera et al., 1998; Haggerty et al., 2000):

t c c 4 _
[(xt) = 5(){‘3)/0 g(xc,T)aCm(Xa;tT)dT

g(x,t) = /000 af(x a)e”da



CHAPTER 3. TRANSPORT UPSCALING USING MULTI-. .. 49

where 3(x¢) [dimensionless| is the so-called capacity ratio; o [T~!] is a contin-
uous positive variable representing the multiple mass transfer rate coefficients,
and f(x¢ «) [T] denotes the probability density function of the mass transfer
rate coefficients. Therefore, once f(x¢, «) is given, the MRMT model equation
(3.5) can be numerically solved. It is worth emphasizing that, the macrodis-
persivity term A; and the mass transfer model are introduced as fictitious pro-
cesses to make up for the presence of low and high conductivity zones which
are smeared out after upscaling, and for the diffusive-like process occurring
within the coarse block due to the heterogeneity. In this respect, it is con-
sistent with Zinn and Harvey (2003), Willmann et al. (2008), and Riva et al.
(2008) who used the MRMT model to account for the subgrid heterogeneity
in the upscaled transport model.

3.2.2 Hydraulic conductivity upscaling using the Laplacian-
with-skin method

In contrast with the previous studies by Fernandez-Garcia and Gémez-Hernandez
(2007) and Fernandez-Garcia et al. (2009) that used the simple-Laplacian
scheme to compute the block equivalent conductivities in two dimensions, here,
we use a more sophisticated interblock Laplacian-with-skin three-dimensional
full-tensor hydraulic conductivity upscaling technique, which is an extension
of an earlier two-dimensional approach (Gémez-Herndndez, 1991). In essence,
the Laplacian-with-skin upscaling scheme is an improved version of the simple-
Laplacian approach. With regard to the simple-Laplacian method, Li et al.
(2010a) have already demonstrated that it fails to reproduce interblock flow at
the coarse scale and further underestimates contaminant spread at the MADE
site. The major disadvantage of the simple-Laplacian approach is the assump-
tion that the upscaled conductivity tensor is diagonal. For the details on the
different upscaling processes, the reader is referred to the work by Wen and
Gomez-Hernandez (1996b), or more recently by Li et al. (2010a).
Gémez-Hernéndez (1991) presented the Laplacian-with-skin approach rec-
ognizing the nonlocal nature of the upscaled conductivity tensor. The skin (a
ring of cells surrounding the block) is used to approximate the actual bound-
ary conditions around the block being upscaled without having to solve the
flow problem for the entire aquifer (as previous authors had done, i.e., White
and Horne (1987)). For each block being upscaled, the algorithm consists of
three steps: (a) isolate the block, plus a surrounding ring of cells (referred to
as the skin), and solve a local flow problem numerically for a set of bound-
ary conditions inducing fluxes in different directions across the block; (b) for
each boundary condition the spatially-averaged flow and gradient within the
block are calculated; (c¢) and then, the components of the upscaled hydraulic
conductivity tensor are determined by solving the following overdetermined
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system of linear equations by a standard least squares procedure:

[ (Oh/0x)1 (Oh/Jy)1 (Oh/Oz)1 0 0 0 T
0 (Oh/0x), 0 (Oh/0y)1 (Oh/Oz)1 0
0 0 (Oh/0x)1 0 (Oh/Oy)1 (Oh/0z)1 [ K¢
(Oh/0x)y (Oh/Oy)2 (Oh/0z)9 0 0 0 K¢
0 (Oh/0x)9 0 (Oh/0y)2 (Oh/0z)9 0 K¢
0 0 (Oh)0x)o 0 (0h)Dy)s (Oh)Dz)s | | KC
(Oh/0x)y, (Oh/OY)n (Oh/Oz)n 0 0 0 | K¢
0 (Oh/0x)p 0 (Oh/0y)n, (Oh)Oz)n 0
L0 0 (Oh/Ox)n 0 (Oh/Oy)n  (Oh/0z)n |
i <Qx>1 i
<Qy>1
<QZ>1
<QI>2
_ <Qy>2
<QZ>2
(z)n
<Qy>n
L (gz)n |

(3.8)
where ¢, gy ¢. are the components of the Darcy flux q obtained from the local
solution of the flow equation; angle brackets indicate spatial averaging within
the block; subscript n denotes an index referring to the different boundary
conditions; K¢, --- K¢, are the components of the upscaled equivalent con-
ductivity K¢. Note that the requirement of symmetry is enforced implicitly
(Zhou et al., 2010) in this system of equations.

Although we are aware of the works by Zijl and Stam (1992) and Bierkens
and Gaast (1998) in which they argue that the upscaled conductivity tensor
may be non-symmetric, we prefer to maintain symmetry at the block level to
preserve its physical meaning: that opposite gradient vectors should induce
opposite specific discharge vectors. Likewise, we enforce positive definiteness,
since it is non-physical that the scalar product of the gradient vector and
the specific discharge be positive (flow never goes upgradient). However, the
approach would be equally applicable without imposing symmetry on the up-
scaled conductivity tensor.

Since we plan to solve the flow equation by finite differences, a further im-
provement in the hydraulic conductivity upscaling consists in computing the
upscaled hydraulic conductivity tensors at the block interfaces rather than at
block centers. This is done by isolating an aquifer volume centered at the in-
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terface, plus a skin, prior to solving the local flow problem (Zhou et al., 2010).
In fact, this suggestion of an upscaled hydraulic conductivity based on the
interface agrees with the works of Chen et al. (2003), Wen et al. (2005), and
He and Durlofsky (2006), who already pointed out that the upscaling of trans-
missibility (the equivalent to interblock conductivity in petroleum engineering)
provided a more accurate coarse scale result than permeability upscaling.

3.2.3 Transport upscaling using mass transfer

Both in petroleum engineering and in subsurface hydrogeology, many studies
have demonstrated that hydraulic conductivity upscaling is not enough to
reproduce transport at the coarse scale (e.g., Scheibe and Yabusaki, 1998;
Chen et al., 2003; Fernandez-Garcia and Gémez-Hernandez, 2007). We have
adopted the method proposed by Fernandez-Garcia et al. (2009) to address
this problem, whereby the coarse scale transport equation includes a mass
transfer term to compensate for the loss of information at the coarse scale.
The problem we face is replacing a heterogeneous block within which the
heterogeneity induces solute dispersion by a homogeneous block with enhanced
dispersion and an associated multi-rate mass transfer process, the parameters
of which have to be determined to induce the same solute dispersion induced
by the within block heterogeneity. To this extent mass transport is solved at
the fine scale using a particle tracking random walk approach and the residence
times of the particles within the block are computed resulting in a cumulative
distribution of residence times F (7). The objective of transport upscaling
is to determine the multi-rate mass transfer parameter resulting in the same
residence time distribution. This is accomplished by a curve fitting process
making use of an approximate solution for the residence time distribution of
the multi-rate mass transfer transport equation in 1D, F*(7). The Laplacian
transform of F*(7) is given by (Haggerty and Reeves, 2002; Fernandez-Garcia
et al., 2009):

~ 1 U, v2 o(p)
F*(p) ~ - L — n 3.9

where Lp[L] is the mean travel displacement of solute mass particles; the
mobile velocity v,,[LT 1] is defined by:

el

m (z)c
m

5 = e

=113 (3.10)

and J(p) is defined by:

30 =+ [ @)L da (311
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p is the Laplace transform variable; f(a) is the density function given in
terms of the mass transfer coefficients, the expression of which depends on the
multi-rate process considered. For instance, for the case of the double-rate
mass transfer process it is:

fla) = 551 (04—041)—1—6625(04—042) (3.12)
with
pi+pP2=0 (3.13)

where 81 and 2 [dimensionless| are the capacities of each immobile phase;
a1 and ag [T~ are the transfer rates in each immobile phase and () is the
Dirac delta.

We also found that, in order to preserve the mean travel time of the plume
to each control plane, it was not enough to match the particle residence time
distributions for each block but that it was necessary to make a local upscaling
of the effective porosity. For our purpose it was sufficient to define a coarse
scale effective porosity ¢¢ [dimensionless| piecewise in between each pair of
control planes as follows:

—f ~f
Tepi — Tepi—1 .
ci= 7;67’” — ;Cp’z i=1,2-ng (3.14)
cp,i cp,i—1
where 7"6];1- is the mean travel time at the ¢ control plane computed at the
fine scale with porosity ¢; 77, ; is the average travel time computed with unit

porosity at the coarse scale at the i*" control plane, and Nep is the number of
control planes. This estimated effective porosity is an artificial numerical value
which also compensates for the loss of information in the upscaling process.
This need of upscaling the porosity to preserve the mean travel times is also
reported by Zhang (2004) and Fernandez-Garcia et al. (2009).

For each block, once the particle residence time distribution has been ob-
tained numerically, the model-independent nonlinear parameter estimation
program, PEST (Doherty, 2004), is used to determine the best set of mass
transfer parameters in equation (3.9) that matches the distribution F.(7).
For this purpose, a penalty function is established as follows:

P(O®) = &[F =7 (O) +&lor —07(©) P+ wi[Fr(n) = F} (7, ©)]” (3.15)

where © represents a vector with the transport parameters being estimated
(we have noted explicitly the dependence of the distribution function on @), 7
is the average residence time computed from the particle distribution, 7*(@)
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is the average residence time of F}(7), which can be derived from equation
(3.9) as (Lawrence et al., 2002; Fernandez-Garcia et al., 2009):

THO) = &(1 +5) (3.16)

Um

0,2 is the variance of residence time computed from the particle distribution,
0’:';(@)2 is the variance of the distribution, which can be derived from equation

(3.9) as:

2DC o
0¥ (@) = 0%4(1 + B8)2Ly, + 21)[:5/0 ffj‘)da (3.17)
ngq is the number of particles that travel through the block, and &;, & and w;
are weight coefficients, which in this case are all set to 1.

The PEST code has to evaluate multiple times expression (3.9) for different
sets of the mass transfer coefficients being determined; for this purpose we have
used the code STAMMT-L (Haggerty and Reeves, 2002).

3.3 Numerical Evaluation

3.3.1 Model Configuration

Consider a synthetic three-dimensional confined aquifer under a uniform, natural-
gradient flow condition, as shown in Figure 3.1, it will be the reference. A set
of 30 hydraulic conductivity fields was generated using the code GCOSIM3D
(Gomez-Hernandez and Journel, 1993). The field is parallelepipedic with di-
mensions of x = 200 m, y = 140 m, and z = 70 m and a discretization of
Azx = Ay = Az =1 m. Only the inner domain consisting of 180 x 120 x 60
cells will be uniformly upscaled to 18 x 12 x 12 blocks, resulting in an overall
scale-up factor of 500. The following standardized exponential semivariogram
was used for the simulation of the isotropic hydraulic conductivity field:

%B(;) =1—exp [ - ;] (3.18)

0% T

where A\, [L] is the range with a value of 12 m in all the directions and r [L]
is the directional lag distance. The variance o2 of the natural logarithm of
hydraulic conductivity is 4.0 (similar to the one found, for instance, at the
MADE site (Rehfeldt et al., 1992)), to represent highly heterogeneous media.
The aquifer was modeled with constant head boundaries at = 0 m and
2 = 180 m and with no-flow boundaries at the remaining model faces. The
average hydraulic gradient induced by the constant head boundaries is 0.01.
The porosity is assumed constant and equal to 0.3.
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At the fine scale, the five-point block-centered finite-difference groundwa-
ter flow model MODFLOW 2000 (Harbaugh et al., 2000) was employed to
solve the flow equation (3.1). The interface velocities were calculated, and
then utilized in the random walk particle tracking code RW3D (Fernandez-
Garcia et al., 2005; Salamon et al., 2006b), which was used to solve the fine
scale transport equation (3.2). In this approach, the evolution in time of
each particle is comprised of a deterministic component, which depends only
on the local velocity field, and a superposed Brownian motion responsible
for dispersion. A hybrid scheme is used for the velocity interpolation which
provides local as well as global divergence-free velocity fields within the solu-
tion domain. Meanwhile, a continuous dispersion tensor field provides good
mass balance at grid interfaces of adjacent cells with contrasting hydraulic
conductivities (LaBolle et al., 1996; Salamon et al., 2006b). Furthermore, in
contrast to the common constant-time scheme used in random walk modeling,
a constant-displacement scheme (Wen and Gémez-Hernandez, 1996a), which
modifies automatically the time step size for each particle according to the
local velocity, is employed in order to decrease computational effort.

At the coarse scale, the nineteen-point block-centered finite-difference ground-
water model FLOWXYZ (Li et al., 2010b) was employed to solve the flow equa-
tion (3.4). The most remarkable characteristic of this forward flow simulator is
the capacity to deal with full conductivity tensors defined at block interfaces.
Hydraulic conductivity tensors are defined at the block interfaces eliminating
the need to average conductivity tensors at adjacent blocks to approximate
their values at the interfaces. This scheme has been shown to perform better
than the MODFLOW LVDA package (Li et al., 2010b), and has been success-
fully applied in other studies (e.g., Zhou et al., 2010; Li et al., 2010a). Again,
the RW3D was used to solve the coarse scale multi-rate transport equation
(3.5) based on the methodology presented by Salamon et al. (2006a). Mass
transfer processes are efficiently incorporated into the particle tracking algo-
rithm by switching the state of the particle between mobile/immobile states
according to appropriate transition probabilities.

For the sake of simplicity, we neglect dispersion, and only consider advec-
tion, at the fine scale, i.e., D,, = 0 and a; = 0. A total of 20000 particles (a
number that we have tested yields stable transport predictions for this specific
case) randomly distributed in a rectangular-shaped area of 60 m width and
30 m height located orthogonal to the principal flow direction in the plane at
x = 20 m were released at time ¢ = 0. The variable time step was computed
on the basis of a grid Courant number of 0.01. A unit mass was assigned to
each particle. Control planes are located within the aquifer to measure the
mass arrival at 10 m intervals (see Figure 3.2).
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Figure 3.1: A realization of reference InK field (02, ,,=4.0) overlaid with the
discretization of the numerical model at the coarse scale.

Control Planes

Figure 3.2: Sketch of transport simulations. The shaded rectangle located in
the upstream zone delineates the initial particle injection zone. Control planes
are also shown for measuring the mass fluxes.



56 CHAPTER 3. TRANSPORT UPSCALING USING MULTI-. ..

3.3.2 Flow upscaling results

Prior to transport upscaling we wish to demonstrate the effectiveness and ro-
bustness of the interblock Laplacian-with-skin approach to flow upscaling as
compared with other methods, such as the block-centered simple-Laplacian ap-
proach, the interblock-centered simple-Laplacian approach, and the Landau-
Lifshitz-Matheron conjecture for 3D isotropic media (Renard and Marsily,
1997). For this purpose a single realization is analyzed. Our goal, as that
of any upscaling exercise, is to generate a heterogeneous coarse model which
predicts the interblock flows as close as possible to those derived from a fine
scale simulation. We will focus on interblock flow reproduction and disre-
gard the analysis of piezometric heads, since the errors in piezometric head
reproduction are always much smaller.

We compare the coarse scale flows obtained after solving the flow equation
with the upscaled conductivities, with the reference flows obtained from the
solution of the flow equation at the fine scale. The mismatch between these
two values is measured by a Relative Bias defined as:

1 Qa{ —q;
xr
RB = | > | 100, (3.19)
N @

where IV is the number of interblocks used to compute the relative bias; q£ is
the specific discharge computed on the fine scale solution, and ¢S represents
the specific discharge from the coarse scale simulation. Because the z flow
direction plays an important role in this case, the flow comparisons mainly
focus on this direction. Similar results (not displayed) are obtained for the
orthogonal directions. Also, as noted by Vermeulen et al. (2006), the boundary
conditions have an impact on the performance of upscaling for the nearby
blocks, for this reason, and in order to filter out this impact in the comparison
of the different methods, only the inner 14 x 8 x 10 blocks are used to calculate
the relative bias.

Figure 3.3 shows the cross-plots between the flows computed on the fine
scale (reference values) and the ones computed on the coarse scale for sev-
eral upscaling approaches. Results indicate: (1) interblock upscaling is better
than block-centered upscaling, since it avoids the additional averaging process
within the coarse flow simulator needed to approximate the interblock values
(31% relative bias using block-centered simple-Laplacian to 23% relative bias
using interblock-centered simple-Laplacian, see Figures 3.3A and 3.3B). This
result agrees with previous finding (Li et al., 2010b). (2) Compared with the
simple-Laplacian method, the Laplacian-with-skin significantly improves the
coarse scale results (23% relative bias using interblock simple-Laplacian to 9%
relative bias using interblock Laplacian-with-skin, see Figure 3.3B and 3.3D);
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Figure 3.3: Flow comparisons at the fine and coarse scales on a single realiza-
tion. (A) the block-centered simple-Laplacian method; (B) the interblock-
centered simple-Laplacian method; (C) the interblock-centered full-tensor
Laplacian-with-skin (skin size 3 m); (D) the interblock Laplacian-with-skin
(skin size: 10 m along rows, 10 m along columns and 5 m along layers); (E)
Landau-Lifshitz-Matheron conjecture for 3D isotropic media.
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the main reasons for these results are the use of a full hydraulic conductivity
tensor to represent the interblock property and the use of a skin to approxi-
mate the “real” boundary conditions around the interblock, in contrast with
the simple-Laplacian approach which seeks a diagonal hydraulic conductivity
tensor with boundary conditions directly at the block sides. (3) The signifi-
cance of the skin size is evident as it was already pointed out by Zhou et al.
(2010) (17% relative bias using interblock Laplacian with a skin size of 3 m,
down to 9% relative bias using interblock Laplacian with a skin of 10 m in
the z and y directions and 5 m in the z direction, see Figures 3.3C and 3.3D).
The high variance of hydraulic conductivity, as is the case in this example
with a?nk:4.0, can result in local flows departing significantly from the aver-
age flow direction (along the z axis in this case), in which case the use of a
full tensor and the skin size is more important. (4) For a mild isotropic het-
erogeneous field, the Landau-Lifshitz-Matheron conjecture (a close expression
that gives the upscaled conductivity as a p-norm of the fine scale conductiv-
ities within the block, in which p only depends on the dimensionality of the
problem) performs well (Desbarats, 1992). However, when the global variance
increases, the conjecture loses its accuracy and it is better to resort to the
numerical flow experiments as is the case here, i.e., the Laplacian-with-skin
method (38% relative bias using conjecture to 9% relative bias using interblock
Laplacian-with-skin of 10 m along rows, 10 m along columns and 5 m along
layers), see Figure 3.3D and 3.3E).

In short, the best reproduction of the fine scale flows is given by the
interblock-centered Laplacian-with-skin approach. This scheme is retained
for the subsequent transport upscaling.

3.3.3 Transport upscaling results

We examined two transport upscaling approaches using the same set of up-
scaled hydraulic conductivities obtained in section 3.3.2; in the first one, we
only model advection using the velocities from the coarse scale flow simula-
tion, and in the second one, we include the multi-rate term in the transport
equation at the coarse scale and perform transport upscaling to determine
enhanced macrodispersion coefficients, upscaled effective porosities and the
parameters of the multi-rate transfer model. The multi-rate model estimates
the mass transfer parameters as described in section 3.2.3. It should be noted
that we do not make the comparison with an intermediate model including
only enhanced macrodispersion coefficients, since it has already been shown
(e.g., Zinn and Harvey, 2003; Fernandez-Garcia and Gémez-Hernandez, 2007;
Frippiat and Holeyman, 2008; Willmann et al., 2008; Fernandez-Garcia et al.,
2009) that upscaled macrodispersion coefficients are not sufficient to reproduce
the transport behavior for highly heterogeneous media.
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As mentioned previously, the synthetic studies of Fernandez-Garcia et al.
(2009) have shown that the double-rate mass transfer model is better than the
singe-rate model in 2D mass transport upscaling. Herein, we only consider the
double-rate mass transfer model to represent the mass transfer process, i.e., in
each coarse block, the solute transport is assumed to happen in three zones:
transport in the mobile zone is mainly by advection, while transport in the
other two immobile zones is by diffusion-like processes.

With regard to the double-rate mass transfer model, the mass transfer rate
density function f(«) and the memory function g(t) are:

B1 B2

fla) = =d(a—a1)+ —=d(a — az)
b B (3.20)
g(t) = al%ealt + ag%e‘”t

Accordingly, the parameters being estimated, are collected as a vector in ® =
[a1, v, 1, B2, A;]. Notice that the parameters are spatially variable since they
are estimated for each upscaled block independently.

We compare the effectiveness of the transport upscaling by analyzing the
breakthrough curves at different control planes in one specific realization and
by looking at the ensemble results. For the ensemble results we will look at
the early (5" percentile of the BTC), median (50" percentile) and late (95
percentile) travel times.

