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ABSTRACT: Upscaling transmissivity near the wellbore is expected to be useful for well performance prediction. 
This article ascertains the need of upscaling by comparing several numerical schemes and presents an approach to 
upscale transmissivity in the near-well region. This approach extends the Laplacian method with skin, which was 
successfully applied to the parallelepiped flow case, to radial flow case in the vicinity of wellbore through a 
nonuniform gridding technique. Several synthetic fields with different stochastic models are chosen to check the 
efficiency of this method. Both flow and transport simulations are carried out in finite heterogeneous confined 
aquifers to evaluate the results. It is demonstrated that the proposed method improves the ability of predicting well 
discharge or recharge and solute transport on the coarse scale in comparison with other schemes by examining the 
uncertainty propagation due to upscaling. 
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1. INTRODUCTION 

Stochastic modeling of reservoir parameters with 
the aid of geostatistical techniques can effectively 
provide high-resolution models of reservoir at the 
measurement scale (Fu and Gomez-Hernandez, 
2008 and 2009a). Limitation in computer 
resources forces these models to be upscaled to a 
modeling (coarse) scale such that a numerical 
simulator can afford in practical engineering 
applications of computational fluid mechanics, 
e.g., petroleum engineering, hydrogeology, 
environmental engineering, CO2 sequestration, etc. 
(see Li et al., 2007; Fu, 2008; Jenny et al., 2003). 
A large number of upscaling approaches have 
been developed to coarsen detailed aquifer or 
reservoir models into those at an appropriate scale 
for numerical simulations (Wen and Gomez-
Hernandez, 1996; Renard and de Marsily, 1997). 
Many of them are proven quite efficient for 
upscaling under the uniform flow condition, 
where the local piezometric head or pressure 
values vary normally slowly, or say "linearly" 
(Durlofsky et al., 2000). 
For the immediate vicinity of a well, however, 
these existing upscaling approaches may not 
completely apply due to the fact that the flow 

pattern is no longer uniform but convergent 
around a pumping well or divergent near an 
injection well. The pressure gradient typically 
increases close to the well and becomes highly 
sensitive to the spatial variation of hydraulic 
conductivity (Desbarats, 1992; Fiori et al., 1998) 
and especially to the difference between the 
global mean conductivity and the value at the 
wellbore (Axness and Carrera, 1999). Moreover, 
the distribution of concentration and the 
breakthrough curve of conservative tracers are 
typically different from those of the uniform flow 
cases. An effective upscaling scheme should be 
able to capture this character of pressure gradient 
distribution around the well and honor the 
statistical structure of conductivity in order to 
provide accurate coarse models. Basically, there 
are two problems needed to be addressed for 
upscaling: (1) Can the coarse grid account for the 
flow geometry in the near-well region? and (2) 
Can block transmissivity adequately honor 
heterogeneities of the aquifer or reservoir?  
As for the first problem, several authors have 
already presented some approaches to address it. 
Ding (1995) proposed an upscaling procedure 
which consists of upscaling transmissivity and 
numerical productivity index. An obvious 
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improvement over traditional methods is observed. 
Durlofsky et al. (2000) further extended Ding's 
technique to the 3D case. Muggeridge (2002) 
assessed Ding's method in a variety of case 
studies with partially penetrating wells and non-
vertical wells of both two- and three-dimensional 
problems. Wolfsteiner and Durlofsky (2002) 
developed an upscaling approach for a near-well 
radial grid on the basis of the so-called 
multiblock-grid simulation technology. Such grid 
is globally unstructured but maintains locally 
structured. However, a drawback of them is that 
they use a regular coarse grid, either rectangular 
or almost rectangular, although a non-uniform 
grid is applied among them, e.g., Durlofsky et al. 
(1997), which is considered to be efficient for 
dealing with the case of connected region with 
high conductivity values. The influence of regular 
gridding lies in that once the simulation grid 
becomes very coarse or the upscaling ratio is 
quite high, a significant or even intolerable loss of 
information will arise. That is because the regular 
coarse grid has a rather limited flexibility to 
capture the feature of pressure gradient variation 
near the wellbore. An improvement in grid design 
and/or refinement is expected to enhance the 
accuracy of upscaling under the condition of 
preserving the coarsening ratio, or upscaled factor, 
so as to produce a coarsened model at a 
reasonable scale as the input to the flow simulator. 
The second problem is concerned about the 
computation of the equivalent transmissivity for 
the coarse-scale model based on the fine-scale 
model. It is known that using the upscaled 
transmissivity for the coarse-scale flow 
simulation is much more accurate than the 
upscaled conductivity (e.g., Jenny et al., 2003). It 
is also well known that the block transmissivity is 
not only an intrinsic property of the porous media, 
but also depends on the flow geometry and 
boundary conditions (e.g., Gomez-Hernandez and 
Journel, 1994). Typical numerical approaches to 
computing the equivalent or block transmissivity 
call for solving flow problems over the local fine-
scale block, which includes all the cells that are 
embedded in the corresponding coarse grid. One 
of the most striking considerations is the 
configuration of boundary conditions for the 
coarse grid (e.g., Jenny et al., 2003; Fu et al., 
2010). This is of paramount importance because 
different boundary specifications will produce 
quite distinct equivalent block values. White and 
Horne (1987) computed the block conductivity 
from the solutions of flow for several alternative 
boundary conditions. Gomez-Hernandez and 
Journel (1994) applied a skin surrounding the 