Results using the advective-only model and the double-rate transport model
are shown (see Figure 3.4 for the reproduction of BTCs in one realization and
Figure 3.5 for the ensemble behavior of early, median and late travel times).
From these results, we see that: (1) In contrast to the advective-only model,
the double-rate mass transfer upscale model displays a higher accuracy to
reproduce the fine scale breakthrough curves, in particular, the late travel
times. Therefore, it is important to include the fictitious mass transfer pro-
cess for solute transport predictions after upscaling. (2) In agreement with the
study of Fernandez-Garcia and Gémez-Hernandez (2007), it is shown that the
advective-only model even when using a sophisticated hydraulic conductivity
upscaling (interblock Laplacian-with-skin here) can result in overestimating
the early travel times and underestimating the late travel times in very het-
erogeneous media. (3) The small deviations in the reproduction of the BTCs
by the mass transfer model may be due to fact that the upscaled mass trans-
fer parameters are derived from a one-dimensional analytical solution of the
double-rate transport model (see Equation (3.9)).
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Figure 3.4: Comparison of fine scale cumulative breakthrough curves with
those obtained by the upscaled transport models at six different control planes.
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Figure 3.5: Ensemble travel times (early, median, and late travel times) as a
function of travel distance, and comparison of the fine scale simulations to the
upscaled simulations.
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3.3.4 Propagation of Uncertainty

Due to the inherent lack of information in groundwater modeling, an uncer-
tainty assessment is commonly requested in solute transport simulations (e.g.,
Salamon et al., 2007; Riva et al., 2008). Quantifying the uncertainty associ-
ated with flow and transport modeling should be important for the decision
maker to assess the degree of confidence of his decisions. Here, we have an-
alyzed how the uncertainty is estimated from the ensemble of realizations at
the fine scale and after flow and transport upscaling. We will analyze the
propagation of uncertainty through the upscaling process, along the same line
as Fernandez-Garcia and Gémez-Herndndez (2007).

The use of 30 realizations may seem a small number to perform an un-
certainty evaluation in such a heterogeneous aquifer. However, our purpose is
not so much to analyze the number of realizations needed to obtain a good es-
timation of model uncertainty, but rather to compare the uncertainty derived
from 30 realizations, before and after upscaling. If uncertainty upscales well
for 30 realizations, it should do so for a larger number of realizations.

We evaluate uncertainty by calculating the spread in the ensemble of cu-
mulative breakthrough curves at all the control planes. More precisely, we
quantified uncertainty by the 95% confidence interval related with the early,
median, and late arrival time of particles to each control plane. The early
arrival time reflects the fastest pathways between source and control plane,
which is for example of importance for the safety assessment of nuclear waste
repositories. The late arrival time constitutes important information for the
calculation, for example, of clean-up times in contaminated aquifer remedia-
tion.

The evolution of uncertainty with the travel distance is shown in Figure
3.6. We can see that: (1) For the early arrival time, the advection-only model
and double-rate mass transfer model show a slight overestimation of the uncer-
tainty. (2) For the median arrival time, the double-rate mass transfer model
is better in reproducing the uncertainty estimated at the fine scale than the
advective-only model. (3) For the late time, it is evident that the use of double-
rate mass transfer model clearly outperforms the advective-only for distances
larger than 60 m, and less clearly (because of the scale the results are plotted)
for the shorter distances.

In highly heterogeneous formulations, hydraulic conductivity upscaling is
not sufficient to preserve the uncertainty. Transport upscaling, through the
use of a mass transfer process at the coarse scale is needed for proper upscaling
of the uncertainty associated with solute transport predictions.
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upscaling approaches.
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3.4 Discussion

We have presented and demonstrated an algorithm for transport upscaling to
reduce the computational burden of transport predictions in three-dimensional
highly heterogeneous media. But, how general is the algorithm? Will it work
for different case studies? Will it work for different transport experiments?
Although we recognize that the results obtained are specific to the case study
under consideration, we believe that the upscaling procedure is general and it
should work for other settings, as discussed below.

We present the results for statistically isotropic fine scale conductivities.
What if the fine scale conductivities had been statistically anisotropic, with
a much larger correlation length in the horizontal plane than in the vertical
direction? What if the fine scale conductivities display curvilinear features,
such as those associated with channels? In the case of statistical anisotropy,
it would be necessary to adjust the size of the coarse blocks proportionally
to the correlation lengths in each direction, in order to reduce the amount of
smoothing in the directions of shortest continuity. In the case of curvilinear
features, the proposed approach will yield upscaled conductivity tensors, the
principal directions of which will change from block to block, inducing fluid
velocities in the coarse model following those curvilinear features. The pro-
posed approach has no problem in dealing with hydraulic conductivity tensors
with arbitrary orientations of their principal directions. The block-by-block
upscaling procedure is local, each block is isolated and a local flow exercise
is performed in each block; at this local scale, the anisotropic correlation or
the curvilinear features should not be clearly distinguishable from the intrin-
sic heterogeneity of the fine scale conductivities within the block; therefore,
the upscaling algorithm should perform similarly. The question, remained to
be answered, is whether when the blocks are assembled they will capture the
global behavior of the statistically anisotropic formation or of the curvilinear
features, or some specific corrections have to applied in these cases.

We present an analysis for a confined aquifer under steady-state flow condi-
tions. We have not investigated how the upscaled coarse model would behave
under transient conditions. We conjecture that the upscaled model should
reproduce the the transient flow response of the the fine scale model with a
degree of accuracy similar to the one obtained here for steady-state condi-
tions, since the upscaled block conductivities are determined using different
flow configurations applied to the block being upscaled. However, the up-
scaled transport parameters are based on the particle residence times for a
specific velocity field; since, for transient flow conditions, the velocity field
changes with time, it should be further investigated how much the upscaled
transport parameters change as the velocity field changes, and decide whether
these transport parameters should be made time dependent or there is a set of
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optimal parameters that would work well for the entire transient period. Also,
in the case of transient flow, the need to upscale the storage coefficient needs
to be addressed. Regarding the application of this approach for an unconfined
aquifer, the general upscaling procedure should remain the same, all blocks
should be upscaled as if they were fully saturated, and then, special caution
should be taken in the numerical simulation model to account for those cells
intersected by the phreatic surface at the time of computing the mass bal-
ances involving those cells. We have not analyzed this case because we do not
have a numerical flow simulator capable of using full conductivity tensors and
accounting for a phreatic surface.

The issue of how the upscaled transport parameters will perform under
transient conditions (i.e., different velocity fields in time), brings the question
of what will happen if the flow geometry changes substantially with respect
to that for which the parameters were computed. A priori, we anticipate that
the transport parameters would have to be recomputed, since the flow velocity
field will change, and so will the residence times in the blocks.

We present a sequential upscaling procedure in which first, we compute the
upscaled flow parameters, and then we use these parameters to compute the
upscaled transport parameters. However, if the final aim of our analysis were
to get the best transport predictions at the coarse scale, even compromising
the accuracy of flow reproduction, we could think of performing the flow and
transport upscaling jointly, therefore using the particle residence times within
the block being upscaled in the computation of the coarse conductivity tensors.
This is an interesting avenue of research that has not been investigated in this
paper.

We have used a homogeneous porosity throughout the exercise. If porosity
had been heterogeneous it would have had to be upscaled, too

There are two main drawbacks in the proposed method: the need to use the
particle residence times obtained after a simulation of the flow and transport
equations at the fine scale, and the need to correct the porosity at the coarse
scale, even though the porosity is homogenous at the fine scale.

The first drawback beats, in principle, the whole purpose of upscaling,
which is to avoid having to simulate flow and/or transport at the fine scale.
For this reason, this paper loses some of its practicality, and could be justified
(from a practical point of view) only if the upscaled model is to be used for
a more complex type of modeling (i.e. reactive transport) avoiding the need
to run the complex model at the fine scale. In order not to have to obtain
the fine scale solution for the transport upscaling, we have tried to follow the
same local approach as for the flow upscaling, that is, to isolate the block
plus a sufficiently large skin and to solve local transport problems for several
boundary conditions, and then derive the upscaled transport parameters; how-
ever, we have not succeeded with this approach, which has always resulted in
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biased transport predictions. There is, therefore, additional research needed
in the transport upscaling procedure in order to yield it more practical. Our
contribution with this paper is to demonstrate than, in 3D modeling of flow
and transport, it is possible to systematically derive flow and transport up-
scaled parameters as long as we acknowledge that removing the heterogeneity
within the block implies turning conductivities into tensors and including an
enhanced macrodispersion and a mass transfer process for the solute transport.

The second drawback requires further investigation. We are not the first
ones to face the need to make this adjustment for the coarse scale porosity
(e.g., Zinn and Harvey, 2003; Zhang, 2004; Fernandez-Garcia et al., 2009).
The need for this correction is due to the accumulation of small biases in the
transport modeling for each coarse block. When the transport parameters of
each coarse block are computed, they are determined trying to reproduce the
particle residence time distribution within the block with emphasis in matching
the mean residence time; however, there seems to be a small systematic bias in
this determination, which, at the end, forces us to correct the coarse porosities
so that the breakthrough curves from the upscaled model are not shifted with
respect to those from the fine scale model.

There is a need to know the fine scale parameters over the entire aquifer.
Obviously, these parameter values will never be available, they have to be
generated on the basis of available data. The issue of scales has been dis-
cussed for many years in the literature; it is a very old issue (known as the
change of support problem) in mining (Journel and Huijbregts, 1978), and
a little bit more recent in hydrogeology and petroleum engineering; a good
paper on the subject from the hydrogeology literature is the one by (Dagan,
1986), in which Dagan talks about measurement and model scales, among
other scales. For many years, data were measured, and without further con-
sideration they were used to inform the parameter values of the groundwater
flow model elements, until a concern about the so called “missing scale” was
risen, mostly in the petroleum literature (Tran, 1995, 1996), and the need to
account for the disparity of scales between measurements and model cells was
recognized (Gémez-Herndndez, 1991). Data are collected at a scale, gener-
ally, much smaller than the scale at which models are going to be discretized.
Data spatial variability can be characterized at such scale by standard geo-
statistical methods (Deutsch and Journel, 1992) or by the more powerful and
sophisticated multipoint geostatistical approaches (Strebelle, 2002), and this
characterization can be used to generate conditional realizations, at the sam-
pling scale, over discretized grids of multi-million cells. It is not proper to
characterize the sampled data and use them directly for the generation of re-
alizations at a larger scale suitable for numerical modeling, since the spatial
variability patterns of the “equivalent” properties that should inform the larger
blocks are completely different from that of the sampled data. Besides, as we
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have shown, for the purpose of transport modeling, removing the within-block
heterogeneity requires the introduction of additional processes to make up for
this loss of variability, which makes virtually impossible to generate the addi-
tional parameters directly from a few sampled data. As proposed in this, and
many other papers on upscaling, the proper way to account for the disparity
of scales is to build fine scale models based on the data, then to upscale them
so that the model size is amenable to numerical modeling. It remains open
the problem of how to integrate sampled data taken at different scales.

We recognize that the results have been demonstrated in a single case
study, but we conjecture that the good performance of the method proposed
is not case specific, and we base this conjecture in that the upscaling exercise
is performed on a block by block basis at a scale in which the specific features
of the different case studies will be less noticeable. We had to upscale several
thousands of blocks using a systematic approach, with each block having a
different distribution of fine scale conductivities. The upscaled parameters
would have been computed similarly had the flow geometry or the conductivity
heterogeneity changed. We acknowledge that the final results we present are
based on the assembly of these blocks for a specific flow and transport problem,
and the performance of this final assembly for a different case study may not
work so well as it did in our example.

Further research is needed (i) to avoid the solution of the flow and transport
at the fine scale in order to determine the coarse scale transport parameters,
(ii) to explain the need for correcting the porosity when moving from the fine to
the coarse scale, (iii) to determine how to upscale heterogeneous porosities, (iv)
to evaluate the approach for different conditions/scenarios, such as statistical
anisotropic conductivities, transient flow conditions or radial flow and (v) to
account for data measured at different scales.

3.5 Summary and Conclusions

We have presented and demonstrated an algorithm for transport upscaling in
three-dimensional highly heterogeneous media. This work is an extension of
the work by Fernandez-Garcia et al. (2009) in two dimensions. Some of the
critical features of this method is that it uses an elaborated Laplacian-with-
skin approach to reproduce the flows instead of the simple-Laplacian scheme,
the use of a multi-rate mass transfer process at the coarse scale to compen-
sate for the loss of information during upscaling, and the need to perform a
piecewise upscaling of effective porosity.

We have used a synthetic example to demonstrate the advantages of the
interblock Laplacian-with-skin approach to upscale hydraulic conductivities
as compared with other approaches. We found that using interblock centered
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conductivities and that using a skin to compute them results in a good repro-
duction of flows at the fine scale.

Moreover, we found that proper transport upscaling is particularly impor-
tant for the reproduction of the late time behavior of the solute breakthrough
curves. We also found that proper transport upscaling is important to not
underestimate the breakthrough curve prediction uncertainty.
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Modeling Transient
Groundwater Flow by
Coupling Ensemble Kalman
Filtering and Upscaling

Abstract

The ensemble Kalman filter (EnKF) is coupled with upscaling to build an
aquifer model at a coarser scale than the scale at which the conditioning data
(conductivity and piezometric head) had been taken for the purpose of inverse
modeling. Building an aquifer model at such scale is most often impractical,
since this would imply numerical models with millions of cells. If, in addi-
tion, an uncertainty analysis is required involving some kind of Monte-Carlo
approach, the task becomes impossible. For this reason, a methodology has
been developed that will use the conductivity data, at the scale at which they
were collected, to build a model at a (much) coarser scale suitable for the
inverse modeling of groundwater flow and mass transport. It proceeds as fol-
lows: (i) generate an ensemble of realizations of conductivities conditioned
to the conductivity data at the same scale at which conductivities were col-
lected, (ii) upscale each realization onto a coarse discretization; on these coarse
realizations, conductivities will become tensorial in nature with arbitrary ori-
entations of their principal directions, (iii) apply the EnKF to the ensemble of
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coarse conductivity upscaled realizations in order to condition the realizations
to the measured piezometric head data. The proposed approach addresses the
problem of how to deal with tensorial parameters, at a coarse scale, in en-
semble Kalman filtering, while maintaining the conditioning to the fine scale
hydraulic conductivity measurements. It is demonstrated in the framework of
a synthetic worth-of-data exercise, in which the relevance of conditioning to
conductivities, piezometric heads or both is analyzed.

4.1 Introduction

In this paper we address two problems, each of which has been the subject of
many works, but which have not received as much attention when considered
together: upscaling and inverse modeling. There are many reviews on the
importance and the methods of upscaling (e.g., Wen and Gémez-Herndndez,
1996; Renard and de Marsily, 1997; Séanchez-Vila et al., 2006), and there are
also many reviews on inverse modeling and its relevance for aquifer character-
ization (e.g., Yeh, 1986; McLaughlin and Townley, 1996; Zimmerman et al.,
1998; Carrera et al., 2005; Hendricks Franssen et al., 2009; Oliver and Chen,
2011). Our interest lies in coupling upscaling and inverse modeling to perform
an uncertainty analysis of flow and transport in an aquifer for which mea-
surements have been collected at a scale so small that it is prohibitive, if not
impossible, to perform directly the inverse modeling.

The issue of how to reconcile the scale at which conductivity data are
collected and the scale at which numerical models are calibrated was termed
“the missing scale” by Tran (1996), referring to the fact that the discrepancy
between scales was simply disregarded; data were collected at a fine scale, the
numerical model was built at a much larger scale, each datum was assigned to
a given block, and the whole block was assigned the datum value, even though
the block may be several orders of magnitude larger than the volume support
of the sample. This procedure induced a variability, at the numerical block
scale, much larger than it should be, while at the same time some unresolved
issues have prevailed like what to do when several samples fell in the same
block.

To the best of our knowledge, the first work to attempt the coupling
of upscaling and inverse modeling is the upscaling-calibration-downscaling-
upscaling approach by Tran et al. (1999). In their approach, a simple av-
eraging over a uniformly coarsened model is used to upscale the hydraulic
conductivities, then, the state information (e.g., dynamic piezometric head
data) is incorporated in the upscaled model by the self-calibration technique
(Gémez-Hernandez et al., 1997). The calibrated parameters are downscaled
back to the fine scale by block kriging (Behrens et al., 1998) resulting in a
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fine scale realization conditional to the measured parameters (e.g., hydraulic
conductivities). Finally, the downscaled conductivities are upscaled using a
more precise scheme (Durlofsky et al., 1997; Li et al., 2011a) for prediction
purposes. The main shortcoming of this approach is that the inverse modeling
is performed on a crude upscaled model, resulting in a downscaled model that
will not honor the state data. Tureyen and Caers (2005) proposed the cali-
bration of the fine scale conductivity field by gradual deformation (Hu, 2000;
Capilla and Llopis-Albert, 2009), but instead of solving the flow equation at
the fine scale they used an approximate solution after upscaling the hydraulic
conductivity field to a coarse scale. This process requires an upscaling for each
iteration of the gradual deformation algorithm, which is also time-consuming,
although they avoid the fine scale flow solution. More recently, an alternative
multiscale inverse method (Fu et al., 2010) was proposed. It uses a multiscale
adjoint method to compute sensitivity coefficients and reduce the computa-
tional cost. However, like traditional inverse methods, the proposed approach
requires a large amount of CPU time in order to get an ensemble of conditional
realizations. In our understanding, nobody has attempted to couple upscaling
and the ensemble Kalman filtering (EnKF) for the generation of hydraulic
conductivity fields conditioned to both hydraulic conductivity and piezomet-
ric head measurements. Only the work by Peters et al. (2010) gets close to
our work as, for the Brugge Benchmark Study, they generated a fine scale
permeability field, which was upscaled using a diagonal tensor upscaling; the
resulting coarse scale model was provided to the different teams participating
in the benchmark exercise, some of which used the EnKF for history match-
ing. We have chosen the EnKF algorithm for the inverse modeling because
it has been shown that it is faster than other alternative Monte Carlo-based
inverse modeling methods (see for instance the work by Hendricks Franssen
and Kinzelbach (2009) who show that the EnKF was 80 tomes fastar than the
sequential self-calibration in a benchmark exercise and nearly as good).

Our aim is to propose an approach for the stochastic inverse modeling of an
aquifer that has been characterized at a scale at which it is impossible to solve
the inverse problem, due to the large number of cells needed to discretize the
domain. We start with a collection of hydraulic conductivity and piezometric
head measurements, taken at a very small scale, to end with an ensemble
of hydraulic conductivity realizations, at a scale much larger than the one
at which data were originally sampled, all of which are conditioned to the
measurements. This ensemble of realizations will serve to perform uncertainty
analyses of both the parameters (hydraulic conductivities) and the system
state variables (piezometric heads, fluxes, concentrations, or others).

The rest of the paper is organized as follows. Section 4.2 outlines the
coupling of upscaling and the EnKF, with emphasis in the use of arbitrary
hydraulic conductivity tensors in the numerical model. Next, in section 4.3, a
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synthetic example serves to validate the proposed method. Then, in section
4.4, the results are discussed. The paper ends with a summary and conclusions.

4.2 Methodology

Hereafter, we will refer to a fine scale for the scale at which data are collected,
and a coarse scale, for the scale at which the numerical models are built. The
methodology proposed can be outlined as follows:

1. At the fine scale, generate an ensemble of realizations of hydraulic con-
ductivity conditioned to the hydraulic conductivity measurements.

2. Upscale each one of the fine scale realizations generated in the previous
step. In the most general case, the upscaled conductivities will be full
tensors in the reference axes.

3. Use the ensemble of coarse realizations with the EnKF to condition
(assimilate) on the measured piezometric heads.

4.2.1 Generation of the Ensemble of Fine Scale Conductivities

The first step of the proposed methodology makes use of geostatistical tools al-
ready available in the literature (e.g., Gémez-Herndndez and Srivastava, 1990;
Deutsch and Journel, 1998; Strebelle, 2002; Mariethoz et al., 2010). The tech-
nique to choose will depend on the underlying random function model selected
for the hydraulic conductivity: multi-Gaussian, indicator-based, pattern-based,
or others. In all cases, the scale at which these fields can be generated is not
an obstacle, and the resulting fields will be conditioned to the measured hy-
draulic conductivity measurements (but only to hydraulic conductivity mea-
surements). These fields could have millions of cells and are not suitable for
inverse modeling of groundwater flow and solute transport.

4.2.2 Upscaling

Each one of the realizations generated in the previous step is upscaled onto a
coarse grid with a number of blocks sufficiently small for numerical modeling.
We use the flow upscaling approach by Rubin and Gémez-Hernéndez (1990)
who, after spatially integrating Darcy’s law over a block V/,

1 ol
V/quv_ K (V/VVhdv), (4.1)

define the block conductivity tensor (K®) as the tensor that best relates the
block average head gradient (Vh) to the block average specific discharge vector
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(q) within the block. Notice that to perform the two integrals in the previous
expressions we need to know the specific discharge vectors and the piezomet-
ric head gradients at the fine scale within the block. These values could be
obtained after a solution of the flow problem at the fine scale (i.e., White and
Horne, 1987), but this approach beats the whole purpose of upscaling, which
is to avoid such fine scale numerical simulations. The alternative is to model
a smaller domain of the entire aquifer enclosing the block being upscaled. In
such a case, the boundary conditions used in this reduced model will be dif-
ferent from the boundary conditions that the block has in the global model,
and this will have some impact on the fine scale values of Vh and q. The de-
pendency of the heads and flows within the block on the boundary conditions
is the reason why it is said that the block upscaled tensor is non-local.

For the flow upscaling we adopt the so-called Laplacian-with-skin method
on block interfaces as described by Gémez-Hernandez (1991) and recently ex-
tended to three dimensions by Zhou et al. (2010). The two main advantages
of this approach are that it can handle arbitrary full conductivity tensors,
without any restriction on their principal directions; and that it upscales di-
rectly the volume straddling between adjacent block centers, which, at the end,
is the parameter used in the standard finite-difference approximation of the
groundwater flow equation (avoiding the derivation of this value by some kind
of averaging of the adjacent block values). Once the interblock conductivities
have been computed, a specialized code capable of handling interblock ten-
sors is necessary. For this purpose, the public domain code FLOWXYZ3D (Li
et al., 2010), has been developed. The details of the upscaling approach, the
numerical modeling using interblock conductivity tensors, and several demon-
stration cases can be found in Zhou et al. (2010); Li et al. (2010, 2011a,b). The
resulting upscaled interblock tensors produced by this approach are always of
rank two, symmetric and positive definite.

The Laplacian-with-skin method on block interfaces for a given realization
can be briefly summarized as follows:

e Overlay a coarse grid on the fine scale hydraulic conductivity realization.
e Define the interblock volumes that straddle any two adjacent blocks.
e For each interblock:

— Isolate the fine scale conductivities within a volume made up by the
interblock plus an additional “border ring” or “skin” and simulate
flow, at the fine scale, within this volume.

— As explained by Zhou et al. (2010), there is a need to solve more
than one flow problem in order to being able of identifying all com-
ponents of the interblock conductivity tensor.
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— From the solution of the flow problems, use Equation (4.1) to derive
the interblock conductivity tensor.

e Assemble all interblock tensors to build a realization of upscaled hy-
draulic conductivity tensors at the coarse scale.

The above procedure has to be repeated for all realizations, ending up with
an ensemble of realizations of interblock conductivity tensors.

4.2.3 The EnKF with Hydraulic Conductivity Tensors

Extensive descriptions of the EnKF and how to implement it have been given,
for instance, by Burgers et al. (1998); Evensen (2003); Naevdal et al. (2005);
Chen and Zhang (2006); Aanonsen et al. (2009). Our contribution, regarding
the EnKF, is how to deal with an ensemble of parameters that rather than
being scalars are tensors. After testing different alternatives, we finally decided
not to use the tensor components corresponding to the Cartesian reference
system, but to use some of the tensor invariants, more precisely, the magnitude
of the principal components and the angles that define their orientation.

For the example discussed later we will assume a two-dimensional domain,
with hydraulic conductivity tensors varying in space K = K(x) of the form

Koo K
K=| ™= 2w, 4.2
|: ny Kyy :| ( )

Each conductivity tensor is converted onto a triplet {Kmaz, Kmin, 0}, with
Ko being the largest principal component, K., the smallest one, and 6, the
orientation, with respect to the z-axis, of the maximum principal component
according to the following expressions (Bear, 1972):

Koo+ Kyy | ( Kpp — Ky \ 2 2] 1/

Kmaz = m2 St ( m“2 yy) +(ny> ’

- D12

Koo+ K Kpw — Ky \ 2 2

Kpmin = xw2 v ( $x2 yy> +<ny> ) (43)
1 2K, )

0 = —arctan y).

2 (Km—Kyy

After transforming all conductivity tensors obtained in the upscaling step
onto their corresponding triplets we are ready to apply the EnKF. We will
use the EnKF implementation with an augmented state vector as discussed
below; this is the standard implementation used in petroleum engineering and
hydrogeology, although alternative implementations and refinements of the
algorithm could have been used (see Aanonsen et al., 2009, for a review).
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Using the EnKF nomenclature, the state of the system is given by the
spatial distribution of the hydraulic heads, the state transition equation is the
standard flow equation describing the movement of an incompressible fluid
in a fully saturated porous medium (Bear, 1972; Freeze and Cherry, 1979)
(in two dimensions for the example considered later), and the parameters
of the system are the spatially varying hydraulic conductivities (the storage
coefficient is assumed to be homogeneous and known, and therefore, it is a
parameter not subject to filtering), i.e.,

Yy = f(Xp—1, Yi-1), (4.4)

where Y}, is the state of the system at time step t;, f represents the groundwa-
ter flow model (including boundary conditions, external stresses, and known
parameters), and Xj_1 represents the model parameters after the latest up-
date at time t;_.

The EnKF algorithm will proceed as follows:

1. Forecast. Equation (4.4) is used to forecast the system states for the
next time step given the latest state and the latest parameter update.
This forecast has to be performed in all realizations of the ensemble

2. Analysis. At the forecasted time step, new state observations are avail-
able at measurement locations. The discrepancy between these state
observations and the forecasted values will serve to update both the pa-
rameter values and the system state at all locations in the aquifer model
as follows:

(a) Build the joint vector Wy, including parameters and state values.
This vector can be split into as many members as there are realiza-
tions in the ensemble, with

T, :[ v L,j (4.5)

being the j** ensemble member at time t;. Specifically, X (for a
realization) is expressed as:

X = [(In Kpazs I Kopin, 0)1, - - -, (I0 Koz, I Kopin, ), ] (4.6)

where IV is the number of interfaces in the coarse numerical model.
Notice that the logarithm of the conductivity principal components
is used, since their distribution is, generally, closer to Gaussian than
that of the conductivities themselves.
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The joint vector ¥, is updated, realization by realization, by as-
similating the observations (Y¢%):

L= Gy (ngs te— Hq:g,j), (4.7)

where the superscripts a and f denote analysis and forecast, re-
spectively; € is a random observation error vector; H is a linear op-
erator that interpolates the forecasted heads to the measurement
locations, and, in our case, is composed of 0's and 1’s since we
assume that measurements are taken at block centers. Therefore,
equation (4.7) can be rewritten as:

b=+ G (Y e-Y]), (4.8)
where the Kalman gain Gy is given by:
T T -1
G =P{H" (HP{H" + R;) . (4.9)
where Ry, is the measurement error covariance matrix, and P£ con-

tains the covariances between the different components of the state
vector. P£ is estimated from the ensemble of forecasted states as:

—f —f T
P/ ~ E (q;gyj - \Il,m-> (mgj - \If,w.) ] (4.10)
—f —f T
E (‘I’ij - ‘I’k,j) (‘I’iy - ‘I’iw)
=1 Ne

where NN, is the number of realizations in the ensemble, and the
overbar denotes average through the ensemble.

In the implementation of the algorithm, it is not necessary to cal-
culate explicitly the full covariance matrix Pi, since the matrix H
is very sparse, and, consequently, the matrices P£HT and HPiHT
can be computed directly at a strongly reduced CPU cost.

3. The updated state becomes the current state, and the forecast-analysis
loop is started again.

The question remains whether the updated conductivity-tensor realizations
preserve the conditioning to the fine scale conductivity measurements. In
standard EnKF, when no upscaling is involved and conductivity values are the
same in all realizations at conditioning locations, the forecasted covariances
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and cross-covariances involving conditioning points are zero, and so is the
Kalman gain at those locations; therefore, conductivities remain unchanged
through the entire Kalman filtering. In our case, after upscaling the fine-
scale conditional realizations, the resulting ensemble of hydraulic conductivity
tensor realizations will display smaller variances (through the ensemble) for
the tensors associated with interfaces close to the fine scale measurements
than for those far from the measurements. These smaller variances will result
in a smaller Kalman gain in the updating process at these locations, and
therefore will induce a soft conditioning of the interblock tensors on the fine
scale measurements.

The proposed method is implemented in the C software Upscaling-EnKF3D,
which is used in conjunction with the finite-difference program FLOWXYZ3D
(Li et al., 2010) in the forecasting step. From an operational point of view,
the proposed approach is suitable for parallel computation both in terms of
upscaling and EnKF, since each ensemble member is treated independently,
except for the computation of the Kalman gain.

4.3 Application Example

In this section, a synthetic experiment illustrates the effectiveness of the pro-
posed coupling of EnKF and upscaling.

4.3.1 Reference Field

We generate a realization of hydraulic conductivity over a domain discretized
into 350 by 350 cells of 1 m by 1 m using the code GCOSIM3D (Gémez-
Herndndez and Journel, 1993).

We assume that, at this scale, conductivity is scalar and its natural loga-
rithm, InK, can be characterized by a multiGaussian distribution of mean -5
(In cm/s) and unit variance, with a strong anisotropic spatial correlation at
the 45° orientation. The correlation range in the largest continuity direction
(2") is Az = 90 m and in the smallest continuity direction (y') is A,y = 18 m.
The variogram is given by:

y(r) =1.0- {1—exp[—\/<ng/)2+<3;§,>2]}, (4.11)

G)-lE Al e

and r = (r4,ry) being the separation vector in Cartesian coordinates. The
reference realization is shown in Figure 4.1A. From this reference realization

with
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(A) Reference InK Data (B) InK Data to be Conditioned
a0 T L |
Tl T 3.0
¥ 1 ] THH 1 30| © © ° e o o e o o o 30
& @) Il ﬁ:: —
EnE '1!' 1 HH l’ﬁ oooooooooo
T T HHH 490 1 e e e e e e e e e w0
- - L 4
HH Tl L
: GUEHEEELaEEE s f R I I T S
g T I 200._]
: oooooooooo
HHHHHH A | ] - s s e e e e e e o
Raz=s

oooooooooo

T
I
|

North
anE
T
HEE
3 2 §
] T T
T
3 o %ﬁ
&
°
&
o

T
LY
|
2
1

ast 350 0. 100. 200. 300.

Figure 4.1: (A) Reference InK field overlaid with the discretization of the
numerical model at the coarse scale. (B) Conditioning InK data.

100 conductivity data are sampled at the locations shown in Figure 4.1B.
These data will be used for conditioning.

The forward transient groundwater flow model is run in the reference re-
alization with the boundary conditions shown in Figure 4.2 and initial heads
equal to zero everywhere. The total simulation time is 500 days, discretized
into 100 time steps following a geometric sequence of ratio 1.05. The aquifer
is confined. Specific storage is assumed constant and equal to 0.003 m~'. The
simulated piezometric heads at the end of time step 60 (67.7 days) are dis-
played in Figure 4.4. Piezometric heads at locations W1 to W9 in Figure 4.2
are sampled for the first 60 time steps to be used as conditioning data. The
simulated heads at locations W10 to W13 will be used as validation data.

4.3.2 Hydraulic Conductivity Upscaling

For the reasons explained by Zhou et al. (2010); Li et al. (2010), the fine scale
realizations must be slightly larger than the aquifer domain in order to ap-
ply the Laplacian-with-skin upscaling approach. We assume that the aquifer
of interest is comprised by the inner 320 by 320 cell domain for all realiza-
tions. Each one of these realizations is upscaled onto a 32 by 32 square-block
model implying an order-of-two magnitude reduction in the discretization of
the aquifer after upscaling. After several tests, the skin selected for the upscal-
ing procedure has a width of 10 m, since it is the one that gives best results in
the reproduction of the interblock specific discharges when compared to those
computed on the fine scale underlying realizations. Since the upscaling is ap-
plied to the interblock volume straddling between adjacent block centers, there
are 32 by 31 column-to-column interblock tensors (K%¢) plus 31 by 32 row-
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Figure 4.2: Sketch of the flow problem with boundary conditions, observation
and prediction wells. Empty squares correspond to the piezometric head ob-

servation wells (W1-W09); filled squares correspond to the control wells (W10-
W13).
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Table 4.1: Definition of Cases depending on the the different sets of condition-
ing data.

Conditioning Data Case A Case B Case C Case D
Hydraulic conductivities(K) No Yes No Yes
Dynamic piezometric heads(h) No No Yes Yes

to-row interblock tensors (K”"). All interblock tensors are transformed into
their corresponding triplet of invariants prior to starting the EnKF algorithm.

For illustration purposes, Figure 4.3 shows the resulting triplets for the
reference field. This figure will be used later as the reference upscaled field
to analyze the performance of the proposed method. On the right side of
Figure 4.4, the simulated piezometric heads at the end of the 60th time step
are displayed side by side with the simulated piezometric heads at the fine
scale. The reproduction of the fine scale spatial distribution by the coarse
scale simulation is, as can be seen, very good; the average absolute discrepancy
between the heads at the coarse scale and heads at the fine scale (on the block
centers) is only 0.087 m.

4.3.3 Case Studies

Four cases, considering different types of conditioning information, are an-
alyzed to study the performance of the proposed approach (see Table 4.1).
They will show that the coupling of the EnKF with upscaling can be used to
construct aquifer models that are conditional to conductivity and piezometric
head data, when there is an important discrepancy between the scale at which
the data are collected and the scale at which the flow model is built. The
cases will serve also to carry out a standard worth-of-data exercise in which
we analyze the trade-off between conductivity data and piezometric head data
regarding aquifer characterization.

Case A is unconditional, 200 realizations are generated according to the
spatial correlation model given by Equation (4.11) at the fine scale. Upscaling
is performed in each realization and the flow model is run. No Kalman filtering
is performed.

Case B is conditional to logconductivity measurements, 200 realizations of
logconductivity conditional to the 100 logconductivity measurements of Figure
4.4B are generated at the fine scale. Upscaling is performed in each realization
and the flow model is run. No Kalman filtering is performed.

Cases A and B act as base cases to be used for comparison when the
piezometric head data are assimilated through the EnKF.
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Reference In(Kmax) between columns Reference In(Kmax) between rows

Figure 4.3: Upscaled values for the interblock tensor components: In(Kmaz),
In(Kmin) and rotation angle for the maximum component measured from
the z-axis 6 (in degrees), for both the interblocks between columns and the
interblocks between rows. Upscaling method used: Laplacian with a skin of
10 m
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Figure 4.4: Reference piezometric head at the 60th time step. Left, as obtained
at the fine scale; right, as obtained at the coarse scale

Case C is conditional to piezometric heads. The same 200 coarse realiza-
tions from Case A serve as the initial ensemble of realizations to be used by
the EnKF to assimilate the piezometric head measurements from locations
W1 to W9 for the first 60 time steps (66.7 days).

Case D is conditional to both logconductivity and piezometric heads. The
same 200 coarse realizations from Case B serve as the initial ensemble of
realizations to be used by the EnKF to assimilate the piezometric head mea-
surements from locations W1 to W9 for the first 60 time steps (66.7 days).

In Cases C and D we use the measured heads obtained at the fine scale in
the reference realization as if they were measurements obtained at the coarse
scale. There is an error in this assimilation that we incorporate into the
measurement error covariance matrix. Specifically we here assumed a diagonal
error covariance matrix, with all the diagonal terms equal to 0.0025 m?; this
value is approximately equal to the average dispersion variance of the fine scale
piezometric heads within the coarse scale blocks.

4.3.4 Performance Measurements

Since this is a synthetic experiment, the “true” aquifer response, evaluated
at the fine scale, is known. We also know the upscaled conductivity tensors
for the reference aquifer, which we will use to evaluate the performance of the
updated conductivity tensors produced by the EnKF.

The following criteria will be used to analyze the performance of the pro-
posed method and the worth of data:

1. Ensemble mean map. (It should capture the main patterns of variability
of the reference map.)
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2. Ensemble variance map. (It gives an estimate of the precision of the
maps.)

3. Ensemble average absolute bias map, ex, made up by:

N,
1 €
GXZ. = F E |X’i7r — Xi,T€f|7 (413)
€ r=1

where X; is the parameter being analyzed, at location ¢, X; , represents
its value for realization r, X; .. is the reference value at location ¢, and
N, is the number of realizations of the ensemble (200, in this case). (It
gives an estimate of the accuracy of the maps.)

4. Average absolute bias

AAB(X) = €L > exi, (4.14)

where IV is the number of interblocks when X is coarse logconductivity
tensor component, or the number of blocks when X is piezometric head.
(It gives a global measure of accuracy.)

5. Square root of the average ensemble spread

1 Ny 1/2
AESP(X) —[NZU%Z,] :

b=t

(4.15)

where U_%(i is the ensemble variance at location i. (It gives a global
measure of precision.)

6. Comparison of the time evolution of the piezometric heads at the condi-
tioning piezometers W1 to W9, and at the control piezometers W10 to
W13. (It evaluates the capability of the EnKF to update the forecasted
piezometric heads using the measured values.)

4.4 Discussion

Ensembles of coarse realizations for the four cases have been generated ac-
cording to the conditions described earlier. Figure 4.5 shows the evolution of
the piezometric heads in piezometers W1 and W9 for the 500 days of simula-
tion; the first 60 steps (66.7 days) were used for conditioning in cases C and
D. Similarly, Figure 4.6 shows piezometers W10 and W13; these piezometers
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were not used for conditioning. Figure 4.7 shows the ensemble mean and vari-
ance of the piezometric heads at the 60th time step, while Figure 4.8 shows
the ensemble average absolute bias. Figure 4.9 shows the ensemble mean and
variance of In(K ;) for interblocks between rows, and Figure 4.10 shows the
ensemble average absolute bias. Finally, Table 4.2 shows the metric perfor-
mance measurements for In(K,,,,) between rows and for piezometric heads at
the 30th, 60th and 90th time steps.

4.4.1 The EnKF Coupled with Upscaling

The EnKF has the objective of updating conductivity realizations so that the
solution of the flow equation on the updated fields will match the measured
piezometric heads. Analyzing cases C and D in Figure 4.5, we can observe
how the updated fields, when piezometric head is assimilated by the EnKF,
produce piezometric head predictions that reproduce the measured values very
well, particularly when compared with case A, which corresponds to the case
in which no conditioning data are considered. Notice also that piezometric
head data are assimilated only for the first 66.7 days (the period in which
the heads are almost perfectly reproduced in the EnKF updated fields) while
the rest of the simulation period serves as validation. Additional validation of
the EnKF generated realizations, is given in Figure 4.6 that shows two of the
piezometers not used for conditioning; we can also observe the improvement in
piezometric head reproduction for cases C and D as compared to case A. Fur-
thermore, the analysis of Figure 4.7 shows how, for cases C and D, the average
spatial distribution, at the end of time step 60, follows closely the reference
piezometric head distribution, while the ensemble variance is reduced to very
small values everywhere. The ensemble average head bias is also noticeably
reduced when conditioning to heads, not just at the conditioning locations (as
expected) but also elsewhere. A final analysis to show how conditioning to the
heads improves the overall reproduction of the head spatial distribution is by
looking at the metrics displayed in Table 4.2. Comparing cases B and C, it is
interesting to notice the increasing impact of the conditioning to piezometric
heads as time passes; at time step 30, the initial effect of just conditioning to
hydraulic conductivity measurements (which occurs from time step 0 ) is still
larger than just conditioning to the heads measured during the first 30 time
steps, but at time step 60, this effect is clearly reversed, and it is maintained
to time step 90 even though the heads between steps 60 and 90 are not used
for conditioning. As expected, conditioning to both piezometric heads and
hydraulic conductivities gives the best results in terms of smallest bias and
smallest spread.
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Figure 4.5: Piezometric head time series in the reference field and simulated
ones for all cases at wells W1 (left column) and W9 (right column). The
piezometric heads measured at these wells during the first 67.7 days were used
as conditioning data for cases B and D.
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Figure 4.6: Piezometric head time series in the reference field and simulated
ones for all cases at control wells W10 (left column) and W13 (right column).
These wells were not used as conditioning data for any case.
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From this analysis we conclude that the EnKF coupled with upscaling is
able to generate an aquifer model at a scale two orders of magnitude coarser
than the reference aquifer scale that is conditional to the piezometric heads.