coarse grid as the boundary configuration, which 
accounts for the influences from the neighbor 
cells but without resorting to solve flow problems 
over the entire field. Durlofsky (1991) developed 
an approach to yield a set of symmetric, positive-
definite block conductivity tensors by applying 
periodic boundary conditions. All these methods 
assume that the block transmissivity is a local or 
extendedly local property of porous media, i.e., 
the effects of neighbors can be ignored. Global 
approaches, on the other hand, consider such 
influences by solving flow problems on the global 
fine scale, e.g., Holden and Nielsen (2000). 
However, this method may be extremely 
computationally expensive. More recently, to 
overcome this shortcoming, Chen et al. (2003) 
developed a technique that couples local and 
global approaches with the aid of iterative 
solutions to flow and/or transport problems on the 
global coarse scale and the local fine scale. 
In addition, an extra technical detail is how to 
choose a neighbor size for solving local flow 
problems with specified boundary conditions. 
That is, should the neighbor cells be included 
when solving local fine-scale flow problems? 
Mascarenhas and Durlofsky (2000) proposed a 
near-well upscaling method extending the local 
fine regular grid to include neighbor regions when 
the transmissivity tensors are computed for a 
coarse regular grid, while a traditional upscaling 
procedure does not do so. Their numerical results 
from single- and multi-phase flow experiments 
display a significant improvement compared to 
the conventional methods by analyzing inflow 
profile and water cut parameters based on the 
fine-scale simulation against those based on the 
coarse-scale simulation. Actually, a similar 
enhancement was observed when upscaling 
transmissivity for the uniform flow, where the 
Laplacian method with skin (Gomez-Hernandez 
and Journel, 1994) or border region (Wen et al., 
2003; Chen et al., 2003) is named. In the present 
study, we include this idea into our upscaling 
approach with a slight modification to the coarse 
radial grid. 
This paper proceeds as follows: the next section 
gives details of the proposed upscaling method. 
Then, we outline the assessment criteria for 
subsequent comparisons and the numerical 
methods for flow and transport simulations. In the 
fourth section, the numerical results are compared 
with several existing upscaling techniques. It 
follows by some discussion on the upscaling 
techniques. Finally, the paper ends up with a 
summary of the proposed method for upscaling 
transmissivity in the near-well region. 
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2. UPSCALING 

An upscaling procedure in numerical simulation 
typically consists of three steps: first, using 
geostatistical techniques, a series of fine, detailed 
model parameters (i.e., hydraulic conductivity) 
are generated, each representative of the geology 
and hydrology of the area. Then a coarse grid is 
designed to capture main characteristics of flow 
and transport accordingly at the coarse scale. 
Finally, an equivalent value, either scalar or 
vectorial, calculated from the fine model of scalar 
parameters is assigned to the coarse model. 

2.1 Generation of conductivity fields at the 
fine scale 

The currently existing geostatistical techniques 
allow for generating property fields of reservoir at 
a point scale or for a uniform grid. The former 
can generate parameter fields of reservoir at any 
location for an arbitrary grid. This is a simple but 
fast scheme since only a small quantity of data are 
necessary for the near-well region. Moreover, it 
circumvents the scaling problem. The deficiency, 
however, lies in that it can not capture the detailed 
spatial variation of reservoir parameters. The 
latter, on the contrary, generates data at the 
specified position in a regular grid frame. This 
requires a very fine grid for the entire field such 
that the spatial fluctuations in the near-well region 
are adequately represented. However, it inevitably 
brings up a scaling problem in order to produce a 
proper coarse model as input to the expensive 
flow simulator. For the purpose of checking the 
necessity of upscaling in the near-well region, we 
compare these two types of techniques subject to 
an identical flow and transport scenario. 
The sequential simulation algorithm is a powerful 
stochastic simulation technique and has been 
applied in many studies (Gomez-Hernandez and 
Journel, 1993). It can be used to generate 
conditional or unconditional realizations from 
either multi-Gaussian or non-Gaussian random 
functions. Following the two-point geostatistics, 
the multi-Gaussian hydraulic conductivity field, 
lnK(x), is modeled through a normally distributed 
random space function, Y(x)=lnK(x), with an 
exponential semivariogram specified by, 

Y(r) = Y
2 [1 - exp(-r/Y)], 

where r is the two-point separation distance, Y
2 

is the variance, and Y is the correlation length. 
For the non-Gaussian model, the indicator 
semivariogram for a continuous variable is 
defined as, 

indi = 1 (if Yi  cutk); 

indi = 0 (if Yi > cutk), 

where the subscript i refers to a particular location, 
and the cutoff cutk is a threshold that is specified 
for the kth class of the continuous variable Y to 
create the indicator transform. 
Once the semivarigram matrix is specified, the 
corresponding covariance is easily obtained 
through C(r)=C(0)-(r) if the lag effect is ignored 
and the stochastic samples may be efficiently 
generated by the sequential simulation approach. 
The public domain codes GCOSIM3D (Gomez-
Hernandez and Journel, 1993) and ISIM3D 
(Gomez-Hernandez and Srivastava, 1990) are 
used to generate hydraulic conductivity fields at 
the fine scale. Fig. 1 gives three typical 
realizations of log-conductivity field with 
801801 square cells: Fig. 1(a) is a multi-
Gaussian field with statistically isotropic structure, 
Fig. 1(b) is a multi-Gaussian field with 
statistically anisotropic structure, and Fig. 1(c) is 
a non-Gaussian field with statistically anisotropic 
structure. Each cell has a dimension of 0.250.25. 
The wellbore is assumed to locate at the center of 
the computational domain, i.e., with the planar 
coordinate in index (401, 401). We assume the 
property value at the wellbore center is known, so 
the generation of log-conductivity field belongs to 
conditional simulation. 
Due to the limitation of GCOSIM3D, however, 
the existing code has no ability of generating data 
with arbitrarily irregular grids although the 
sequential simulation algorithm may allow one to 
do so in theory. But we can address this problem 
by resampling from the fine-scale field. That is, 
we first generate a fine-scale field by assuming a 
statistical structure, and then resample the 
property values from this field and assign them to 
proper locations in the irregular grid. The 
resampled field shares the same statistical 
structures as that of the fine scale, even though it 
ignores some details of the spatial variations. One 
of the advantages of this way is that its results can 
be used to compare with those of responding field 
directly. We denote it as a non-upscaled field. 

2.2 Design of the coarse grid 

The Thiem solution to a 2D steady-state head 
field in a homogeneous medium with prescribed 
heads at the well radius and at an exterior circular 
boundary can be written as, 

h(r) = hw + (he-hw) ln(r)/ln(re/rw), 
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Fig. 1 Several typical realizations of transmissivity 
field: (a) a multi-Gaussian field with isotropic 
structure, (b) a multi-Gaussian field with 
anisotropic structure, and (c) a non-Gaussian 
field with anisotropic structure. 

 
where r represents the normalized radius r=r'/rw; 
rw is the wellbore radius; r' is the radius away 
from the well axis; he and hw are the heads at the 
outer and inner radii, respectively. Although this 
solution is only applicable to homogeneous media, 

it may be shown that gridding with respect to ln(r) 
other than r minimizes the error in the resulting 
hydraulic head (Axness et al., 2004). The coarse 
grid design in terms of log-scale, therefore, will 
have more advantages than those of the natural 
scale. The former is expected to be able to capture 
the main features of gradient variations better 
than the latter even for highly heterogeneous 
media. 
In this study, we first normalize the well radius to 
one unit, i.e., rw=1, while the exterior radius is 
equal to 100 units, i.e., re=100. The whole circular 
field is divided into ten annuli excluding the well 
block. The ratio of radius increment of every 
annulus compared to that of the previous inner 
annulus is 1.584893, i.e., ri+1/ri=1.584893. 
Those rings are further divided into twelve 
segments along the ray direction. This ensures the 
grid is very fine close to the wellbore but quite 
coarse far away from it (see Fig. 2(a)). The 
original 801×801 fine square grid is upscaled into 
a 12×10 coarse radial, circular grid. In order to 
validate the efficiency of this grid design, we 
have compared its results with those of equal 
radius increment (Fig. 2(b)). 
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(a) InT field in non-uniform coarse grid. 
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(b) InT field in uniform coarse grid. 

Fig. 2 Geometry of the coarse grid: (a) non-equal 
radius increment and (b) equal radius 
increment. 
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2.3 Computation of equivalent transmissivity 

We extend the concept of skin (Gomez-
Hernandez and Journel, 1994) to the computation 
of equivalent transmissivity for the coarse grid 
blocks. Two sets of boundary conditions are 
considered for each coarse block: one is in the x 
direction and the other in the y direction (Fig. 3). 
By doing so, we can obtain the Txx and Tyy 
correspondingly through solving (extendedly) 
local flow problems at the fine scale. In addition, 
one of the crucial problems is the configuration of 
boundary conditions for each coarse rectangular 
block. We approximate the head values for each 
side by assigning a Thiem solution to the middle 
point of each edge such that the computationally 
demanding global problem for boundary 
condition configuration is avoided but a relatively 
accurate result is still achieved. The method 
developed here closely follows the seminal idea 
of the work that was presented in a conference 
paper (Fu et al., 2006). 
The procedure for calculating the equivalent 
transmissivity is as follows (Fig. 3): 

1. Define the rectangular block R that includes 
the non-rectangular target block B; 

2. Solve the flow problem with a specified 
boundary condition system which consists of 
non-flow boundary and prescribed head. The 
prescribed heads are approximated by the 
analytical solution for the homogeneous 
media as described as above; 

3. Evaluate the average flow rate QV and the 
average head gradient hV over the non-
rectangular target block B both in x and y 
directions; 

4. Compute the equivalent transmissivity by, 

TV,xx = - QV,xx / hV,xx, 

TV,yy = - QV,yy / hV,yy. 