Besides achieving the original goal of the EnKF algorithm, it is also im-
portant to contrast the final conductivity model given by the EnKF, with the
reference aquifer model. For this purpose we will compare the final ensemble of
realizations obtained for cases C and D with the upscaled realization obtained
from the reference, fine scale aquifer model. Conditioning to piezometric head
data should improve the characterization of the logconductivities. Indeed, this
is what happens as it can be seen when analyzing Figures 4.9 and 4.10 and
Table 4.2. In these figures only the maximum component of the logconductiv-
ity tensors for the interblocks between rows is displayed, but the members of
the triplet for the tensor between rows, as well as the members of the triplet
for the tensors between columns, show a similar behavior. The ensemble mean
maps are closer to the reference map in case that conditioning data are used;
the variance maps display smaller values as compared to case A; and the bias
map shows values closer to zero than in case A. All in all, we can conclude
that the EnKF updates the block conductivity tensors to produce realizations
which get closer to the aquifer model obtained after upscaling the reference
aquifer.

There remains the issue of conditioning to the fine scale conductivity mea-
surements. Since the fine scale conductivity measurements were used to con-
dition the fine scale realizations, the conditioning should be noticed in the
upscaled model only if the correlation scale of the conductivity measurements
is larger than the upscaled block size. In such a case (as is the case for the
example), the ensemble variance of the upscaled block conductivity values
should be smaller for blocks close to conditioning datum locations than for
those away from the conditioning points. Case B is conditioned only on the
fine scale logconductivity measurements. Comparing cases A and B in Fig-
ure 4.9 and in Table 4.2 we notice that for the unconditional case, the ensemble
mean of In(K,4;) between rows is spatially homogeneous and so is the vari-
ance; however, as soon as the fine scale conductivity data are used for the
generation of the fine scale realizations, the ensemble of upscaled realizations
displays the effects of such conditioning, the ensemble mean starts to show
patterns closer to the patterns in the upscaled reference field (Figure 4.3),
and the ensemble variance becomes smaller for the interblocks closer to the
conditioning measurements. Analyzing case D in Figure 4.9, which takes the
ensemble of realizations from case B and updates it by assimilating the piezo-
metric head measurements at piezometers W1 to W9, we conclude that the
initial conditioning effect (to hydraulic conductivity data) is reinforced by the
new conditioning data, the patterns observed in the ensemble mean maps are
even closer to the patterns in the reference realization, and the ensemble vari-
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Figure 4.7: Ensemble average and variance of piezometric heads for the differ-
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Figure 4.8: Ensemble average absolute bias of piezometric heads for the dif-
ferent cases.
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ance remains small close to logconductivity conditioning locations and, overall,
is smaller than for case B.

Finally, when no conductivity data are used to condition the initial en-
semble of realizations, conditioning to piezometric heads through EnKF also
serves to improve the characterization of the logconductivities as can be seen
analyzing case C in Figure 4.9 and Table 4.2. Some patterns of the spatial
variability of In(K,q,) are captured by the ensemble mean and the ensem-
ble variance is reduced with respect to the unconditional case, although in a
smaller magnitude than when logconductivity data are used for conditioning.

From this analysis we conclude that conditioning to piezometric head data
by the EnKF coupled with upscaling improves the characterization of aquifer
logconductivities whether conductivity data are used for conditioning or not.

It should be emphasized that, since the EnKF algorithm starts after the
upscaling of the ensemble of fine scale realizations ends, the EnKF-coupled-
with-upscaling performance will be much restricted by the quality of the up-
scaling algorithm. It is important to use as accurate an upscaling procedure
as possible in the first step of the process, otherwise the EnKF algorithm may
fail. An interesting discussion on the importance of the choice of upscaling
can be read in the study of the MADE site by Li et al. (2011a).

4.4.2 Worth of Data

We can use the results obtained to make a quick analysis of the worth of
data in aquifer characterization, which confirms earlier findings (e.g., Capilla
et al., 1999; Wen et al., 2002; Hendricks Franssen, 2001; Hendricks Franssen
et al., 2003) and serves to show that the proposed approach works as expected.
By analyzing Figures 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10, and Table 4.2, we can
conclude that conditioning to any type of data improves the characterization
of the aquifer conductivities, and improves the characterization of the state
of the aquifer (i.e., the piezometric heads). The largest improvement occurs
when both, hydraulic conductivity and piezometric head measurements are
used. These improvements can be seen qualitatively on the ensemble mean
maps, which are able to display patterns closer to those in the reference maps;
on the ensemble variance maps, which display smaller values than for the
unconditional case; and on the ensemble average bias maps, which also show
reduced bias when compared with the unconditional case. Quantitatively, the
same conclusions can be made by looking at the metrics in the Table. The
reproduction of the piezometric heads also improves when conditioning to any
type of data.

It is also interesting to analyze the trade-off between conductivity data
and piezometric head data by comparing cases B and C. As expected, the
characterization of the spatial variability of hydraulic conductivity is better
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Figure 4.9: Ensemble average and variance of In(Kmax) for the different cases.
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Case A: Average Bias of In(Kmax)
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Figure 4.10: Ensemble average absolute bias of In(Kmaz) for the different
cases.
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Table 4.2: Bias and spread of predicted heads at time steps 30, 60 and 90 and
of updated loghydraulic conductivity In Kfnzm at time step 60.

Case A Case B Case C Case D

AAB (hpi—30) 0.189  0.119 0.124  0.118
AESP(hm—3) 0201 0132  0.111  0.086
AAB(hpi—0) 0.580  0.256  0.224  0.195
AESP(hpi—go) 0533  0.323  0.186  0.146
AAB(hpi—o0) 0.672  0.281  0.236  0.204

AESP(hp—g0) ~ 0.627 0355  0.195  0.153
AAB(In Kpnap) 0452 0306 0.417  0.296
AESP(In Kpee) 0805  0.660  0.702  0.594

when conductivity data are used for conditioning than when piezometric head
are; however, the opposite occurs for the characterization of the piezometric
heads.

4.4.3 Other Issues

We have chosen a relatively small-sized fine scale model to demonstrate the
methodology, since we needed the solution at the fine scale to create the sets
of conditioning data and to verify that the coarse scale models generated by
the proposed approach give good approximations of the “true” response of
the fine scale aquifer. We envision that the proposed approach should be
used only when the implementation of the numerical model and the EnKF are
impractical at the fine scale.

To our understanding, it is the first time that the EnKF is applied on
an aquifer with conductivities characterized by full tensors. The approach
of representing the tensors by their invariants seems to work in this context.
More sophisticated EnKF implementations could have been used, which would
have worked equally well or better than the standard EnKF.

The example has been demonstrated using a reference conductivity field
that was generated following a multiGaussian stationary random function.
Could the method be applied to other types of random functions, i.e., non-
multiGaussian or non-stationary? It could, as long as each step of the approach
(see Section 4.2) could. More precisely, for the first step, the generation of the
fine scale hydraulic conductivity measurements, there are already many algo-
rithms that can generate realizations from a wide variety of random functions,
including non-multiGaussian and non-stationary; the second step is basically
deterministic, we replace an assembly of heterogeneous values by an equivalent
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block tensor, the underlying random function used to generate the fine scale
realizations has no interference on the upscaling; however, for the third step,
the application of EnKF to non-multiGaussian parameter fields is more diffi-
cult, some researchers propose moving on to particle filtering (Arulampalam
et al., 2002), some others have worked on variants of the EnKF to handle the
non-multiGaussianity (Zhou et al., 2011); the non-stationarity is not an issue,
since the EnKF deals, by construction, with non-stationary states.

4.5 Conclusion

The “missing scale” issue brought out by Tran (1996) is still, today, much
overlooked. Data, particularly conductivity data, are collected at smaller sup-
port volumes and in larger quantities than years ago, yet, when constructing
a numerical model based on these data, the discrepancy between the scale at
which data are collected and the scale of the numerical model is most often
disregarded.

We have presented an approach to rigorously account for fine-scale con-
ductivity measurements on coarse-scale conditional inverse modeling. The
resulting model is composed of an ensemble of realizations of conductivity
tensors at a scale (much) coarser than the scale at which conductivities were
measured. The ensemble of final realizations is conditioned to both conductiv-
ity and piezometric head measurements. The latter conditioning is achieved
by using the ensemble Kalman filter on realizations of conductivity tensors.
To handle the tensor parameters, we propose to work with the invariants of
the tensors, instead of their representations on a specific reference system,
this approach allows the ensemble Kalman filter to perform a tensor updating
which produces realizations that are conditioned to the transient piezometric
head measurements.
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Jointly Mapping Hydraulic
Conductivity and Porosity by
Assimilating Concentration
Data via Ensemble Kalman

Filter

Abstract

Real-time data from on-line sensors offer the possibility to update environmen-
tal simulation models in real-time. Information from on-line sensors concern-
ing contaminant concentrations in groundwater allow for the real-time char-
acterization and control of a contaminant plume. In this paper it is proposed
to use the CPU-efficient Ensemble Kalman Filter (EnKF) method, a data as-
similation algorithm, for jointly updating the flow and transport parameters
(hydraulic conductivity and porosity) and state variables (piezometric head
and concentration) of a groundwater flow and contaminant transport problem.
A synthetic experiment is used to demonstrate the capability of the EnKF to
estimate hydraulic conductivity and porosity by assimilating dynamic head
and multiple concentration data in a transient flow and transport model. In
this work the worth of hydraulic conductivity, porosity, piezometric head, and
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concentration data is analyzed in the context of aquifer characterization and
prediction uncertainty reduction. The results indicate that the characteriza-
tion of the hydraulic conductivity and porosity fields is continuously improved
as more data are assimilated. Also, groundwater flow and mass transport pre-
dictions are improved as more and different types of data are assimilated. The
beneficial impact of accounting for multiple concentration data is patent.

5.1 Introduction

During the last several decades numerical simulation is routinely utilized
to evaluate the groundwater resources and predict the fate of contaminant
plumes. The adequate characterization of spatially distributed hydrogeologi-
cal parameters like hydraulic conductivity and porosity plays an important role
in groundwater flow and transport simulations. However, due to the scarcity
of measurements in combination with the large spatial heterogeneity it is not
trivial how to characterize the spatial distribution of the mentioned param-
eters, and, consequently, groundwater flow and transport predictions call for
an uncertainty assessment. Inverse modeling is often used to reduce model
uncertainty by jointly conditioning on hard data (e.g., hydraulic conductivity
and porosity) and indirect data (e.g., the observed state information, such as
piezometric heads, concentrations and temperatures) to characterize the spa-
tial variation of hydrogeological parameters. The issue of how to condition on
the direct measurements has been extensively investigated in the geostatistical
literature (e.g., Journel, 1974; Gémez-Hernandez and Srivastava, 1990; Stre-
belle, 2002). Likewise, inverse modeling, i.e., conditioning to indirect data,
has been reviewed in the literature (e.g., Yeh, 1986; McLaughlin and Town-
ley, 1996; Zimmerman et al., 1998; Carrera et al., 2005; Hendricks Franssen
et al., 2009). Commonly, inverse methods define an objective function that
includes the mismatch between calculated and observed state values, as well
as the perturbation of the initial parameter estimates. This objective function
is minimized by an optimization approach. Examples are the self-calibration
method (Sahuquillo et al., 1992; Gémez-Hernandez et al., 1997; Capilla et al.,
1999; Wen et al., 2002; Hendricks Franssen et al., 2003), the pilot point method
(Ramarao et al., 1995; LaVenue et al., 1995; Alcolea et al., 2006), the Markov
chain Monte Carlo method (Oliver et al., 1997), and the gradual deformation
method (Hu, 2000; Capilla and Llopis-Albert, 2009).

Albeit the abundant literature on inverse conditioning of conductivities to
piezometric head, only a few works have paid attention on jointly conditioning
on head and concentration data to improve the characterization of multiple hy-
drogeological parameters. Medina and Carrera (1996) extended the maximum
likelihood approach (Carrera and Neuman, 1986) to condition on concentra-



CHAPTER 5. JOINTLY MAPPING HYDRAULIC. .. 107

tion data for a better characterization of zoned hydraulic conductivity maps.
The main shortcoming of this approach is that the small-scale heterogeneity
is ignored due to the estimation of hydraulic conductivity for larger zones.
Hendricks Franssen et al. (1999) calibrated both hydraulic conductivity and
storativity by conditioning to transient head data using the self-calibration
method (Gémez-Herndndez et al., 1997). More recently, Hendricks Franssen
et al. (2003) further extended the self-calibration method to calibrate hy-
draulic conductivity by conditioning on piezometric head and concentration
data. Huang et al. (2004) also employed the self-calibration method to jointly
identify hydraulic conductivity and sorption partitioning coefficient by condi-
tioning on tracer breakthrough data. Fu and Gémez-Herndndez (2009) em-
ployed the block Markov chain Monte Carlo method to calibrate conductivity
by jointly conditioning to head and travel time data. Llopis-Albert and Capilla
(2009) utilized the gradual deformation method to estimate the conductiv-
ity by incorporating head, concentration and travel time data. Schwede and
Cirpka (2009) used the quasi-linear geostatistical approach of Kitanidis (1995)
to estimate conductivity by conditioning on steady-state concentration mea-
surements. Barnhart et al. (2010) employed PEST (Doherty, 2004), a model-
independent nonlinear parameter estimation program, to calibrate hydraulic
conductivity by conditioning to concentration data collected from wireless sen-
sor networks. These approaches are able to generate multiple equally-likely
parameter fields conditional to static and dynamic measurements, thus ca-
pable of depicting small-scale variability of hydraulic conductivity. However,
the main shortcoming of those methods is that they are CPU-intensive; these
methods require running the forward model multiple times during the iterative
optimization process of each realization.

The Ensemble Kalman Filter (EnKF) (Burgers et al., 1998; Evensen, 2003),
based on the sequential Bayesian updating rule, can be used to obtain results
similar to those obtained by Monte-Carlo (MC) type inverse methods but with
reduced CPU time (see section 5.2.2), and it is also flexible to incorporate mul-
tiple sources of uncertainty. Hendricks Franssen and Kinzelbach (2009) carried
out a synthetic exercise and demonstrated that EnKF needs around a factor
of 80 less CPU time than the self-calibration method to attain similar results.
The EnKF can also handle data from on-line sensors that become available in
real-time and assimilate them into an on-line model. The traditional inverse
methods are not well suited to assimilate information that becomes available
in real-time. EnKF provides an ensemble of updated stochastic realizations
which can be used for uncertainty analysis.

The EnKF is increasingly applied, in atmospheric sciences, land-atmosphere
interaction, petroleum engineering and hydrogeology (e.g. Anderson, 2001; Re-
ichle et al., 2002; Wen and Chen, 2005; Chen and Zhang, 2006; Nowak, 2009;
Hendricks Franssen et al., 2011; Zhou et al., 2011b). In atmospheric sciences
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or land surface models in general only the model states are updated, whereas
in petroleum engineering and hydrogeology both system parameters and state
variables are commonly addressed (Naevdal et al., 2005).

The EnKF has been successfully applied to assimilate dynamic piezometric
head data to improve model predictions (e.g., Chen and Zhang, 2006; Hen-
dricks Franssen and Kinzelbach, 2008; Sun et al., 2009; Li et al., 2011c; Zhou
et al., 2011a). With regard to assimilating concentration data, Huang et al.
(2008) conducted a synthetic experiment and calibrated hydraulic conductivity
fields by assimilating piezometric head and concentration data. In their experi-
ment, flow was at steady-state. Liu et al. (2008) estimated multiple parameters
(i.e., hydraulic conductivity, dispersivities, mobile/immobile porosities) by as-
similating piezometric head and concentration data in the steady-state flow
model for the MADE site. It is worth to note that they used constant values as
the prior estimates for the mentioned parameters, and perturbed the parame-
ters, by assimilating observation data via EnKF, to yield heterogeneous fields.
Our aim is to quantify the uncertainty of parameters and states starting with
heterogeneous fields by conditioning on the direct measurements. Schoniger
et al. (2011) assimilated normal-score transformed concentration data to cali-
brate hydraulic conductivities. They concluded that the improvement by the
normal-score transformation (as compared with the classical EnKF, which uses
untransformed data) is limited because after univariate normal transformation
of the state variable, the concentration distribution is far from multi-Gaussian.

In comparison with the effort devoted to characterize the spatial variability
of hydraulic conductivity by conditioning state information, less attention has
been paid to identifying the spatial variability of porosity, probably due to its
relatively small spatial variability ranging from 0.1 to 0.55 in unconsolidated
granular aquifers (Freeze and Cherry, 1979). Additionally, various authors
(e.g., Hassan, 2001; Riva et al., 2008; Hu et al., 2009; Jiang et al., 2010) have
demonstrated (both in synthetic examples and real aquifers) the significance of
accounting for the heterogeneity of porosity on predictions of solute movement.

We will demonstrate the capability of the EnKF to jointly map the hy-
draulic conductivity and porosity fields by assimilating dynamic piezometric
head and multiple concentration data. Few studies have considered the con-
ditioning with help of both multiple concentration data and dynamic piezo-
metric head data to characterize unknown parameters. Also, to the best of
our knowledge, this is the first work proposing the joint estimation of spatially
distributed hydraulic conductivity and porosity fields in hydrogeology.

The remaining of this paper is organized as follows. We first summarize in
section 5.2 the mathematical framework of the EnKF and discuss the jointly
mapping of hydraulic conductivity and porosity by assimilating multiple con-
centration data. In section 5.3, a synthetic example is used to demonstrate



CHAPTER 5. JOINTLY MAPPING HYDRAULIC. .. 109

the effectiveness of the EnKF. The paper ends with summary and conclusions
in section 5.4.

5.2 Data Assimilation with the EnKF

First, the flow and transport equations (i.e, the transfer functions) will be
presented, and then the algorithm of EnKF is introduced with emphasis on
the assimilation of concentration data.

5.2.1 Flow and Transport Equations

The well known flow equation of an incompressible or slightly compressible
fluid in saturated porous media can be expressed by combining Darcy’s Law
and the continuity equation (Bear, 1972; Freeze and Cherry, 1979):

V-(KVh) = Sg? +W (5.1)
where K is the hydraulic conductivity [LT~!] (which, without loss of gen-
erality, will be considered as a scalar at the characterization scale), h is the
piezometric head [L ]; W represents sources or sinks [L3T1]; S is the specific
storage coefficient [L71]; t is the time [T]; V- = (8/0x + 0/dy + 0/0z) is
the divergence operator of a vector field, and V = (9/9x,0/0y, 0/0z)T is the
gradient operator of a scalar field.

Solute transport with linear equilibrium adsorption is governed by the
following differential equation (Bear, 1972; Freeze and Cherry, 1979):

qu% = V(4D - Vc) — Vqe (5.2)

where ¢ is solute concentration of solute in the water phase [M L~3]; ¢ is the
porosity [dimensionless]; D is the local hydrodynamic dispersion coefficient
tensor [L2T~!], with eigenvalues associated with principal axes parallel and
perpendicular to the direction of flow, defined as D; = ap|q| + Dy, D =
ar|q| + D, Drrr = ar|la| + Dy, (ar and ar are respectively the longitudinal
and transverse pore-scale dispersivity; D,, is the molecular diffusion coefficient
set to zero in this study, and q is the Darcy velocity given by q = —KVh
[LT~1]); R is retardation factor expressed by R = 1+ ppKq/é (pp is the bulk
density of soil; K, is the distribution coefficient).

5.2.2 Ensemble Kalman Filter

Extensive descriptions of EnKF and its algorithm can be found in Burgers
et al. (1998) and Evensen (2003). Here, we mainly focus on the use of EnKF
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with updating both parameters (i.e., hydraulic conductivity and porosity) and
states (i.e., piezometric head and concentration). It involves a forecast step
and an analysis step, after the generation of the initial ensemble of hydraulic
conductivity and porosity realizations.

e Step 1: Forecast model. The flow equation (5.1) or transport equation
(5.2) is solved, i.e.,
Yy = f(Xg-1, Yi-1), (5.3)

where Yy, is the state of the system (piezometric heads and/or concentra-
tion data) at time step tg, f represents the groundwater flow and trans-
port model (including boundary conditions, external stresses, and known
parameters), and X;_; denotes the model parameters (hydraulic conduc-
tivity and/or porosity) after the latests update at time ¢;_1. Specifically,
X and Y are expressed as:

Case A: X = [an ]T Y :[h]T, if only h data are available.

Case B: X = [an , ¢]T Y = [C]T, if only ¢ data are available.

Case C: X = [an, (j)]T Y = [h, C]T, if h and ¢ data are available.
(5.4)

e Step 2: Analysis step. Using the observed dynamic piezometric head
and concentration data, the model parameters are updated as follows:

1. Build the joint vector Wy, which includes the parameters (X) and
the forecasted state values (Y). This vector can be split into as
many members as there are realizations in the ensemble, with

X
v=| 3] 55
7]

being the j** ensemble member of the augmented state vector at
time tg.

As an example, if the number of discretization blocks in the domain
is N and we are in case C, i.e., updating both InK and ¢ using
both A and c¢ data, the dimension of vector W will be 4 x Nj.