3. NUMERICAL SIMULATION 

We choose two types of parameters for the 
assessment of upscaled results: one is water 
injections (or, similarly, yields for a pumping well) 
into the wellbore, and the other is travel time of 
conservative tracers. The former can be achieved 
by calculating the flow rate in the wellbore after 
solving flow equations. The latter can be 
accomplished by solving transport equations with 
the aid of the random walk particle tracking 
method. 

3.1 Flow and transport simulation 

The flow problem is solved by tailoring the block-
centered finite-difference simulator to the radial 
flow case (Fu, 2008). To avoid the discretization 
error, all the simulations are performed at the fine 
scale. The transmissivity at the interface between 
cells are computed using harmonic averages of 
the adjacent blocks. We model the radial flow to a 
well by specifying fixed heads at the wellbore and 
at the exterior circular boundary, i.e., hw=10 and 
he=0, respectively. It models the case of an 
injection well or source configuration since the 
pressure at wellbore is higher than that of the 
surroundings. 
We prefer an injection well to a pumping well on 
the basis of the consideration that the latter will 
have a rather lower particle capture rate when we 
employ the particle tracking scheme to solve 
transport problems, which will undermine the 
reliability of solutions. Our experience shows that 
characteristics of flow and transport around an 
injection well have no obvious difference from 
those surrounding a pumping well. Second, we 

 
(a) Computation of Tv,xx (b) Computation of Tv,yy 

Fig. 3 Configuration of boundary conditions for the coarse grid: (a)TV,xx, (b) TV,yy. 
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intentionally impose a prescribed head boundary 
at the exterior radius since we reason that its 
influence is not significant when the outer radius 
is placed a few correlation lengths, e.g., ten as in 
this study, away from the well (Axness and 
Carrera, 1999). Finally, we choose a constant 
head at the wellbore as an evaluation criterion not 
only because it is widely used in the engineering 
practice but also because it is the easiest way to 
modeling the steady flow.  
The transport equation solver adopts the random 
walk particle tracking scheme developed by Fu 
(2008). Two thousand particles released from the 
wellbore are followed until they arrive at the 
control circle, which is set 100 units away from 
the wellbore. Because the pressure near the 
wellbore is higher than that far away, it ensures 
that all particles move from the wellbore to the 
exterior boundary. It evidently overcomes the 
difficulty of rather lower particle capture rate, 
which is common in employing the particle 
tracking scheme to solve the transport equations. 
By doing so, a stable solution can be obtained. 

3.2 Computation of well discharge/recharge 

In this study, the well injection is calculated by 
numerically integrating Darcian velocity along 
the surface surrounding the wellbore, 

Qw=q(θ)dθ, 

where q(θ) is the component of Darcian velocity 
around the wellbore. To ease the complexity of 
problems, we assume that property values at the 
wellbore are the same as those at the well block. 

3.3 Computation of travel time 

Well discharge or recharge reasonably reflects an 
average effect of heterogeneities in porous media. 
But it can not sufficiently display the variation of 
heterogeneity. Travel time of tracers computed by 
particle tracking scheme has a more powerful 
ability to do so. This is because the evolution of a 
solute plume is more sensitive to perturbations of 
the hydraulic conductivity and head field. There 
exist two ways to evaluating the upscaling 
approaches in terms of travel time: (1) compare 
travel time of single realization to check their 
accuracy; and (2) compare several realizations to 
check their robustness. We adopt both of these 
two methods. Due to the difficulty of comparing 
the whole breakthrough curve for all realizations, 
we only sample several typical points from the 
breakthrough curve (BTC), e.g., t5%, t25%, t50% and 
t95%, which account for the early, middle and late 
arrival time. 

It is worth emphasizing that the selection of the 
most appropriate part of BTC is of importance in 
engineering environmental operations, e.g., to 
monitor the extent and degree of groundwater 
contamination from a known source (Fu and 
Gomez-Hernandez, 2009b). t5% better reproduces 
the earliest part of the reference BTC and 
represents the fastest particles arriving at the 
control plane as needed for the design of 
radioactive underground repository. The earliest 
arrivals in the BTC follow the fastest pathways 
between the release source and the control plane, 
which are dominated by preferential flow and 
reactive transport paths. Failing to account for 
such cases will yield a too conservative 
conclusion in risk analysis in that the real arrival 
time may be much faster than that estimated 
(Gomez-Hernandez and Wen, 1998). t25% and t75% 
reproduce the middle part of the reference BTC 
and reflect the portion of particles arriving to the 
control plane with high frequency. Public officials 
assessing health risks associated with contaminant 
exposure in a drinking water supply system may 
be most concerned with this parameter. t95% 
reproduces the tail part of the reference BTC and 
denotes the slowest particles arriving to the 
control plane as needed for mass removal 
calculations in remediation problems. The late 
travel times reflect a more integral behavior, or 
even flow and reactive transport barriers. An 
aquifer remediation design without considering 
such feature may fail because the resident 
contaminants will be removed more slowly than 
expected (Wagner and Gorelick, 1989). 