2. The joint vector is updated, realization by realization, by assimi-
lating the observations (Y ¢%%):

b=l + G (Y + e - HE] ), (5.6)

where the superscripts a and f denote analysis and forecast, re-
spectively; € is a random observation error vector; H is a linear op-
erator that interpolates the forecasted heads to the measurement
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locations, and, in our case, is composed of 0's and 1’s since we
assume that measurements are taken at block centers. Therefore,
equation (5.6) can be expressed as:

=l +Gk<Y,‘gf’j+e—Y,§j), (5.7)
where the Kalman gain Gy, is given by:
T T -t
Gy = P{H" (HP[H" + Ry) . (5.8)
where Ry is the measurement error covariance matrix, and P£ con-

tains the covariances between the different components of the state
vector. P£ can be estimated from the ensemble of forecasted results

as:
T r_gl ro_g \"
Pl ~ B|(wf,-%,)(ef,-%l,) ] (5.9)
Fgt w5\
& <‘I’k7j - ‘I’k,j) (‘I’k,j - ‘I'k,j)
~ N ,
7=1

where N, is the number of realizations in the ensemble, and the
overbar denotes average over the ensemble.

In the implementation of the algorithm, it is not necessary to cal-
culate explicitly the full covariance matrix P£ (of dimensions (4 x
Ni) x (4 x N) for case C). The matrix H is very sparse, and,
consquently, the matrices P£HT and HP£HT can be computed
directly at a strongly reduced CPU cost.

e Step 3: Loop back. The updated states become the current states and
the forecast-analysis loop is started again.

When the number of observation locations used in the assimilation step is
not very large, the computational cost of calculating the covariances is limited.
The main cost is related with the forward simulations for each of the stochastic
realizations.

During the updating step, the forecasted state variables may have no phys-
ical meaning, e.g., negative concentrations. In our case, we remove negative
values resetting them to zero. We have checked that when this may happen at
locations far from the concentration plume and always with small values. This
approach follows the one by Gu and Oliver (2006), who had a similar problem
when dealing with water saturation in a reservoir characterization exercise.



112 CHAPTER 5. JOINTLY MAPPING HYDRAULIC. ..

Table 5.1: Parameters of the random functions for modeling the spatial dis-
tributions of InK and porosity

Mean Variance Variogram type A, [m] A, [m] rotation angle 8

InK -5 1 exponential 180 60 45°
10} 0.3 0.0036 exponential 240 60 45°

B denotes the rotation angle of one clockwise rotation of positive y axis.

The algorithm is implemented in the C software EnKF3D which is used
in conjunction with finite-difference program MODFLOW (Harbaugh et al.,
2000), to solve the confined transient flow equation (5.1), and the solute trans-
port code MT3DMS (Zheng et al., 1999). MT3DMS uses a third-order total-
variation-diminishing (TVD) solution scheme, to solve the transport equation
(5.2).

5.3 Synthetic Example

In this section, a synthetic example will be presented to demonstrate the ca-
pability of the EnKF to calibrate the hydraulic conductivities and porosities
by assimilating piezometric head and concentration data. The resulting en-
semble of realizations will be used also for uncertainty characterization; in a
real-world case study, uncertainty may stem both from the conceptual model
(e.g., the boundary conditions, aquifer geometry) and from the parameters.
Here, we only consider the uncertainty due to the heterogeneity of hydraulic
conductivity and porosity, no conceptual uncertainty is considered.

5.3.1 Experiment Setup
Reference Field

The reference conductivity and porosity fields are generated using the code
GCOSIM3D (Gémez-Herndndez and Journel, 1993) over a domain of 250 m
x 250 m x 1 m, which is discretized into grid cells of size 5 m by 5 m by
1 m (see Figure 5.1A and 5.1C). Here, we assume that the two variables are
independent of each other. The parameters of each random function are listed
in Table 5.1. From these reference realizations nine conductivity and nine
porosity data are sampled for conditioning purposes. The locations are shown
in Figure 5.1B and 5.1D.
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(B) InK Data to be Conditioned

5‘0 130 15‘0 260 250
(D) Porosity Data to be Conditioned

0.4
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T T T T
50 100 150 200 250

Figure 5.1: (A) Reference InK field, (B) Conditioning InK data, (C) Reference
porosity(¢) field, (D) Conditioning porosity(¢) data.
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Figure 5.2: Sketch of the flow and transport simulation with boundary con-
ditions and observation and prediction wells. Filled circles correspond to the
pressure head observation wells (#1-#9); Open circles denote the control wells
(#10-#11). Empty squares indicate the wells where concentration is sampled.

It is assumed that the sampled data have the same support as the grid
cell. If the data support would be much smaller than the grid cell size, the
additional problem of upscaling must be considered for generating the param-
eter realizations conditional to the direct measured data (e.g., Li et al., 2011a;
Zhou et al., 2010; Li et al., 2011b).

The aquifer is assumed to be confined with impermeable boundaries on
south and north, prescribed head values on the western boundary and constant
flow rate on the eastern boundary (see Figure 5.2). The prescribed head value
is 0 m along the western boundary. The total flow rate through the eastern
boundary is -25 m?/d, distributed uniformly along the boundary. The initial
head value is 0 m over the entire domain. The total simulation time is 500
days, and this period is discretized into 100 time steps following a geometric
sequence of ration 1.05. Specific storage is assumed constant with a value of
0.003 m~!. The simulated dynamic piezometric heads at the observation wells
#1 to #9 in Figure 5.2 are sampled and will be used as assimilating data. The
simulated heads at the wells #10 and #11 will be used as validation data.
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The boundary conditions for the transport model are no-mass flux bound-
aries on the western, northern, and southern borders of the model. The eastern
border is a specified advective mass flux boundary, acting as a line of sinks
taking mass out of the aquifer (see Figure 5.2).

The code MODFLOW (Harbaugh et al., 2000) is used to solve the transient
groundwater flow equation for the reference field and the pore velocities across
the grid cell interfaces are calculated using the porosities in Figure 5.1C. This
velocity field is used as input for solving the solute transport problem with
help of the MT3DMS code (Zheng et al., 1999). We only consider advection
and dispersion as transport mechanisms with oy = 1.0 m and ar = 0.1 m.
Conservative solute is uniformly placed over a line transverse to the ground-
water flow at time t = 0 (see Figure 5.2). The source concentration is 900
ppm. To avoid the boundary effect as described by Naff et al. (1998), the
contaminant source is separated 20 m from the western boundary and 50 m
from the northern and southern boundaries. The plume snapshots at 300,
400 and 500 days will be used here to compare the EnKF solutions with the
reference plume maps (see Figures 5.3A, 5.3C and 5.3E). The concentration is
measured at 63 wells, uniformly distributed over the domain (see Figure 5.2).
These measured multiple concentration data (see Figures 5.3B, 5.3D, 5.3F)
will serve as assimilating data.

Scenario Studies

Six simulation scenarios are considered for which different types of measure-
ment data are assimilated (see Table 5.2). Scenario 1 (S1) is an uncondi-
tional case. In Scenario 2 (S2) geostatistical simulation (Gémez-Hernédndez
and Journel, 1993) is used in order to condition on the nine measured hy-
draulic conductivities and the nine porosities shown in Figures 5.1B and 5.1D,
repsectively. For S1 and S2, 500 realizations of hydraulic conductivity and
porosity are generated using the same random functions as for the reference
fields. Flow and transport are calculated for each of the 500 InK-¢ realization
couples, without conditioning to head or concentration data.

For scenario 3 (S3) dynamic piezometric head data are used to update the
geostatistical realizations conditioned on hydraulic conductivity and porosity
data of scenario S2. Piezometric head data from wells #1 to #9 are sequen-
tially assimilated for the first 60 time steps (approximately 67.7 days).

In scenarios 4, 5 and 6 (S4, S5, S6) concentration data are assimilated by
EnKF, in addition to hydraulic conductivity data and piezometric head data.
S4 uses concentration data at 400 days, S5 uses concentration data at 300 and
400 days, and S6 uses concentration data at 300, 400 and 500 days.

The piezometric head and concentration data are sampled from the refer-
ence simulations without error. However, during the assimilation process it



116 CHAPTER 5. JOINTLY MAPPING HYDRAULIC. ..

25S)B) Concentration Data (t=300) to be Conditioned

(A) Reference concentration field (t=300)

250
2.0
200._] e o o ® e e o o o
e o o o o o o e o 15
150. ] e o o o o s e o o
= e o o o e e e o o 10
£ 1.0
2 ]
100.] s o o o o o e o o
e o o o o e e e 05
50._] s o o o o o e o o
0.0
o] T T T T
0 East 250 0. 50. 100. 150. 200. 250.
gD) Concentration data (t=400) to be Conditioned
(C) Reference concentration field (t=400) 25
250] E
15
e o o o o o e o o
e o e o o o o o o
10 150.] . . ° ° ° . . . . 0
<= o o o o o o e o o
S ]
100.] e o e o o s e o o
05 05
e o o © o o e e »
50._] e o o o o o o e o
0.0
o T T T T
"o East 250 0. 50. 100. 150. 200. 250.
EF) Concentration Data (t=500) to be Conditioned
(E) Reference concentration field (t=500) 250.
0| g
15
s o o o o o e o o
e o o o o o e o o
10 150._] e e o o o ® e e o 0
e o o o o o e e o
100.] e o o © o o e e o
05 0.5
e o o o o o e o o
50._] e o o o o o o e o
0.0
0.] T T T T T T T T T T T
0. 50. 100. 150. 200. 250.

Figure 5.3: Reference concentration fields at time 300(A), 400(C) and 500(E)
days. Conditioning concentration data at time 300 (B), 400 (D), and 500 (F)
days.
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Table 5.2: Definition of scenarios based on the different sets of conditioning
data.

Scenario S1 S2 S3 S4 S5 S6
Hydraulic conductivities (K) No Yes Yes Yes Yes Yes
Porosity (¢) No Yes Yes Yes Yes Yes

Dynamic piezometric heads (h) No No Yes Yes Yes Yes
Concentrations (¢ = 300 day) No No No Yes Yes Yes
Concentrations (¢t = 400 day) No No No No Yes Yes
Concentrations (t = 500 day) No No No No No Yes

is considered that the data might contain measurement errors and therefore
a diagonal error covariance matrix was used, with all non-zero terms equal
to 0.0025 m? for head data and 0.0025 ppm? for concentration data. We
note, in practice, the errors for the heads and concentration data would be
not the same, and the observation errors would change with the time. From
an operational point of view, it is straightforward to integrate them into the
assimilation procedure.

5.3.2 Assessment Measures

The results for the six scenarios will be analyzed with the help of two metrics:

1. The average absolute bias (AAB) is a measure of accuracy and defined
as follows:

1 Nb 1 Na
AAB(X) = N, > A > X — Xyl (5.10)
i=1" %r=1

where X is, either the logconductivity InK, porosity ¢, hydraulic head h
or concentration ¢, at location 7, X; , represents its value for realization
7, Xyef,i is the reference value at location 7, IV, is number of nodes, and
N is the number of realizations in the ensemble (500, in this case).

2. The ensemble spread (AESP) represents the estimated uncertainty and
defined as follows:

1 N, 1/2
AESP(X) = (N Zai) : (5.11)
b =

where Ug(, is the ensemble variance at location 7.
1

The smaller the values for AAB and AESP, the better the prediction of
variable X.
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5.3.3 Data Assimilation Results
Hydraulic Conductivities and Porosities

Figures 5.4 and 5.5 show the ensemble mean and variance of the 500 log-
conductivity realizations for all six scenarios. Figures 5.6 and 5.7 show the
ensemble mean and variance of the 500 porosity realizations and scenarios.
The ensemble mean is used to check whether the main patterns of variabil-
ity of the parameter are captured. In contrast to the individual realization
showing distinctive patterns of high and low values, the ensemble means are
smoothed representations of the spatial variability of the parameters. The en-
semble variance illustrates how conditioning reduces the differences between
the realizations.

In scenario 1, with no conditional data, the ensemble mean and variance of
InK and ¢ are very close to the prior mean and variance. In scenario 2, using
9 conditioning hydraulic conductivities and porosities, the overall spatial pat-
terns are captured, resulting in typical kriging maps. The ensemble variance
maps show the typical bull-eye look of kriging maps, with zero variance at
the sample locations and increasing variance away from them. The dynamic
piezometric head data included in S3 help to capture better the main patterns
of hydraulic conductivity with a further reduction of the variance. S4, S5 and
S6 also include concentration data for conditioning. The ensemble mean maps
better delineate the main patterns of variability, and at the same time, unlike
previous scenarios with strongly smoothed representations of InK, also show
some degree of the small-scale variability. The characterization of the main
patterns of InK improves quite remarkable with the conditioning of concen-
tration data. For the scenario that uses the largest amount of conditioning
data (S6), the patterns in the left upper corner of the area are identified very
well, whereas this is not the case if only hydraulic conductivity, porosity and
piezometric heads are used for conditioning. The role of concentration data
on the characterization of porosity is also observable. The main patterns of
porosity are clearer than without conditioning, and closer to the reference dis-
tribution. As expected, the ensemble variance, both for InK and ¢, reduces
further in S6 as compared with the other scenarios.

From a more quantitative point of view, the calculated two metrics (see
Table 5.3) lead to similar conclusions. When the measured hydraulic con-
ductivity, porosity, piezometric head and multiple concentration data are all
used for conditioning (S6), the average absolute bias and the ensemble spread
have the smallest values. More precisely, when conditioning to InK, the
AAB(In K) decreases 14% (S2 vs. S1), if we further condition to piezometric
head, AAB(In K) further decreases a 10% (S3 vs. S2), and there is an ad-
ditional reduction of a 7% when conditioning to concentrations (S6 vs. S3).
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Figure 5.4: Ensemble average logconductivity fields for the different scenarios.
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Figure 5.5: Ensemble logconductivity variance fields for the different scenarios
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Figure 5.6: Ensemble average porosity fields for the different scenarios.
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Figure 5.7: Ensemble porosity variance fields for the different scenarios.
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Table 5.3: Bias and spread of InK and porosity for the different scenarios.

Scenario S1 S2 S3 S4 S5 S6

AAB(InK) 1.112 0.949 0.852 0.816 0.796 0.790
AESP(InK) 1.001 0.874 0.728 0.680 0.650 0.624
AAB(¢) 0.072 0.059 - 0.057 0.056 0.055
AESP(¢) 0.060 0.051 - 0.049 0.047 0.046

Likewise AESP(In K) goes down 12% from S1 to S2, an additional 16% from
S2 to S3 and 14% more from S3 to S6. Similar results can be observed when
analyzing the evolution of AAB(¢) and AESP(¢). The AAB(¢) shows an
18% reduction as a consequence of conditioning to measured ¢ (S2 vs. S1),
and 7% additional reduction related with conditioning to concentration data
(S6 vs. S2) and AESP(¢) shows a 15% reduction as a consequence of condi-
tioning to measured ¢ (S2 vs. S1), and 9% additional reduction related with
conditioning to concentration data (S6 vs. S2).

From the results, we can conclude that: (1) The direct measured hard data
play the most important role to reduce the absolute bias of parameters; (2)
The indirect measured head and concentration data reduce both the absolute
bias and ensemble spread; (3) The best characterization of the aquifer in terms
of InK and ¢ is achieved by combining all the data.

Piezometric Heads Reproduction

Figure 5.8 shows the piezometric head evolution at well #2 and #10 for sce-
narios S1, S2, S3 and S6. Recall that the piezometric head data continuously
collected from well #1 to #9 are used for conditioning, while wells #10 and
#11 are for validation. Figure 5.8 shows that for S1 uncertainty is largest
and that the uncertainty is reduced for increasing amounts of conditioning
data. For S2 the uncertainty is still considerable, but if piezometric head data
are used for conditioning (S3) the conditional well #2 has a good head re-
production and the control well #10, also shows a large reduction of spread.
The measured head data play a critical role to reduce the uncertainty of pre-
dicted heads. The concentration data do not result in a further improvement
of the characterization of hydraulic head since the dynamic heads are already
reproduced very well in S3.

Table 5.4 shows the metrics regarding the piezometric head characteriza-
tion at time ¢ = 67.7 days (i.e., the 60th time step). The introduction of
measured hydraulic conductivities attains around 27% reductions both for the
AAB(h) and AESP(h). An additional 66% reduction of AAB(h) and 73% re-
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Figure 5.8: Piezometric head time series for the reference field (black) and sim-
ulated ones (gray lines) for the S1,52,S3 and S6 scenarios at the conditioning
well W2 (left column) and verification well W10 (right column).
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Table 5.4: Bias and spread of predicted piezometric heads at time ¢t = 67.7
days for the different scenarios.

Scenario S1 S2 S3 S4 S5 S6
AAB(hi—67.7) 0.690 0.503 0.169 0.170 0.179 0.179
AESP(hi=¢77) 0.901 0.649 0.175 0.172 0.169 0.162

duction of AESP(h) is achieved by conditioning to head data. The reductions
of AAB(h) and AESP(h) almost can be ignored when concentration data are
used for conditioning in S4, S5 and S6.

The main conclusions are: (1) of all the data, the measured piezometric
head data are most informative for improving head predictions and reducing
the prediction uncertainty; (2) the impact of concentration data for charac-
terizing piezometric head is very small.

Concentrations Reproduction

Figure 5.9 to 5.12 show the ensemble mean and variance of 500 concentration
realizations at time 300 and 500 days resulting from the transport simulation
for all the six scenarios.

These ensemble mean maps of concentration for scenario 1 show that even
though each realization will have a non-Gaussian plume similar to those in the
reference, the random location of high and low concentrations makes that the
ensemble mean maps of plume show a Gaussian shape. Introducing the hy-
draulic conductivity data (S2) rectifies the plume but still does not reproduce
the reference. The ensemble mean of the plume is further rectified when the
conductivity, porosity and head data are jointly used for conditioning (S3).
The reproduction of piezometric heads is very good in S3, but the limited
improvement of the plume characterization indicates the importance of fur-
ther conditioning on concentration data. The results for scenarios S4 and
S6 show that conditioning remarkably improves the characterization of the
plume. Conditioning to concentration data at ¢ = 300 days (S4) also improves
strongly the prediction for 500 days (although the concentration data sampled
at t = 500 days are not used for conditioning in scenario S4). For scenarios S5
and S6 the additional concentration data from ¢t = 400 and 500 days improve
further the characterization of the plume so that they are very close to the
reference plumes.

The ensemble variance maps of the concentration fields show that the
ensemble variance decreases away from the barycenter of the plume and is
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Figure 5.9: Ensemble average concentration fields at ¢ = 300 day for the
different scenarios.
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Figure 5.10: Ensemble variance of concentration fields at ¢ = 300 day for the
different scenarios.
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Figure 5.11: Ensemble average concentration fields at ¢ = 500 day for the
different scenarios.
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Figure 5.12: Ensemble variance of concentration fields at ¢ = 500 day for the

different scenarios.
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Table 5.5: Bias and spread of predicted concentrations at time ¢t = 300, ¢t =
400, t = 500 days for the different scenarios.

Scenario S1 S2 S3 S4 S5 S6

AAB(ct=300) 0.493 0.402 0.384 0.318 0.252 0.225
AESP(ci=300) 0.781 0.703 0.652 0.496 0.400 0.337
AAB(ci=400) 0.506 0.422 0.403 0.331 0.249 0.209
AESP(ci=400) 0.710 0.662 0.613 0.470 0.371 0.300
AAB(ci=500) 0.452 0.393 0.374 0.303 0.226 0.176
AESP(ci=500) 0.634 0.624 0.577 0.457 0.358 0.274

close to zero outside of the plume. The ensemble variance of concentration
decreases continuously if more data are used for conditioning.

Table 5.5 shows the AAB and AES P values for the concentrations at three
times. Conditioning to hydraulic conductivity and porosity data (S2) results
in an average AAB reduction of 15% (compared with S1) and AESP reduces
around 5%. Additional conditioning to piezometric head data (S3), results
on average in an additional 5% reduction of AAB and an AESP reduction
of around 7%. Further conditioning to concentration data (S4, S5 and S6),
yields prominent reduction of AAB and AESP (on average 19% and 20%,
respectively).

We can see from the results: (1) concentration data is the type of data
to most reduce the absolute bias and uncertainty of predicted concentration;
(2) the direct measured data and indirect head data also have an important
impact on the predicted concentrations; (3) when all the data are considered,
the concentration fields are best characterized.

5.3.4 Reactive Transport Prediction Analysis

In this subsection, a reactive transport prediction experiment is conducted
with modified flow boundary conditions using the conductivity and porosity
obtained in the data assimilation exercise to further demonstrate the robust-
ness of EnKF.