4. RESULTS 

Four types of coarsening techniques are assessed 
in this section: (a) the proposed scheme as 
previously stated (named proposal), (b) traditional 
geometric average from the fine scale in the 
framework of non-uniform grid (called GM), (c) 
non-upscaled method (abbreviated to NP), and (d) 
the geometric average from the fine scale in the 
framework of uniform grid (shortened to UG). 
The second one, GM, assigns the coarse 
conductivity to be the geometric mean of support 
cells contained in the coarse element. This is the 
simplest and traditional method for upscaling 
uniform flow. We present the results here with 
two aims: one is to check its efficiency under the 
radial flow conditions, and the other is to compare 
its results with the proposed approach. The third 
one, NP, simply assigns the conductivity in the 
coarse element to be the point value at the coarse 
element centroid or to be the conductivity of the 
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support scale element closest to the centroid when 
the field is generated at a fine support scale. The 
last technique, UG, is done the same way as the 
second but only distinctly with uniform grid 
intervals. 
Flow and transport results from the four types of 
techniques are presented in three scenarios: the 
first is multi-Gaussian conductivity fields with 
isotropic structures; the second is multi-Gaussian 
conductivity fields with anisotropic structures; 
and the last one is non-Gaussian conductivity 
fields with anisotropic structures. 

4.1 Multi-Gaussian fields with isotropic 
structures 

One hundred lnK(x) fields are generated by 
GCOSIM3D, each of them with a correlation 
length equal to ten in both x and y directions, i.e., 
x=y=10, and the expected variances more than 
one, i.e., lnK(x)

2=2. The lnK(x) fields are scalar, 
that is, the conductivity value in the x direction 
are the same as those in the y direction, i.e., 
lnKxx=lnKyy. The mean of lnK(x) is set to zero, i.e., 
E[lnK(x)]=0. The flow rates of the wellbore are 
computed on the fine scale named reference  
 

values. Then, the fine-scale fields with 801×801 
grids are upscaled to those with 12×10 coarse 
grids in the same way as described above. The 
fluxes over the wellbore are computed at the 
coarse scale for four different coarsening 
approaches, namely proposal, GM, NP and UG. 
Fig. 4 shows the relationship of wellbore fluxes 
between the reference fluxes and those using the 
four different approaches. Fig. 4(a) displays one 
hundred wellbore fluxes by the proposed 
upscaling approach compared to those of 
reference fine scales. The average flux of one 
hundred realizations is 17.537 for reference fields 
and 17.012 for the proposal method with relative 
error of only 3%. It shows that the upscaled 
values are a rather reasonable approximation. 
Note, moreover, that the x and y mean values are 
close to each other, meaning that this method is 
unbiased, that is, the upscaled Q tends to be close 
to the reference Q in the mean. Fig. 4(b) shows 
the performance of the traditional geometric mean 
method. The correlation and rank correlation 
coefficient have a slight decrease but still more 
than 99%. It seems that the geometric mean 
method is quite efficient and robust in upscaling 
radial flow in the near-well region for a scalar  
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Fig. 4 Wellbore fluxes cross relationship between the fine scale and the coarse scale of multi-Gaussian 
transmissivity fields with isotropic structures. 
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log-conductivity field with isotropic structures. 
Fig. 4(c) plots the result of the NP method. The 
correlation coefficient is only 73%. Obviously the 
reproduction ability is worse than that of the GM 
method. Fig. 4(d) is the result of the UG method, 
i.e., that with a uniform interval grid. The 
wellbore fluxes calculated from the coarse grid 
are severely deviated from those of the fine grid. 
Although the correlation coefficient is up to 88%, 
the mean of wellbore fluxes has a rather high 
error of up to 20%. Such apparent error is 
intolerable for the computation of well yields. 
The similar average effect of upscaled 
heterogeneities can be observed from the mean 
breakthrough time after solving solute transport 
problems. Fig. 5 plots the average breakthrough 
times of different coarse fields versus those of 
fine reference fields. Fig. 5(a) shows the average 
breakthrough times of one hundred realizations 
calculated by the proposed upscaling approach. 
Their correlation coefficient with those of 
reference fields is up to 99% and the relative 
average error is only 1.3%. The GM method also 
provides rather acceptable results as shown in Fig. 
5(b). The relative average error is 1.2% and the 
correlation coefficient is a little bit worse but still  