The flow and transport configurations are the same as before but the flow is
at steady-state. The eastern constant flow rate boundary condition is replaced
with the constant head boundary condition (h = —15 m) and the solute mass
is subject to sorption. Besides advection and dispersion also sorption accord-
ing to a reversible linear equilibrium isotherm is considered with p, = 1.81
g/cm? and Ky = 0.52 cm®/g ( similar to the values reported in the Borden
aquifer (Mackay et al., 1986; Burr et al., 1994)). The reactive tracer is also
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Reference concentration field (t=500)

Figure 5.13: The reference concentration field at ¢ = 500 days for the reactive
transport prediction experiment.

released near the western boundary (see Figure 5.2) with the same total initial
concentration. The plume snapshot at time ¢ = 500 days (see Figure 5.13) is
used to evaluate the worth of the different data.

MODFLOW and MT3DMS are employed to solve the flow equation (5.1)
and reactive transport equation (5.2), respectively.

Figure 5.14 shows the ensemble mean and variance of predicted concen-
tration fields at ¢ = 500 days for the fields estimated from the scenarios S2,
S3 and S6. It clearly shows that the predicted plume is close to the reference
when multiple types of information are used for conditioning. Besides, the
ensemble variance is the smallest for S6.

5.4 Conclusion

We have presented and demonstrated the Ensemble Kalman Filter, a data
assimilation algorithm, to jointly estimate hydraulic conductivity and porosity
by assimilating dynamic piezometric head and multiple concentration data in
a hydrogeological stochastic model. Some of the attractive features of EnKF
are the capability of assimilating data in real-time, CPU efficiency, ease of
implementation without need of an adjoint model and the flexibility with
regard to accounting for multiple sources of uncertainty jointly.

We have used a synthetic example (1) to demonstrate the potential EnKF
has to condition in a CPU efficient way to concentration data and (2) to ana-
lyze the worth of data for the characterization of aquifer parameters and states
(with a special focus on solute concentrations). We have found that the head
data have a distinctive impact to reduce the uncertainty of predicted piezo-
metric head, but only a limited influence for improving the characterization
of concentration distributions. Additional conditioning to multiple concentra-
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Figure 5.14: Ensemble mean and variance of concentration fields at ¢ = 500
day for the S2,S3 and S6.
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tion data was shown to improve strongly the predicted solute plume and also
the characterization of hydraulic conductivity and porosity.



134 CHAPTER 5. JOINTLY MAPPING HYDRAULIC. ..




Bibliography

Alcolea, A., Carrera, J., Medina, A., 2006. Pilot points method incorporating
prior information for solving the groundwater flow inverse problem. Ad-
vances in Water Resources 29 (11), 1678-1689.

Anderson, J., 2001. An ensemble adjustment Kalman filter for data assimila-
tion. Monthly weather review 129, 2884-2903.

Barnhart, K., Urteaga, 1., Han, Q., Jayasumana, A., Illangasekare, T., 2010.
On Integrating Groundwater Transport Models with Wireless Sensor Net-
works. Ground Water 48 (5), 771-780.

Bear, J., 1972. Dynamics of fluids in porous media. American Elsevier Pub.
Co., New York.

Burgers, G., van Leeuwen, P., Evensen, G., 1998. Analysis scheme in the
ensemble Kalman filter. Monthly Weather Review 126, 1719-1724.

Burr, D., Sudicky, E., Naff, R., 1994. Nonreactive and reactive solute trans-
port in three-dimensional heterogeneous porous media: Mean displacement,
plume spreading, and uncertainty. Water Resources Research 30 (3), 791—
815.

Capilla, J., Llopis-Albert, C., 2009. Gradual conditioning of non-Gaussian
transmissivity fields to flow and mass transport data: 1. Theory. Journal of
Hydrology 371 (1-4), 66-74.

Capilla, J. E., Rodrigo, J., Gémez-Hernandez, J. J., 1999. Simulation of non-
gaussian transmissivity fields honoring piezometric data and integrating soft
and secondary information. Math. Geology 31 (7), 907-927.

Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., Slooten, L., 2005. Inverse
problem in hydrogeology. Hydrogeology Journal 13 (1), 206-222.

Carrera, J., Neuman, S., 1986. Estimation of aquifer parameters under tran-
sient and steady state conditions: 1. Maximum likelihood method incorpo-
rating prior information. Water Resources Research 22 (2), 199-210.

135



136 BIBLIOGRAPHY

Chen, Y., Zhang, D., 2006. Data assimilation for transient flow in geologic
formations via ensemble Kalman filter. Advances in Water Resources 29 (8),
1107-1122.

Doherty, J., 2004. PEST model-independent parameter estimation, user man-
ual. Watermark Numerical Computing, Brisbane, Australia, 3349.

Evensen, G., 2003. The ensemble Kalman filter: Theoretical formulation and
practical implementation. Ocean dynamics 53 (4), 343-367.

Freeze, R. A., Cherry, J. A., 1979. Groundwater. Prentice-Hall.

Fu, J., Gémez-Hernandez, J., 2009. Uncertainty assessment and data worth
in groundwater flow and mass transport modeling using a blocking Markov
chain Monte Carlo method. Journal of Hydrology 364 (3-4), 328-341.

Goémez-Hernandez, J. J., Journel, A. G., 1993. Joint sequential simulation of
multi-Gaussian fields. Geostatistics Troia 92 (1), 85-94.

Goémez-Hernandez, J. J., Sahuquillo, A., Capilla, J. E., 1997. Stochastic simu-
lation of transmissivity fields conditional to both transmissivity and piezo-
metric data, 1, Theory. Journal of Hydrology 203 (1-4), 162-174.

Goémez-Herndndez, J. J., Srivastava, R. M., 1990. ISIM3D: an ANSI-C three
dimensional multiple indicator conditional simulation program. Computers
& Geosciences 16 (4), 395-440.

Gu, Y., Oliver, D., 2006. The ensemble Kalman filter for continuous updating
of reservoir simulation models. Journal of Energy Resources Technology 128,
79.

Harbaugh, A. W., Banta, E. R., Hill, M. C., McDonald, M. G., 2000.
MODFLOW-2000, the U.S. Geological Survey modular ground-water
model. U.S. Geological Survey, Branch of Information Services, Reston, VA,
Denver, CO.

Hassan, A., 2001. Water flow and solute mass flux in heterogeneous porous
formations with spatially random porosity. Journal of Hydrology 242 (1-2),
1-25.

Hendricks Franssen, H., Alcolea, A., Riva, M., Bakr, M., van der Wiel, N.,
Stauffer, F., Guadagnini, A., 2009. A comparison of seven methods for the
inverse modelling of groundwater flow. application to the characterisation
of well catchments. Advances in Water Resources 32 (6), 851-872.



BIBLIOGRAPHY 137

Hendricks Franssen, H., Gomez-Hernandez, J., Capilla, J., Sahuquillo, A.,
1999. Joint simulation of transmissivity and storativity fields conditional
to steady-state and transient hydraulic head data. Advances in Water Re-
sources 23 (1), 1-13.

Hendricks Franssen, H., Goémez-Hernandez, J., Sahuquillo, A., 2003. Coupled
inverse modelling of groundwater flow and mass transport and the worth of
concentration data. Journal of Hydrology 281 (4), 281-295.

Hendricks Franssen, H., H. P. Kaiser, U. Kuhlmann, G. B. F. S. R. M., Kinzel-
bach, W., 2011. Operational real-time modeling with EnKF of variably sat-
urated subsurface flow including stream-aquifer interaction and parameter
updating. Water Resources Research, in press,doi:10.1029/2010WR009480.

Hendricks Franssen, H., Kinzelbach, W., 2008. Real-time groundwater flow
modeling with the Ensemble Kalman Filter: Joint estimation of states and

parameters and the filter inbreeding problem. Water Resources Research
44 (9), W09408.

Hendricks Franssen, H., Kinzelbach, W., 2009. Ensemble Kalman filtering ver-
sus sequential self-calibration for inverse modelling of dynamic groundwater
flow systems. Journal of Hydrology 365 (3-4), 261-274.

Hu, B., Meerschaert, M., Barrash, W., Hyndman, D., He, C., Li, X., Guo, L.,
2009. Examining the influence of heterogeneous porosity fields on conserva-
tive solute transport. Journal of contaminant hydrology 108 (3-4), 77-88.

Hu, L. Y., 2000. Gradual deformation and iterative calibration of gaussian-
related stochastic models. Math. Geology 32 (1), 87-108.

Huang, C., Hu, B. X., Li, X., Ye, M., 2008. Using data assimilation method
to calibrate a heterogeneous conductivity field and improve solute transport
prediction with an unknown contamination source. Stochastic Environmen-
tal Research and Risk Assessment 23 (8), 1155-1167.

Huang, H., Hu, B., Wen, X., Shirley, C., 2004. Stochastic inverse mapping of
hydraulic conductivity and sorption partitioning coefficient fields condition-
ing on nonreactive and reactive tracer test data. Water Resources Research
40 (1), W01506.

Jiang, X., Wan, L., Cardenas, M., Ge, S., Wang, X., 2010. Simultaneous
rejuvenation and aging of groundwater in basins due to depth-decaying
hydraulic conductivity and porosity. Geophysical Research Letters 37 (5),
L05403.



138 BIBLIOGRAPHY

Journel, A., 1974. Geostatistics for conditional simulation of ore bodies. Eco-
nomic Geology 69 (5), 673.

Kitanidis, P., 1995. Quasi-linear geostatistical theory for inversing. Water Re-
sources Research 31 (10), 2411-2419.

LaVenue, A. M., Ramarao, B. S., de Marsily, G., Marietta, M. G., 1995. Pilot
point methodology for automated calibration of an ensemble of conditionally

simulated transmissivity fields, 2, Application. Water Resour. Res. 31 (3),
495-516.

Li, L., Zhou, H., Gémez-Herndndez, J. J., 2011a. A comparative study of
three-dimensional hydrualic conductivity upscaling at the macrodispersion

experiment (MADE) site, on columbus air force base in mississippi (USA).
Journal of Hydrology, doi:10.1016/j.jhydrol.2011.05.001.

Li, L., Zhou, H., Gémez-Hernandez, J. J., 2011b. Transport upscaling using
multi-rate mass transfer in three-dimensional highly heterogeneous porous
media. Advances in Water Resources 34 (4), 478-489.

Li, L., Zhou, H., Hendricks Franssen, H., Gémez-Hernandez, J. J., 2011c.
Modeling transient flow by coupling ensemble kalman filtering and upscal-
ing. Water Resources Research, submitted.

Liu, G., Chen, Y., Zhang, D., 2008. Investigation of flow and transport pro-
cesses at the MADE site using ensemble kalman filter. Advances in Water
Resources 31 (7), 975-986.

Llopis-Albert, C., Capilla, J., 2009. Gradual conditioning of non-Gaussian
transmissivity fields to flow and mass transport data: 2. Demonstration on
a synthetic aquifer. Journal of Hydrology 371 (1-4), 53—65.

Mackay, D., Freyberg, D., Roberts, P., Cherry, J., 1986. A natural gradient
experiment on solute transport in a sand aquifer: 1. Approach and overview
of plume movement. Water Resources Research 22 (13), 2017-2029.

McLaughlin, D., Townley, L., 1996. A reassessment of the groundwater inverse
problem. Water Resources Research 32 (5), 1131-1161.

Medina, A., Carrera, J., 1996. Coupled estimation of flow and solute transport
parameters. Water Resources Research 32 (10), 3063-3076.

Naevdal, G., Johnsen, L., Aanonsen, S., Vefring, E., 2005. Reservoir moni-
toring and continuous model updating using ensemble kalman filter. SPE
Journal 10 (1).



BIBLIOGRAPHY 139

Naff, R., Haley, D., Sudicky, E., 1998. High-resolution Monte Carlo simula-
tion of flow and conservative transport in heterogeneous porous media 1.
Methodology and flow results. Water Resources Research 34 (4), 663-677.

Nowak, W., 2009. Best unbiased ensemble linearization and the quasi-linear
kalman ensemble generator. Water Resources Research 45 (4), W04431.

Oliver, D., Cunha, L., Reynolds, A., 1997. Markov chain Monte Carlo methods
for conditioning a permeability field to pressure data. Mathematical Geology
29 (1), 61-91.

Ramarao, B. S., LaVenue, A. M., de Marsily, G., Marietta, M. G., 1995. Pilot
point methodology for automated calibration of an ensemble of conditionally
simulated transmissivity fields, 1, Theory and computational experiments.
Water Resour. Res. 31 (3), 475-493.

Reichle, R., Walker, J., Koster, R., Houser, P., 2002. Extended versus ensemble
Kalman filtering for land data assimilation. Journal of hydrometeorology 3,
728-740.

Riva, M., Guadagnini, A., Fernandez-Garcia, D., Sanchez-Vila, X., Ptak, T.,
2008. Relative importance of geostatistical and transport models in describ-
ing heavily tailed breakthrough curves at the lauswiesen site. Journal of
Contaminant Hydrology 101 (1-4), 1-13.

Sahuquillo, A., Capilla, J. E., Gémez-Herndndez, J. J., Andreu, J., 1992.
Conditional simulation of transmissivity fields honouring piezometric head
data. In: Blair, W. R., Cabrera, E. (Eds.), Hydraulic Engineering Software
IV, Fluid Flow Modeling. Vol. II. Elsevier Applied Science, London, UK,
pp- 201-214.

Schoniger, A., Nowak, W., Hendricks Franssen, H. J., 2011. Parameter esti-
mation by ensemble Kalman filters with transformed data: approach and
application to hydraulic tomography, in preparation for Water Resources
Research.

Schwede, R., Cirpka, O., 2009. Use of steady-state concentration measure-
ments in geostatistical inversion. Advances in Water Resources 32 (4), 607
619.

Strebelle, S., 2002. Conditional simulation of complex geological structures
using multiple-point statistics. Mathematical Geology 34 (1), 1-21.

Sun, A. Y., Morris, A. P., Mohanty, S., Jul. 2009. Sequential updating of
multimodal hydrogeologic parameter fields using localization and clustering
techniques. Water Resources Research 45, 15 PP.



140 BIBLIOGRAPHY

Wen, X., Deutsch, C., Cullick, A., 2002. Construction of geostatistical aquifer
models integrating dynamic flow and tracer data using inverse technique.
Journal of Hydrology 255 (1-4), 151-168.

Wen, X. H., Chen, W., 2005. Real-time reservoir model updating using en-
semble Kalman filter. In: SPE reservoir simulation symposium.

Yeh, W., 1986. Review of parameter identification procedures in groundwater
hydrology: The inverse problem. Water Resources Research 22 (2), 95-108.

Zheng, C., Wang, P., TUSCALOOSA., A. U., 1999. MT3DMS: A modular
three-dimensional multispecies transport model for simulation of advection,
dispersion, and chemical reactions of contaminants in groundwater systems;
Documentation and user’s guide.

Zhou, H., Gémez-Hernandez, J. J., Hendricks Franssen, H., Li, L., 2011a. Han-
dling non-gaussian distributions with Ensemble Kalman Filter. Advances in
Water Resources, in press, doi:10.1016/j.advwatres.2011.04.014.

Zhou, H., Li, L., Gémez-Hernandez, J. J., 2010. Three-dimensional hydraulic
conductivity upscaling in groundwater modelling. Computers & Geosciences
36 (10), 1224-1235.

Zhou, H., Li, L., Hendricks Franssen, H., Gémez-Herndndez, J. J., 2011b. Pat-
tern recongition in a bimodal aquifer with normal-score Ensemble Kalman
Filter. Mathematical Geosciences, under review.

Zimmerman, D.; De Marsily, G., Gotway, C., Marietta, M., Axness, C.,
Beauheim, R., Bras, R., Carrera, J., Dagan, G., Davies, P., et al., 1998.
A comparison of seven geostatistically based inverse approaches to estimate
transmissivities for modeling advective transport by groundwater flow. Wa-
ter Resources Research 34 (6), 1373-1413.



Submitted to Hydrol. Earth Syst. Sci..

Groundwater Flow Inverse
Modeling in
non-multiGGaussian Media:
Performance Assessment of
the Normal-Score Ensemble
Kalman Filter

Abstract

The normal-score ensemble Kalman filter (NS-EnKF) is tested on a synthetic
aquifer characterized by the presence of channels with a bimodal distribution
of its hydraulic conductivities. Fourteen scenarios are analyzed which differ
among them in one or various of the following aspects: the prior random
function model, the boundary conditions of the flow problem, the number of
piezometers used in the assimilation process, or the use of covariance local-
ization in the implementation of the Kalman filter. The performance of the
NS-EnKF is evaluated through the ensemble mean and variance maps, the
connectivity patterns of the individual conductivity realizations and the de-
gree of reproduction of the piezometric heads. The results show that (i) the
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localized NS-EnKF can identify correctly the channels when a large number
of conditioning piezometers are used even when an erroneous prior random
function model is used, (ii) localization plays an important role to prevent
filter inbreeding and results in a better logconductivity characterization, and
(iii) the NS-EnKF works equally well under very different flow configurations.

6.1 Introduction

Accurate characterization of the spatial variability of hydrogeologic proper-
ties and its corresponding uncertainty is a key issue for environmental risk
assessment, site remediation and restoration engineering, and the design of
underground repositories for radioactive material.

In a Monte Carlo framework, heterogeneity of hydrogeologic properties is
commonly characterized by the following two steps: (i) on the basis of a limited
amount of direct measurements (i.e., hard data), multiple representations of
aquifer properties are generated by means of the geostatistical techniques such
as sequential Gaussian simulation (Deutsch and Journel, 1998), sequential in-
dicator simulation (Gémez-Herndndez and Srivastava, 1990), multiple-point
geostatistical approach (Strebelle, 2002; Mariethoz et al., 2010b) or other re-
lated methods; and then (ii) on the basis of indirect measurements such as
piezometric head and concentration data, inverse modeling is utilized to re-
duce the uncertainty by integrating these data to better characterize the spa-
tial variability of hydrogeologic properties (e.g., for an overview see Yeh, 1986;
McLaughlin and Townley, 1996; Zimmerman et al., 1998; Carrera et al., 2005;
Hendricks Franssen et al., 2009).

Commonly used Monte Carlo type inverse algorithms (i.e., which gener-
ate many equally likely solutions to the inverse problems) include the self-
calibration method (Sahuquillo et al., 1992; Gémez-Hernandez et al., 1997;
Capilla et al., 1999; Wen et al., 2002; Hendricks Franssen et al., 2003), the
pilot point method (Ramarao et al., 1995; LaVenue et al., 1995; Alcolea et al.,
2006), the Markov chain Monte Carlo method (Oliver et al., 1997; Fu and
Goémez-Hernéndez, 2009; Alcolea and Renard, 2010), and the gradual defor-
mation method (Hu, 2000; Capilla and Llopis-Albert, 2009), among others.
These methods have in common that a multi-part objective function is min-
imized. The objective function is generally composed of the sum of squared
differences (SSD) between simulated and observed state values plus the SSD
of prior and calibrated parameters values. In order to minimize this objec-
tive function the hydrogeologic parameters are modified using derivative-based
methods or by sampling the posterior distribution. The main difference be-
tween the various methods is how to solve the optimization problem.
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The Ensemble Kalman Filter (EnKF) (Burgers et al., 1998; Anderson,
2001; Reichle et al., 2002; Evensen, 2003), a continuous implementation of
the Bayesian update rule, is a further alternative to generate multiple equally
likely solutions to the inverse problem. The EnKF is increasingly studied
in hydrogeology as well as in petroleum engineering (e.g. Wen and Chen,
2005; Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008; Sun
et al., 2009; Nowak, 2009; Nan and Wu, 2010; Li et al., 2010b). The attrac-
tive characteristics of the EnKF are: (i) the efficiency in computation (e.g.,
Hendricks Franssen and Kinzelbach (2009) conducted a synthetic example to
demonstrate that the needed CPU-time was reduced by a factor of 80 com-
pared with the self-calibration method, to achieve comparable results); (ii)
the flexibility of handling multiple sources of uncertainty, for instance, Hen-
dricks Franssen and Kinzelbach (2008) successfully used EnKF to account
for the uncertainty of both recharge and hydraulic conductivity together; Li
et al. (2011c) used the EnKF to jointly calibrate porosity and hydraulic con-
ductivity by assimilating dynamic head and multiple concentration data; (iii)
real-time data assimilation without the need to store all previous states, for in-
stance, Hendricks Franssen et al. (2011) operationally implemented the EnKF
to calibrate the conductivity and leakage coefficient together in real-time in
a real-world case study. On the contrary, the traditional inverse approaches
mentioned above (self-calibration, pilot point, etc) are CPU-intensive, need
recalibration when new data are available and handling multiple sources of
uncertainty is less straightforward with these methods.

The EnKF provides an optimal solution when the state vector follows
a multiGaussian distribution and the state function is linear (Arulampalam
et al., 2002). In the literature of hydrogeology, most of studies applying
the EnKF technique assume that the hydraulic conductivities follow a multi-
Gaussian distribution (e.g., Chen and Zhang, 2006; Hendricks Franssen and
Kinzelbach, 2008; Huang et al., 2008; Li et al., 2011c). The significance of
accounting for non-multiGaussian distributions of hydraulic conductivity for
flow and transport predictions has been stressed in many studies (e.g., Gémez-
Herndndez and Wen, 1998; Zinn and Harvey, 2003; Knudby and Carrera,
2005). Hence, extending the EnKF to deal with non-Gaussian state vectors
would facilitate more extensive applications. Sun et al. (2009) and Zhou et al.
(2011a,b), developed variants of the EnKF which are better accommodated to
handle non-Gaussianity of parameter distributions. Sun et al. (2009) resort to
couple the EnKF with a Gaussian mixture model to update the parameters of
a multi-modal distribution by assimilating head data. Zhou et al. (2011a,b)
transformed the augmented state vector (containing both the hydraulic con-
ductivities and piezometric heads) with marginal multi-modal distributions
into a new vector with marginal Gaussian distributions, perform the EnKF
on the transformed state vector and backtransform the updated vector to the
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original space. Both studies show that these variants of EnKF result in sig-
nificant improvements in the characterization of the aquifer properties and in
the predictions of flow and transport for non-multiGaussian hydraulic con-
ductivity fields. It is worth noting that, in both studies, it was assumed that
the prior random function is known, i.e., the reference field and the initial set
of non-multiGaussian conductivity fields are both generated with the same
geostatistical approach and the same random function model, which, in this
particular case, amounted to using the same training image in the multiple-
point geostatistical generator. However, in practice, it is not trivial to decide
about a reasonable training image given the limited amount of information
available. Partly for this reason, traditional two-point variogram-based geo-
statistical methods are still employed in practice. One of the motivations of
this work is to explore the capacity of the normal score EnKF proposed by
Zhou et al. (2011a,b) to identify a highly channelized aquifer when there are
no (hard) conductivity data available and the prior random function model is
not the one used to generate the reference field.

Several studies (e.g., Gomez-Hernandez and Wen, 1998; Western et al.,
2001; Zinn and Harvey, 2003; Knudby and Carrera, 2005; Lee et al., 2007)
showed that flow and transport predictions strongly differ between multiGaus-
sian and non-multiGaussian logconductivity fields, even when both types of
fields share the same histogram and the same covariance function. These
results demonstrated that the reproduction of the connectivity is of signif-
icance in practice. For the inverse conditioning, Kerrou et al. (2008) ap-
plied the self-calibration (Gémez-Hernandez et al., 1997) method on a fluvial-
sediment aquifer with a wrong prior model (i.e., multiGasussian instead of
non-multiGaussian) and concluded that the channel structures cannot be re-
trieved, even when a large number of direct and indirect data are used for
conditioning.

In this paper, we apply the normal-score EnKF (NS-EnKF) to a channel-
ized aquifer characterized by a bimodal conductivity distribution, and analyze
the performance of the method for fourteen scenarios which differ among them
in one or several of the following aspects: the prior random function model,
the boundary conditions of the flow problem, the number of piezometers used
in the assimilation process, or the use of covariance localization in the imple-
mentation of the Kalman filter. None of the scenarios uses any conductivity
conditioning data. The analysis focus on the ensemble mean and variance
maps, the connectivity patterns of the individual conductivity realizations
and the degree of reproduction of the piezometric heads.

This paper revisits the mathematical framework of the NS-EnKF as ap-
plied in the synthetic experiment and briefly presents its numerical implemen-
tation (section 6.2 and 6.3); the impact of the choice of the prior random
function model is discussed in section 6.4.1, the effect of using localization
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functions for the covariance while computing the Kalman gain is discussed
in section 6.4.2, the performance under different boundary conditions induc-
ing very different flow patterns in the aquifer is discussed in section 6.4.3,
and, finally the impact of reducing the number of conditioning piezometers is
discussed in 6.4.4. The paper ends with some conclusions (section 6.5).

6.2 Mathematic Framework

6.2.1 Flow equation

The flow equation of an incompressible fluid in saturated porous media in
a Cartesian coordinate system can be obtained by combining the continuity
equation and Darcy’s law (Bear, 1972):

V- [K(x)Vh(x)] = Ssg? +Q (6.1)

where h[L] is the piezometric head; K[LT~!] is a symmetric positive-definite
rank-two tensor; Q[ T~!] is the volumetric source flow per unit volume; Sg[L™!]
is the specific storage coefficient ; ¢ [T | is the time; V- = (9/0x+0/0y+0/0z)
is the divergence operator of a vector field, and V = (9/dx,0/dy,d/0z)T is
the gradient operator of a scalar field.

6.2.2 The Normal-Score Ensemble Kalman Filter with Local-
ization

The NS-EnKF method aims at generating equally-likely realizations of pa-
rameters and state variables, conditioned to real-time measurements such as
piezometric head data following non-Gaussian marginal distributions. The
basic algorithm is described in Zhou et al. (2011a) and is summarized next for
the case of assimilating observed piezometric head data at time ¢ in a bimodal
aquifer.

1. Initialization step. Generate the initial ensemble of logconductivity fields
(in case that there are logconductivity measurements, these fields must
be conditional to them); this is achieved by any of many geostatisti-
cal simulation algorithms, such as sequential indicator simulation (e.g.,
Deutsch and Journel, 1992) or the multiple-point method (e.g., Stre-
belle, 2002). The choice of the algorithm will depend on the random
function model adopted to describe the spatial variability of logconduc-
tivity. Here, it is assumed that the scale of hydraulic conductivity mea-
surements have a support coinciding with that of the numerical model
discretization gridblocks. If there were a discrepancy between the mea-
surement scale and the gridblock scale, an upscaling technique would
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have been needed to reconcile these two scales (e.g., Zhou et al., 2010;
Li et al., 2011a,b).

Normal-score function step. Build the logconductivity local conditional
distribution functions at each grid cell from the ensemble of logcon-
ductivity realizations, and the corresponding local normal-score transfer
functions (¢) (for the details see: Goovaerts, 1997).

Forecast step. For each realization, the transient groundwater flow equa-
tion (6.1) is solved from time ¢ — 1 to ¢ using standard block-centered
finite differences (e.g., Harbaugh et al., 2000; Li et al., 2010a). The
solution can be schematically represented by:

Yi=f(Xp-1,Yi1) (6.2)

where X;_1 and Yj_1 denote the hydraulic conductivity and piezomet-
ric head estimates at time t;_1 respectively, and Y} are the forecasted
piezometric heads at time step ti; f represents the groundwater flow
model including the boundary conditions, stresses and other known pa-
rameters.

. Normal-score function step. Build the piezometric head local conditional

distribution functions from the ensemble of forecasted realizations, and
the corresponding local normal-score transfer functions ().

Filter step. Update the state variables by the NS-EnKF based on the
observed head data at time ¢.

(a) Normal-score transform each conductivity, each forecasted head,
and also the observed heads

X= ¢X)
Y= oY) (6.3)
Y—obs — QO(YObS)

(b) Build the augmented normal-score transformed vector ¥, which in-

A~

cludes both the transformed conductivities (X) and the transformed

forecasted heads (Y).
- X
b= 3| (6.4
J Y k.

where \il;w- is the j** ensemble member of the augmented state
vector at time tg.
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(c) Calculate the localized Kalman gain (Gy) (e.g., Gaspari and Cohn,
1999; Hamill et al., 2001; Chen and Oliver, 2010).

1
Gk = pgy © Cxy (Pyy 0 Cyg +Cp) (6.5)

where C¢ is the cross-covariance between transformed logconduc-
tivity and head data; Cy is the covariance of transformed head
data, Cp is the diagonal matrix of expected measurement error
variances; o indicates the Schur product; and p ¢y and pyy are lo-
calization functions used for the C4¢ and Cy ¢, respectively; the
specific localization functions used in this work will be given later.

(d) Update each ensemble member of the state vector (e.g., Burgers
et al., 1998; Evensen, 2003).

by =W+ G (Y +e— YY) (6.6)

where superscripts v and f denote updated and forecasted, respec-
tively; € is a random observation error vector, and Y/ is a vector
containing the transformed forecasted heads at sampling locations

(a subset of Y).

(e) Back transform the state vector W.
X=¢ X
" o
Y =9 (Y)

6. Go to step 3 for the next time step.

The NS-EnKF assures that the non-Gaussianity of the marginal distribu-
tions of states and parameters is preserved, through the use of the normal-score
transform. The distance-dependent localization functions are used to reduce
the influence of spurious correlations for large separation distances that may
appear in the covariance computed through the ensemble of realizations.

6.3 Synthetic Example

6.3.1 Reference

The domain area is 300 m by 240 m by 1 m, and is discretized into 100
x 80 x 1 blocks of size 3 m x 3 m x 1 m. The reference logconductiv-
ity field is generated in two steps: (i) the SNESIM code, a pattern-based
multiple-point geostatistical algorithm, is utilized to generate a facies realiza-
tion (Strebelle, 2002). (In contrast with traditional two-point variogram-based
models, the multiple-point method is able to reproduce complex and realistic
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Figure 6.1: Training image used to generate the facies distribution.

Table 6.1: Parameters of the random functions describing the sand and shale

Mean Variance Variogram type A, [m] A, [m] sill
Sand 2.1 0.49 exponential 144 72 1
Shale -1.4 0.49 exponential 72 72 0.35

curvilinear structures characteristic of fluvial deposits.) We used the train-
ing image in Strebelle (2002), which is commonly used for benchmarking to
compare algorithms (e.g., Wu et al., 2008; Mariethoz et al., 2010a). This train-
ing image serves as a conceptual model for the channelized bimodal aquifer,
where the channels have high conductivities representing preferential paths
and are embedded in a floodplain fine-grid deposits with low conductivities
(see Figure 6.1); (ii) the generated facies realizations is populated with conduc-
tivities using a sequential Gaussian simulation algorithm (Gémez-Herndndez
and Journel, 1993) with the parameters listed in Table 6.1. This procedure
results in the spatial distribution of logconductivity values shown in Figure
6.2A, which serves as the reference InK realization. This realization displays
well-connected sand channels (approximately 30% of the system) on a low-
conductivity matrix. The histogram of InK, shown in Figure 6.2B, clearly
shows a bimodal logconductivity distribution typical of fluvial deposits.

To explore the role of boundary conditions on pattern identification, two
sets of boundary conditions are considered: (i) Boundary conditions inducing
parallel flow (Figure 6.3A), consisting of a combination of prescribed head
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Figure 6.2: Reference InK data
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Table 6.2: Definition of scenarios

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Parallel flow + v vV vV VvV V VARV
Radial flow vV vV Vv Vv VvV

Well (111) v VvV v VoV Y

Well (32) VARV
Correct Prior +/ ARV vV VARV Vv
Wrong Prior Vv v vV Vv ARV
NS-EnKF v v v v vV
L-NS-EnKF® N V N J/

« indicates the localized NS-EnKF'.

boundary (West), prescribed flux boundary (East) and impermeable bound-
aries (North and South); (ii) boundary conditions inducing radial flow (Figure
6.3B), with impermeable boundaries and a set of injection/extraction wells
in a typical configuration for contaminant remediation or for reservoir ex-
ploitation. For both boundary conditions, groundwater flow is simulated for a
period of 500 days starting with an initial head equal to zero everywhere. The
simulation time is discretized into 100 time steps, the sizes of which follow a
geometric series with a ratio of 1.05. The specific storage is assumed constant
and equal to 0.003 m~!. The MODFLOW 2000 code (Harbaugh et al., 2000)
is used to solve the transient flow equation (6.1). The head data are sampled
at the first 60 time steps (approximately 67.7 days) and will be used as the
conditioning data in the NS-EnKF. The spatial distribution of the sampling
wells is shown in Figure 6.3. Although the sampled head data are error-free
since they are taken from the “true” field, in the following data assimilation
procedures it was assumed that they have a normalized measurement error
with a mean of zero and a standard deviation of 0.05 m.

6.3.2 Scenarios

Fourteen scenarios are analyzed with the characteristics indicated in the Table
6.2. The impact of the prior model, the use of a localization function and the
different boundary conditions is tested with help of fourteen scenarios (Table
6.2).

The scenarios are organized to show how the characterization of the hy-
draulic conductivities evolves starting from an unconditional ensemble of re-
alizations as piezometric heads are incorporated, and then when localization
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Figure 6.3: Spatial distribution of sampled head data and flow configurations:
(A) boundary conditions A (B) boundary conditions B (the unit of flow in
wells: m?/d).
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(B) Correct Prior
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Figure 6.4: A-C show the spatial distribution of InK, histogram and variogram
of the 1st realization from the correct prior model; D-F show the same charac-
teristics of the 1st realization from wrong prior model. In C and F, solid line
and dotted line correspond to the experimental facies variogram in X and Y
direction, respectively.

is used. This evolution is analyzed for each of the two flow patterns induced
by the two sets of boundary conditions, and also for the cases in which the
correct and an erroneous prior random functions are used.

Scenarios S1, S2, S7 and S8 are unconditional, they are the base cases
containing the initial ensemble realizations to be used by the NS-EnKF in the
other scenarios. They will produce the worst results in terms of conductivity
characterization and piezometric head predictions and will serve as a starting
point to assess the benefits of using the correct prior model, the assimilation
of dynamic piezometric head information, and the use of localization.

Scenarios S1 to S6, S13 and S14 use boundary conditions inducing parallel
flow through the aquifer, and scenarios S7 to S12 boundary conditions inducing
radial flow.

The prior random function models for all realizations share the same his-
togram and variogram but they differ in their higher order moments. Scenarios
S3, 54, S9, S10, and S13, use the same random function model used to generate
the reference, i.e., the facies follow the random function model implicit in the
training image of Figure 6.1 on which two independent multiGaussian random
functions are overlaid to describe the variability of conductivity within each
facies. Scenarios S5, S6, S11, S12 and S14, use a random function model for
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the facies based on the indicator variogram computed on the training image on
which the same independent multiGaussian random functions of the reference
field are overlaid. For the first set of scenarios the multiple point code SNESIM
Strebelle (2002) is used to generate the facies realizations, whereas the indica-
tor simulation code ISIM3D (Go6mez-Hernandez and Srivastava, 1990) is used
for the second set. The parameters defining the two multiGaussian random
functions are given in Table 6.1. Figure 6.4 shows the first realization for the
correct and the incorrect model, their histograms and their variograms. While
both realizations follow the same histogram and variograms, the variogram-
based sequential indicator simulation cannot generate the curvilinear patters
for the sand facies observed in the training image, which are well reproduced
in the multipoint sequential simulation.

For the scenario S3, S5, S9, S11, S13 and S14 head data are assimilated
without using localization whereas for the scenarios S4, S6, S10 and S12 lo-
calization is employed.

The EnKF tends to filter inbreeding if the ensemble size is small, and the
heterogeneity is large (Hendricks Franssen and Kinzelbach, 2009). It is there-
fore expected that the NS-EnKF applied to a complex geological environment
will suffer this problem, too. To analyze this aspect, a fifth-order distance-
dependent localization function (Hamill et al., 2001) is used to reduce the
sampling errors in the computation of the ensemble covariances. Considering
previous works (Chen and Oliver, 2010), the size of the domain, the separa-
tion between piezometers, and the distance between wells for the boundary
conditions inducing radial flow, the localization function is set to zero at a
distance of 80 m, implying that for distances larger than that, the sampled
non-stationary covariances used to compute the Kalman gain are zero. More
specifically, the distance function that is used for both p ;¢ and py ¢ in Equa-
tion (6.5) is:

— 1P+ 3G+ 3G - 362 + 1, 0 < d < 40;

d) =9 15(5)° — 2(f%6)" + 5(35)° + 5(i5)* = 5(i5) +4 - 5(5) ", 40< d< 80;
0 d>80.
(6.8)

where d is the distance between observed head and InK data (when applied
to pgy) or between observed heads (when applied to pyy) [L]. Here, the
distance function is constant in time, isotropic, and used both for the cross-
covariances between observed heads and parameters and the covariances of
the head data.

Scenarios S13 and S14 stand apart from the rest of the conditional scenarios
in that the number of piezometers used for assimilation is reduced to one
third. Recall that no conductivity conditioning data are used for any scenario,
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therefore, the ability to identify the channels is solely thanks to the dynamic
head data that are assimilated at each time step, and it is expected that the
quality of the characterization of the conductivities will be affected by the
number of conditioning piezometers.

For all the scenarios, 1000 unconditional realizations of logconductivity are
generated.

6.3.3 Evaluation Criteria

For every scenario, the following criteria are used to assess the results (Chen
and Zhang, 2006; Zhou et al., 2011b):

1. Root mean square error (RMSFE). RMSFE measures the accuracy of the
estimation.
1 Np 1/2
— X. _ )2
RMSE(X) =| > (X~ Xoep ] (6.9)
where Xj is either logconductivity InK or hydraulic head h at location i,
X; represents its ensemble mean value at node i, X,. . is the reference

value at location ¢, IV, is the number of nodes.

2. Ensemble spread (ES). ES indicates the uncertainty (precision) of the
estimation.

1 Ny 1/2
ES(X) = []Vb Zag(] (6.10)
=1

where ag(_ is the ensemble variance at location 7.
1

The smaller the values for RMSE and ES, the better the prediction of
variable X. As discussed in Chen and Zhang (2006), when RM SE and
ES have a similar magnitude filter inbreeding is avoided.

3. Connectivity. The flow and transport behaviors are strongly impacted
by the presence of connected high-conductivities and connected low-
conductivities (e.g., Wen and Gémez-Hernandez, 1998; Knudby and Car-
rera, 2005). Here, we adopt the connectivity function defined by Pardo-
Igizquiza and Dowd (2003) to evaluate the connectivity. In this work,
two steps are needed to analyze the connectivity for the continuous vari-
able:

(i) An indicator image is obtained as:

1, if InK >
Iz)=4" "= (6.11)
0, otherwise
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where « is the threshold that classifies the logconductivity into sand and
shale. In our case, « is set to zero since this value approximately splits
the histogram of logconductivity in two (see Figure 6.2).

(ii) The code CONNEC3D, a computer program for connectivity anal-
ysis of 3D random model, is used to calculate the probability that two
points with logconductivity larger than o are connected. The result is a
function of distance that gives the probability that two points located in
the sand facies are connected by a continuous path in that same facies.

6.4 Results and discussion

Ensembles of conductivity realizations are generated for the fourteen scenarios
according to the configurations described earlier. As mentioned earlier, sce-
narios 13 and 14 stand apart in that they are the only ones using a smaller
number of conditioning piezometric heads, for this reason most of the figures
group the results for scenarios S1 to S12. Scenarios S13 and 14 are analyzed
later by themselves. Figure 6.5 and Figure 6.6 show the ensemble average
and ensemble variance of logconductivity at time step 60 for the first twelve
scenarios. Figure 6.7 shows the evolution of RMSE and ES as function of the
updating time step. Figure 6.8 displays the connectivity function for sand as
a function of the horizontal distance. Figure 6.9 shows the RMSE and ES of
the predicted heads computed on the updated hydraulic conductivities after
60 time steps (67.7 days) by rerunning the flow model from ¢ = 0.

6.4.1 Effect of prior random function model

For the scenarios S1, S2, S7 and S8 no conditioning data were used. For those
scenarios, the ensemble average of hydraulic logconductivity is approximately
spatially uniform and equal to the prior mean (see Figure 6.5) and, similarly,
the ensemble variance map is approximately equal to the prior variance (see
Figure 6.6). As expected, the unconditional average maps do not capture any
spatial pattern, although individual realizations do display the spatial variabil-
ity according to their prior random function models (see the first realization
in Figure 6.4A and 6.4D).

For the scenarios where head data are used for assimilation, the ensemble
means of hydraulic conductivity (estimated after 60 time steps of assimilation),
depict the facies distribution well in visual comparison with the reference. The
ensemble variances of logconductivity are clearly reduced in comparison with
the prior variances and display a feature with higher variance at the boundaries
of the channels and at places far away from the head measurements such as
the boundaries of the domain. Comparing the two columns on Figures 6.5



156 CHAPTER 6. GROUNDWATER FLOW INVERSE MODELING. ..

Correct Prior Wrong Prior
S cenario 1/7

-- i .
0 East 300

Scenario 3

S cenario 2/8

Unconditional

East
Scenario 5

Parallel flow
Non Localized

East
Scenario 4

Parallel flow
Localized

Radial flow
Non Localized

Radial flow
Localized

Figure 6.5: Ensemble average logconductivity fields at time step nT = 60 for
the different scenarios.
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Figure 6.6: Ensemble variance logconductivity fields at time step nT" = 60 for

the different scenarios.
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and 6.6, it is quite striking to realize that, even for the wrong prior random
function model, assimilating the piezometric head data with the NS-EnKF,
yields ensembles of realizations which, on average, capture the location of
the channels in the reference field and display the highest uncertainty at the
boundary channels.