 
more than 98%. The NP method produces 
unpleasant results as shown in Fig. 5(c). Although 
the average error is quite low only with 1% owing 
to the randomness of sampling, the solutions are 
too unstable with the correlation coefficient of 
only 68%. The UG method has the results with a 
better correlation coefficient of almost of 85%, 
but the average error is up to 16%. In summary, 
the first two upscaling schemes produce quite 
satisfactory results. 
Unlike the well discharge or recharge and the 
average breakthrough time, which are only overall 
effects of field fluctuations, a whole breakthrough 
curve can provide a better review of upscaling 
results because it can adequately sample the 
spatial variation of heterogeneous fields. Fig. 6 
gives a comparison of five breakthrough curves 
from a typical realization. The results from the 
NP and UG methods obviously deviate from that 
of the reference fine scale. The proposed 
approach has a slightly better capability of 
reproduction than the GM method. For this single 
realization, the proposed method produces better 
results at the early and middle arrival time. 
In order to further inspect the stability of the 
proposed approach in reproducing the 
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Fig. 5 Average breakthrough time cross relationship between the fine scale and the coarse scale of multi-Gaussian 
transmissivity fields with isotropic structures. 
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breakthrough curve of reference fields, we sample 
four typical points, i.e., t5%, t25%, t75%, and t95%, 
from the breakthrough curve and compare them 
with those of the GM method. Fig. 7 illustrates 
the comparison of the breakthrough curve 
matching with reference fields between these two 
methods. The left column plots the matching of 
the proposed method from all one hundred 
realizations, and those of the GM method are 
listed in the right column. As for the average 
breakthrough error, the proposed approach gains 
some advantage over the GM method: almost all 
four sample points of the former have closer 
values to the reference ones than those of the 
latter. Moreover the stability of the latter has no 
diminishment in general; their correlation 
coefficients maintain at about 90%. 

4.2 Multi-Gaussian fields with anisotropic 
structures 

One hundred lnK(x) fields are generated by 
GCOSIM3D, each of them with a correlation 
length equal to ten in the x direction and five in 
the y direction, i.e., x=10 and y=5. Their 
expected variances are kept more than one, i.e., 
lnK(x)

2=2. The lnK(x) fields are constant vectorial, 
that is, the lnK(x) values in the y direction are one 
half of those in the x direction, i.e., lnKxx=lnKyy/2. 
The mean of lnK(x) is set to zero, i.e., 
E[lnK(x)]=0. The fluxes over the wellbore are 
computed for the fine-scale field and four 
different coarse fields in the same manner as in 
the first scenario. 
Fig. 8 shows the cross relationship of the wellbore 
fluxes between the reference and four different 
upscaling approaches. Fig. 8(a) exhibits one 
hundred wellbore fluxes via the proposed 
upscaling approach with comparison to those of 
the reference fine scales. The average flux of one 
hundred realizations is 12.469 for reference fields 
and 12.077 for the proposed method with a 
relative error of only 3%. It shows that the 
upscaled values are quite close to the actual case. 
Moreover, the correlation and rank correlation 
coefficient between two types of fluxes are more 
than 99%, which demonstrates the robustness of 
this approach. Fig. 8(b) indicates the performance 
of the traditional geometric mean method. The 
correlation and rank correlation coefficient have a 
little decrease but still close to 99%. Fig. 8(c) 
plots the result of the NP method. The correlation 
coefficient is only 71%. Fig. 8(d) is the results of 
the UG method, which obviously underestimates 
the actual values. The mean of wellbore fluxes 

has a rather high error up to 19%, although the 
correlation coefficient reaches 88%. 
Fig. 9 plots the average breakthrough times of 
different upscaled fields versus those of reference 
fields with anisotropic structures. Fig. 9(a) shows 
the average breakthrough times of one hundred 
realizations from the proposed upscaling 
approach. The correlation coefficient with those 
of the reference fields is up to 99% and the 
relative average error is only 1.3%. The GM 
method also provides acceptable results as shown 
in Fig. 9(b). The relative average error is 1.2% 
and the correlation coefficient is a little bit worse 
but still more than 98%. The NP method produces 
unpleasant results as in Fig. 9(c). Although the 
average error is only 1% owing to the randomness 
of sampling, the stability is too low: the 
correlation coefficient is only 68%. The UG 
method has results with a better correlation 
coefficient of almost 85%, but with the average 
error up to 16%. The last two methods are 
obviously unsuccessful in reproducing the 
average breakthrough time. 
Fig. 10 gives a comparison of the all five 
breakthrough curves from a typical realization. 
The NP method fails to reproduce the result of the 
reference field. The proposed method has a better 
result than the GM method, especially at the late 
arrival time for this typical realization. 
Fig. 11 shows the comparison of the breakthrough 
curve matching with reference fields between the 
proposed method and the GM method. As for the 
average breakthrough error, the proposed 
approach has a quite noticeable gain over the GM 
method. All four sample points of the former have 
closer values to the reference ones than those of 
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Fig. 6 Typical breakthrough curves of the fine scale 

and the coarse scales of multi-Gaussian 
transmissivity field with isotropic structures. 
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Fig. 7 Comparison of breakthrough curve reproduction of multi-Gaussian transmissivity fields with isotropic 

structures: (a) the proposed method (left column), (b) the geometrical mean (right column). 
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Fig. 8 Wellbore fluxes cross relationship between the fine scale and the coarse scale of multi-Gaussian 
transmissivity fields with anisotropic structures. 
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Fig. 9 Average breakthrough time cross relationship between the fine scale and the coarse scale of multi-Gaussian 
transmissivity fields with anisotropic structures. 