For a more quantitative analysis, Figure 6.7 shows how both the RMSE
and the ES evolve for the different conditional scenarios as a function of
the updating step. It is not surprising that the wrong prior always gives
higher values for the average departure between individual realizations and
the reference and also for the average spread, being most noticeable for the
case of parallel flow.

Regarding the reproduction of the connectivity function, Figure 6.8 shows
the individual connectivity functions for all realizations, their average and the
connectivity of the reference field for the first 12 scenarios. The discrepancy
between the results obtained with the correct and the wrong prior are more
significant in this case, something that is quite understandable since the wrong
prior only uses the indicator variogram of the facies distribution as the starting
set of ensemble realizations. The average connectivity of the wrong prior
is significantly smaller than the reference connectivity for the unconditional
case; then, conditioning to piezometric heads helps increasing the average
connectivity as well as the spread of the individual connectivity functions,
however, the connectivity remains below that of the reference for all cases.
The average connectivity of the correct prior starts slightly above the reference
one with a very wide spread of the individual functions, and gets closer to the
reference when the piezometric heads are assimilated.

Finally, regarding the reproduction of the piezometric heads, Figure 6.9
shows the RMSFE and ES as a function of the updating step for the first 12
scenarios. In these figures we have as a reference the metric values for the
unconditional cases to show the important reduction in both metrics induced
by conditioning to the piezometric heads. Like in Figure 6.7, these metrics are
average values computed over the entire aquifer, not just for the conditioning
piezometers. The behavior of the wrong prior is very similar to that of the
correct prior with the only noticeable difference that the localization tends
to worsen the RMSFE for the wrong model whereas for the correct prior,
localization improves the RMSE.

In summary, the NS-EnKF displays a great potential to capture the pat-
terns of variability of logconductivities on the sole basis of piezometric in-
formation for clearly non-multiGaussian fields even when the prior random
function model is not fully consistent with the reference realization.
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6.4.2 Effect of localization

It is well known that the standard EnKF has the problem of filter inbreed-
ing, which leads to a final ensemble of realizations too similar among them
resulting in the underestimation of uncertainty of flow and transport predic-
tions (Hendricks Franssen and Kinzelbach, 2009; Devegowda et al., 2010; Zhou
et al., 2011a). The ensemble size we have used is large, 1000 realizations, yet,
when analyzing the piezometric head covariances, and cross-covariances with
logconductivity we observe the same type of spurious correlation values that,
eventually, lead to filter inbreeding; therefore, we have decided to apply lo-
calization techniques and compare the resulting ensembles with and without
localization. In general, localization should increase the ensemble spread and,
at the same time, reducing the RM SFE, that is, there is a gain in accuracy at
the cost of precision, which also helps to avoid filter inbreeding.

Analyzing Figures 6.5 and 6.6 we observe that the ensemble mean hydraulic
conductivity maps produced with the localized NS-EnKF are smoother than
the same mean maps without localization, and capture better the main chan-
nels of the reference field. All artifacts in the non-localized realizations are
removed after localization; the local ensemble variances in the localized ensem-
bles increase, particularly significant values appear in the northwestern corner
of the parallel flow exercise an area without conditioning data and too close to
a prescribed head boundary where the sensitivity of the piezometric head to
a change in logconductivity is close to zero. These results may indicate that
even in this case with a large number of realizations, the ensemble variance
estimate obtained from a non-localized NS-EnKF may be too optimistic.

The effect of localization is also quite clear when analyzing the RMSE
and ES of the calibrated conductivity fields (see Figure 6.7). On one hand,
localization induces a reduction of the RMSFE in all cases, and an increase in
the ES. In all cases, these changes result in values of RMSE and ES that
are very similar in value at the end of the updating steps, which is indicative,
according to Chen and Zhang (2006), of reduced filter inbreeding. Taking the
ratio ES/RMSE as an index of filter inbreeding, this is worse for the radial
flow scenarios without localization. In previous synthetic studies, Chen and
Zhang (2006) and Hendricks Franssen and Kinzelbach (2008) have found that
200 realizations are enough to avoid filter inbreeding without localization for
multiGaussian fields. Here we observe that filter inbreeding can be serious
when EnKF is used without localization in a highly channelized aquifer.

Regarding sand connectivity it is not clear whether localization improves
its characterization. The spread of the connectivity functions is much larger
for the localized ensemble than for the non localized one, and, at least for
parallel flow, the average of the connectivity functions does not get closer to
the real one after localization; the small spread exhibited by the non localized



164 CHAPTER 6. GROUNDWATER FLOW INVERSE MODELING . ..

connectivity functions makes the reference connectivity one fall outside the
cloud of individual functions for the radial flow case. After localization, the
reference connectivity is within the cloud for the correct prior function model,
while still falls partly outside for the wrong prior. The falling of the refer-
ence connectivity function outside the cloud of individual functions is also an
indication of underestimation of the ensemble variability induced by the non
localized NS-EnKF.

Finally, localization has a minimal impact in the reproduction of the piezo-
metric heads as seen in Figure 6.9, the RMSFE is almost the same with and
without, although localization serves to reduce the RM S E for the correct prior
scenarios, but increases it for the wrong prior ones. Localization, as expected,
increases the ES in all cases.

It is concluded that, for this particular case, in which the underlying aquifer
is highly variable with channel features, 1000 realizations is not enough to
avoid filter inbreeding in the application of the EnKF. For this reason we
recommend the use of localization together with the NS-EnKF to improve the
results.

6.4.3 Effect of boundary conditions

The NS-EnKF has been tested for two sets of boundary conditions which
basically induce parallel flow and radial flow, the rest of the setup being the
same.

The characterization of the hydraulic conductivities is good under both
flow conditions. The mean of the final ensemble of realizations gets closer to
the reference field for the parallel flow case than for the radial flow one, as can
be observed by looking at the channels identified in Figure 6.5, their width
is more uniform and their extent go through the entire aquifer for parallel
flow. As already mentioned, the local ensemble variance (Figure 6.6) show the
highest values for the cells close to the prescribed head boundary and extending
through the shale area in the parallel flow case as it would be expected given
the lack of sensitivity of head to conductivity changes at those locations.

There is not a significantly different behavior on the evolution of the
RMSE and the SE (Figure 6.7) for the two sets of boundary conditions.
Just notice that the final values of both metrics tend to converge to the same
value after localization for both flow conditions, while prior to localization they
are different (larger RMSE and smaller ES for radial flow than for parallel
flow).

Regarding the reproduction of the connectivity, it is apparently more dif-
ficult to reproduce it for radial flow case than for parallel flow; for radial
flow, there seems to be an important filter inbreeding that leaves the reference
connectivity function outside the cloud of individual functions; apart from
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that, there is no significant difference on the performance of the NS-EnKF in
characterizing the connectivity under radial or parallel flow conditions.

Finally, regarding the reproduction of the piezometric heads (Figure 6.9),
the main difference between parallel and radial flow is that for radial flow
the overall reduction of RMSFE with regard to the unconditional realizations
is smaller than for parallel flow, but this is easily understandable since the
piezometric head fluctuations with respect to the initial state are stronger for
radial flow than for parallel due to the several pumping and recharge wells
used for the radial flow scenarios.

We conclude that the NS-EnKF performs similarly well for either radial
flow or parallel flow conditions. However, from the analysis of the RM SE(In K)
and ES(In K), the radial flow case apparently is more prone to filter inbreed-
ing than the parallel flow case. Inbreeding that disappears after localizing the
filter.

6.4.4 Effect of number of conditioning piezometers

Scenarios 1 to 12 have been analyzed considering that there are 111 piezome-
ters (Figure 6.3) providing dynamic hydraulic head measurements during the
first 66.7 days (first 60 simulation time steps), which are assimilated through
the NS-EnKF to update an ensemble of hydraulic conductivity realizations.
For this number of piezometers, the NS-EnKF seems to perform reasonably
well for a variety of scenarios, including the case in which an incorrect prior
random function model is used. Since there are no logconductivity data, the
information provided by the piezometer is crucial for the identification of the
hydraulic conductivity spatial patterns. We decided to reduce the number of
piezometers to one third of the original ones and keep only 32 of them (Fig-
ure 6.10A) to analyze two more scenarios, under parallel flow and without
localization; scenario 13 assumes the correct prior random function model and
scenario 14 the wrong one.

Maps B and D in Figure 6.10 show the ensemble mean of logconductivity
and maps C and E the ensemble variance for the correct and wrong prior,
respectively. As expected, the characterization of the channels is worse and
the ensemble variance is larger when fewer piezometers are used; however,
the characterization is not bad. The overall location of the channels is well
captured and the highest local variances occur at channel borders, with a much
better performance for the correct prior random function than for the wrong
one.

We conclude that the number of piezometers is important for the charac-
terization of the logconductivity, particularly when the prior random function
is wrong.
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6.4.5 Discussion

This paper presented a performance assessment of the NS-EnKF, a real-time
data assimilation algorithm, in a two dimensional bimodal aquifer, and focused
on four aspects: (1) the impact of random function choice; (2) the effect of
introducing a localization function (3) the flow regimes and (4) the number of
piezometers used during assimilation.

The results show that assimilating piezometric head data with the NS-
EnKF allows the detection of the channel structures, even if the prior geosta-
tistical model is erroneous and not capable to reproduce the types of channels
of the underlying reference aquifer. This result may have important impli-
cations for groundwater modeling studies, since it implies that a sufficiently
large number of piezometers may offset the negative impact of an erroneous
choice of the random function model used to generate the starting ensemble
of conductivity realizations. For those who are not keen on using training
images to characterize the spatial variability of the hydraulic conductivity, a
variogram-based simulation algorithm may serve as the starting point, leav-
ing to the NS-EnKF the task to identify the curvilinear features that the
variogram-based algorithm cannot.

Although it might be argued that we had access to the “correct” prior
histogram in the wrong prior analysis, if the contrast in conductivities between
the channel and non-channel facies is large enough, the really important a
priori information that would be needed would be the proportions of each
facies and the contrast between their average conductivities.

Our results are more optimistic than the ones from Kerrou et al. (2008),
who concluded that an erroneous prior geostatitical model cannot be corrected
by inverse modeling, even if many hydraulic head data are available. We at-
tribute this impossibility to the inverse modeling method utilized and claim
that the NS-EnKF can help to produce an acceptable characterization of the
hydraulic conductivities even when the prior random function model is incor-
rect.

We also demonstrate the importance of coupling the NS-EnKF with a
distance-dependent localization function, even for a case such as this in which
the ensemble consisted of 1000 realizations. A future research topic is the
improvement of the localization functions, allowing for anisotropy and non-
stationarity (i.e., time and/or space dependence), and with the option to
have different formulations for piezometric head covariances and piezometric-
conductivity cross-covariances.

Apparently, the NS-EnKF works equally well for both parallel and radial
flow conditions. And, it is clear that for a case such as this one in which the
conductivity identification is based solely on the information conveyed by the
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dynamic piezometric head data, the number of piezometers is very important,
more so, when the prior random function model is wrong.

6.5 Conclusion

The complexity of subsurface geological structures calls for a characterization
technique, which can incorporate the conductivity measurement data as well
as the responses of aquifers in an efficient and effective way. The NS-EnKF, a
real-time data assimilation technique which couples EnKF with normal score
transformation, has been recently developed by Zhou et al. (2011a). The
method avoids the classical multiGaussianity inherent to most simulation al-
gorithms.

In this paper, we have analyzed 14 scenarios to present a detailed analysis
of the impact of (i) prior model choice, (ii) use of localization functions, (iii)
flow regime, and (iv) number of piezometers used, on the performance of
the NS-EnKF algorithm in a synthetic 2D bimodal aquifer. The following
conclusions can be drawn from the simulation exercises:

e The NS-EnKF performs relatively well when an incorrect prior geosta-
tistical model incapable of producing channeled realizations is used. Re-
sults are worse than when the correct prior is used, but acceptable.

e Coupling the NS-EnKF with a distance-dependent localization function
improves both the characterization of conductivity and the prediction of
groundwater flow.

e The performance of NS-EnKF was similar for two different flow scenarios
(parallel flow and radial flow), in both cases, the patterns of conductivity
are identified very well.

e The quality of the characterization is directly related to the number of
piezometers used, more so when a wrong a priori model is used.
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Conclusions

7.1 Summary

Uncertainty assessment and risk analysis of groundwater flow and solute trans-
port predictions call for the use of stochastic models in a Monte-Carlo frame-
work. On a first step, the characterization of an aquifer can be represented
by multiple equally-likely realizations conditional on the direct measurements
using the geostatistical approach. Since the scale of the conductivity mea-
surements is usually smaller than the scale of the numerical model, there is
a need to find a set of conductivities, defined at a coarser scale, which pro-
duce similar flow behavior as the finely discretized model. This is achieved by
upscaling. Moreover, due to the limited knowledge of the aquifer geological
structure, inverse modeling is used to incorporate the state information and
hence improve the characterization of the aquifer and reduce the uncertainty
on flow and transport predictions.

In Chapter 2, we reviewed several upscaling techniques ranging from sim-
ple averaging over a uniform grid to sophisticated Laplacian-with-skin method
on non-uniform grids. We choose a high-resolution conductivity realization as
a reference for the upscaling. This image was generated using a hole-effect var-
iogram and it was shown that flow and transport modeling on this realization
can reproduce the observed plume. The different upscaling methods are then
applied on this realization. The results show that (1) the Laplacian-with-skin
technique with a skin size of half block performs best; (2) a non-uniform coars-
ening focused in the refinement of the regions through which the solute plume
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travels can further improve the results, and (3) the advection-dispersion equa-
tion can be used at the coarser scale to model the plume migration if careful
modeling/upscaling is performed, as long as the block size remains smaller
than the correlation ranges of the underlying fine scale conductivities.

Chapter 3 presented a three-dimensional transport upscaling methodol-
ogy in highly heterogeneous media. This approach introduced an advanced
Laplacian-with-skin hydraulic conductivity upscaling prior to the transport
upscaling. Transport upscaling requires the introduction, at the coarse scale,
of a multi-rate mass transfer process on the classical advection-dispersion equa-
tion for the modeling. The methodology is demonstrated on a 3D synthetic
example. The advantages of the Laplacian-with-skin over other approaches as
well as the multi-rate mass transfer model-based upscaling over the advection-
only-based upscaling are proved in the exercise.

Chapter 4 introduced a new methodology to model transient groundwater
flow in a high-resolution numerical model by coupling upscaling with ensemble
Kalman filtering. This approach consists of three steps: (1) conductivity
realizations are generated at the scale of the measurements, (2) an advanced
upscaling approach such as the Laplacian-with-skin method is used to reduce
the dimensions of the numerical model, and (3) the ensemble Kalman filter
is used in a set of upscaled conductivity tensors to condition on the observed
piezometric head data. The proposed new method is demonstrated in a 2D
synthetic data-worth exercise.

Chapter 5 applied the ensemble Kalman filter to jointly map hydraulic con-
ductivities and porosities by assimilating the dynamic piezometric head and
multiple concentration data. Compared with other inverse methods, the EnKF
is remarkable for its computational efficiency, but more importantly for the
easiness to account for multiple types of conditioning data. The capability of
the EnKF for the characterization of conductivities and porosities is demon-
strated in a 2D synthetic example. The uncertainty on flow and transport
predictions is reduced to the minimum when all the data are assimilated.

Finally, in Chapter 6, the normal-score Ensemble Kalman Filter, an al-
gorithm recently developed to deal with the non-Gaussianity of parameter
and state vectors in EnKF, is used to assess the impact of prior conceptual
model uncertainty on the characterization of conductivity and on the predic-
tion of flow in a synthetic bimodal aquifer. In addition, the effect of distance-
dependent localization functions and different set-ups of the boundary condi-
tions in the aquifer are also examined. The results are evaluated in terms of
ensemble means, variances and connectivities of the conditional realizations
of conductivity and also looking at the uncertainty of predicted heads after
solving the flow equation in the conditional conductivity realizations. For the
cases analyzed it is found that (i) the patterns of simulated conductivity and
flow prediction can be reproduced close to the reference for both the correct
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and wrong prior model using either the NS-EnKF or localized NS-EnKF' as
long as a sufficient number of piezometric head data are used for conditioning,
(ii) coupling NS-EnKF with the localization function improves the conductiv-
ity identification, (iii) the performance of the NS-EnKF is not affected by the
types of boundary conditions used.

7.2 Recommendations for Future Research

e Further development and improvement of transport upscaling
methodology. The transport upscaling method as outlined in Chapter
3 provides an approach to deal with the loss of heterogeneity inherent to
all upscaling processes. We demonstrated that it is possible to include
the multi-rate mass transfer process to model the mass transport at the
coarse scale. However, the obvious drawback of the method proposed
is the need of the transport solution at the fine scale to determined the
upscaled parameters, what, in principle, beats the purpose of upscaling
(i.e., to avoid the modeling at the fine scale). Hence, it would be very
significant to find an avenue to circumvent the need to solve the transport
problem at the fine scale, especially regarding on how to obtain the
upscaled effective porosity, which controls the mean travel times in each
block.

e Extending the approach of coupling EnKF and upscaling to a
real case study. To handle the inverse modeling at the large model,
we proposed a new methodology by coupling the EnKF and upscaling
as stated in Chapter 4. We used a 2D synthetic example to prove that
the conductivity and piezometric head data at the measurement scale
can be used for conditioning at the coarse scale and hence leading to a
reduced uncertainty of flow prediction. In Chapter 2, we applied different
upscaling method at the MADE site and concluded that the Laplacian-
with-skin performs best in terms of flow and transport reproductions.
Hence, the coupling approach developed could be applied and tested in
the field case at the MADE site.

e Coupling the localization function with EnKF and evaluating
its effect on concentration assimilation. As stated in Chapter 5,
we applied the standard EnKF to assimilate multiple concentration data
and dynamic head data. The results shown the characterization of pa-
rameters and flow and transport predictions are both improved. It seems
that some artifacts are observed when the concentration data is used for
conditioning. It would be interesting to couple the localization function
with the EnKF to see the precision and spread of estimations and model
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predictions. Also, we only considered the heterogeneity of conductiv-
ity and porosity in the assimilation procedure. It is also significant to
test the capacity of EnKF in identifying multiple parameters such as
conductivity, storage, porosity, dispersivity and retardation all together.

Extending NS-EnKF to assimilate concentration data in non-
multiGaussian media. The capability of the NS-EnKF was demon-
strated in the context of parameter identification when the prior statisti-
cal is wrong in Chapter 6. We show that, when the number of condition-
ing head data is smaller, the identification of channels is difficult. Hence,
it is necessary to see if other state information such as concentration as
shown in Chapter 5 can be used to complement the piezometric head
data.



FLOWXYZ3D - A
Three-Dimensional

Finite-Difference Simulator

with Full Conductivity
Tensors

A nineteen-point block-centered finite-difference procedure for the solution of
saturated groundwater steady flow in 3D with full tensor conductivities is
described here. In the absence of sinks and sources, the partial differential
equation governing flow in three-dimensions can be expressed as:

0 oh oh oh 0 oh oh oh
a_ szi Kx a szi a_ Y o K a K Z a5
5 (Keagy + vy T 5:) ay( Vo T gy T 5t
0 oh oh oh
a_ szi K, zZ Kzzi =
82( ox iy y + 82) 0
(A.1)

If this equation is discretized with a nineteen-point block-centered finite-difference
stencil over a non-uniform grid of parallelpipedal blocks, the following equa-
tion results for a generic block (4, j, k) of size Ax|; jr X Aylijr X Azl i (see
Figure A.1):
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Figure A.1: Schematic illustration of the 3D finite-difference spatial discretiza-
tion
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The hydraulic gradients at the interfaces are approximated by central dif-
ferences from the heads at the nineteen blocks surrounding (i, j, k), That is,
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The partial derivatives of the hydraulic head in the other five interfaces
can be given by similar expressions. Substituting (A.3) into (A.2), multiplying
both sides by Ax|; ;j xAyli jxAz|i jk, and rearranging terms, the nineteen-point
results in:

Ahijirk + Bhiji + Chip ik + Dhic e + Ehiga e + Fhioy et
Ghijir k1 + Hhijiy k-1 + Thijrer + Jhije—1 + Khijo1 gk + Lhiyyjo1 6+
Mh; 1 -1+ Nhij1k+1+ Ohij—1 -1+ Phiti k1 + Qhiv1 jr—1+
Rhi_1 g1+ Shi—1 k-1 =0

(A4)
where A, B, ..., S are function of the block sizes and interface hydraulic
conductivity components. Equation (A.4) is written for all the nodes within
the aquifer, except for those for which head is prescribed, resulting in a set of
linear equations.
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