Engineering Applications of Computational Fluid Mechanics Vol. 5, No. 1 (2011) 

60 

Time

C
D

F

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

reference
proposal
GM
NP
UG

Breakthrough curve (realization no.1)

 
Fig. 10 Typical breakthrough curves of the fine scale 

and the coarse scales of multi-Gaussian 
transmissivity field with anisotropic structures. 

 
the latter. The error reduction is 16.6% for the 
first point t5%, 39.9% for the second t25%, 25.6% 
for the third t75%, and 51.4% for the fourth t95%. 
This enhancement is not observed so clearly as in 
the case of isotropic structure. Moreover the 
stability of the proposal has no decrease. The 
correlation coefficients are over 90% for all 
sample points. This is true especially for 
reproducing the early arrival particles. 

4.3 Non-Gaussian fields with anisotropic 
structures 

One hundred lnK(x) fields are generated by 
ISIM3D, each of them with a correlation length 
equal to ten in the x direction and three in the y 
direction, i.e., x=10 and y=3. The mean and 
variance of  lnK(x) is set to zero and two, i.e., 
E[lnK(x)]=0 and lnK(x)

2=2. The lnK(x) fields are 
constant vectorial, that is, the lnK(x) values in the 
y direction are one half of those in the x direction, 
i.e., lnKxx=lnKyy/2. The fluxes over the wellbore 
are computed for the fine-scale field and four 
different coarse fields in the same manner as in 
the first scenario. 
Fig. 12 shows the cross relationship of wellbore 
fluxes between the reference and four different 
upscaling approaches. Fig. 12(a) exhibits one 
hundred wellbore fluxes via the proposed 
upscaling approach comparing to those of 
reference fine scales. The average flux of one 
hundred realizations is 43.976 for reference fields 
and 35.292 for the proposed method with a 
relative error of 19.7%. The correlation and rank 
correlation coefficient between the two types of 
fluxes are more than 99%, which demonstrates 

the robustness of this approach. Fig. 12(b) 
indicates the performance of the traditional 
geometric mean method. The correlation and rank 
correlation coefficient have a little decrease but 
still close to 99%. Fig. 12(c) plots the result of the 
NP method. The average flux of one hundred 
realizations is 43.976 for reference fields and 
42.483 for the proposed method with a relative 
error of 3%. The correlation coefficient is still up 
to 90%. Fig. 12(d) is the results of the UG method 
which distinctly underestimates the actual values. 
Fig. 13 plots the average breakthrough times of 
different upscaled fields versus those of reference 
fields with anisotropic structures. Fig. 13(a) 
shows the average breakthrough times of one 
hundred realizations from the proposed upscaling 
approach. The correlation coefficient with those 
of the reference fields is up to 97% and the 
relative average error is only 1.4%. The GM 
method also provides acceptable results as shown 
in Fig. 13(b). The relative average error is 9.3% 
and the correlation coefficient is a little bit worse 
but still more than 97%. The NP method produces 
unpleasant results as in Fig. 13(c). The UG 
method has the results almost the same as those of 
the NP method. The last two methods are 
obviously unsuccessful in reproducing the 
average breakthrough time. 
Fig. 14 gives a comparison of the all five 
breakthrough curves from a typical realization. 
Due to the peculiarity of non-Gaussian field, there 
is no upscaling method capable of reproducing 
the reference field completely. The results of the 
four coarse girds, as shown in this typical 
realization, obviously deviate from those of the 
reference fine grid. But generally, the proposed 
method produces a better result than the others. 
Fig. 15 shows the comparison of the breakthrough 
curve matching with reference fields between the 
proposed method and the GM method. As for the 
average breakthrough error, the proposed 
approach has a quite noticeable gain over the GM 
method. All four sample points of the former have 
closer values to the reference ones than those of 
the latter. The error reduction is 47% for the first 
point (t5%), 63.3% for the second (t25%), 37.3% for 
the third (t75%), and 83.4% for the fourth (t95%). 
This enhancement is more obvious than that of 
multi-Gaussian fields. 

5. DISCUSSION AND CONCLUSIONS 

This paper compares two types of geostatistical 
techniques for generating hydraulic conductivity 
fields at the near-well region by assuming spatial 
structures. One creates property fields directly on  
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Fig. 11 Comparison of breakthrough curve reproduction of multi-Gaussian transmissivity fields with anisotropic 
structures: (a) the proposed method (left column), (b) the geometrical mean (right column). 



Engineering Applications of Computational Fluid Mechanics Vol. 5, No. 1 (2011) 

62 

 

pr
op

os
al

reference

(A) Q reference vs proposal

0. 20. 40. 60. 80. 100.

0.

20.

40.

60.

80.

100.
Number of data 100
Number plotted 100

X Variable: mean 43.976
std. dev. 20.527

Y Variable: mean 35.292
std. dev. 16.246

correlation .997
rank correlation .997

G
M

reference

(B) Q reference vs GM

0. 20. 40. 60. 80. 100.

0.

20.

40.

60.

80.

100.
Number of data 100
Number plotted 100

X Variable: mean 43.976
std. dev. 20.527

Y Variable: mean 36.481
std. dev. 15.969

correlation .994
rank correlation .992

 
(a) Q reference vs proposal (b) Q reference vs GM 

N
P

reference

(C) Q reference vs NP

0. 20. 40. 60. 80. 100.

0.

20.

40.

60.

80.

100.
Number of data 100
Number plotted 100

X Variable: mean 43.976
std. dev. 20.527

Y Variable: mean 42.483
std. dev. 20.465

correlation .904
rank correlation .929

U
G

reference

(D) Q reference vs UG

0. 20. 40. 60. 80. 100.

0.

20.

40.

60.

80.

100.
Number of data 100
Number plotted 100

X Variable: mean 43.976
std. dev. 20.527

Y Variable: mean 39.137
std. dev. 11.949

correlation .886
rank correlation .889

 
(c) Q reference vs NP (d) Q reference vs UG 

Fig. 12 Wellbore fluxes cross relationship between the fine scale and the coarse scale of non-Gaussian 
transmissivity fields with anisotropic structures. 
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Fig. 13 Average breakthrough time cross relationship between the fine scale and the coarse scale of non-Gaussian 
transmissivity fields with anisotropic structures. 
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Fig. 14 Typical breakthrough curves of the fine scale 

and the coarse scales of non-Gaussian 
transmissivity field with anisotropic structures. 

 
the coarse scale and the other reconstructs such 
fields via upscaling from the corresponding fine 
scale. The results from flow and transport 
simulations demonstrate that the directly 
generated field can not effectively capture the 
spatial variations of hydraulic conductivity while 
the upscaled field can do. Therefore, the 
requirement of upscaling in the near-well region 
is apparent. 
Previous studies indicate that the flow to a well is 
strongly influenced by local conditions around the 
wellbore and is less influenced by fluctuations far 
away from the well, e.g., Sanchez-Vila et al. 
(1997) and Axness and Carrera (1999). At the 
radial flow zone near the wellbore, therefore, one 
should adopt a different upscaling scheme than 
that of the linear flow zone far away from the well 
in order to correctly answer this response. This 
study shows that the non-uniform radial coarse 
grid can effectively capture this character. 
We further extend the upscaling approach of 
Gomez-Hernandez and Journel (1994), which was 
proved efficient under the uniform flow condition, 
to the convergent or divergent flow case by 
designing proper radial grids that sufficiently 
account for the flow patterns in the near-well 
region. The proposed scheme gains some 
improvement over the simple geometric mean. 
Several stochastic models with a single well 
system are chosen to illustrate the efficiency and 
robustness of this method. 
Numerical simulations from mass transport 
demonstrate that the simple geometric mean can 
reasonably reproduce the results of the reference 
fine scale for multi-Gaussian models, either 

statistically isotropic or weakly anisotropic. But it 
fails to do so for non-Gaussian models. The 
multi-Gaussian model implies the minimal spatial 
correlation of extreme values, which is critical for 
mass transport and may be in contradiction with 
some geological reality, e.g., channeling. 
Connectivity patterns of extreme conductivity 
values can not be represented by a multi-Gaussian 
model. Gomez-Hernandez and Wen (1998) 
proved that the groundwater travel time predicted 
by the multi-Gaussian model could be ten times 
slower than that by non-Gaussian models. The 
reason is that, for a non-Gaussian model, the 
simple geometric mean weakens the 
heterogeneity of conductivity field while the 
proposed upscaling method effectively preserves 
such extreme values, with high connectivity either 
at the extremely high values or at the extremely 
low values, by solving local flow problems. On 
the other hand, for a multi-Gaussian model where 
the spatial variability is not so high as in the non-
Gaussian model, the simple geometric mean can 
produce quite similar results as the proposed 
approach. We notice that the proposed method 
has not sufficiently reproduced the result of the 
reference field. A promising improvement is to 
use full tensorial transmissivity fields, i.e., with 
the introduction of TV,xy and TV,yx. 
Finally, several conclusions from this study are 
worth repeating as follows: (1) Upscaling 
transmissivity in the near-well region can 
efficiently preserve the main features of flow and 
transport in the heterogeneous media. (2) The 
proposed method improves the ability of 
predicting well discharge or recharge and solute 
transport in terms of the coarse grid. Several 
synthetical examples prove that the proposed 
upscaling approach is efficient and robust both for 
flow simulation and for transport simulation. (3) 
The geometric mean of log conductivity is an 
alternative approach in upscaling transmissivity in 
the near-well region. This is true especially when 
the log-conductivity is a multi-Gaussian field. (4) 
Uniform gird fails to capture the flow and 
transport features in the near-well region. 
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Fig. 15 Comparison of breakthrough curve reproduction of non-Gaussian transmissivity fields with anisotropic 

structures: (a) the proposed method (left column), (b) the geometrical mean (right column). 
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