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Abstract

A methodology for transport upscaling of three-dimensional highly heterogeneous formations is developed and

demonstrated. The overall approach requires a prior hydraulic conductivity upscaling using an interblock-

centered full-tensor Laplacian-with-skin method followed by transport upscaling. The coarse scale transport

equation includes a multi-rate mass transfer term to compensate for the loss of heterogeneity inherent to

all upscaling processes. The upscaling procedures for flow and transport are described in detail and then

applied to a three-dimensional highly heterogeneous synthetic example. The proposed approach not only

reproduces flow and transport at the coarse scale, but it also reproduces the uncertainty associated with the

predictions as measured by the ensemble variability of the breakthrough curves.
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1. Introduction1

Upscaling flow and transport has been disregarded by some on the basis that it is not needed because2

our computers are capable of handling larger and larger numerical models. However, we know by experience3

that there will always be a discrepancy between the scale at which we can characterize the medium, and the4

scale at which we can run our numerical codes. This discrepancy renders upscaling necessary in order to5

transfer the information collected at the measurement scale into a coarser scale better suited for numerical6

modeling.7

In the last decades, many reviews have been published dealing with upscaling but mostly focusing on8

hydraulic conductivity upscaling [e.g., 57, 41, 48]. In comparison with the effort devoted to the upscaling9

of hydraulic conductivity, less attention has been paid to upscaling for solute transport modeling. For10
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Jaime Gómez-Hernández)

Preprint submitted to Advances in Water Resources December 31, 2010



example, Dagan [11] noted that hydraulic conductivity upscaling induces a loss of information and advised11

to compensate for this loss by splitting the solute plume into subplumes with effective dispersivities derived12

from stochastic theory. Rubin et al. [44] developed an upscaling method to derive effective block-scale13

dispersivities using a perturbation method, which accounts for the loss of subgrid variability in the upscaled14

numerical model. These two approaches are based on analytical techniques, which have a limited range15

of application because of their underlying assumptions. Numerical methods, on the contrary, are more16

general, since they are not restricted by the geometry of the domain, the type of boundary conditions, or the17

degree of heterogeneity. Scheibe and Yabusaki [49] examined the impact of hydraulic conductivity upscaling18

using the power-averaging method with different exponents [33]. They found that although flows and heads19

can be preserved after upscaling the hydraulic conductivities, the discrepancy on transport predictions is20

substantial. Cassiraga et al. [7] applied the simple-Laplacian technique [57] to upscale hydraulic conductivity21

and evaluated the impact of upscaling on solute transport for various degrees of heterogeneous media in22

two dimensions. They concluded that the prediction of solute transport at the coarser scale will provide23

reasonably good estimates of the early particle arrival times but will largely underestimate the late travel24

times; the explanation for this behavior was the existence and connectedness of extreme-valued hydraulic25

conductivities at the fine scale, which are lost after upscaling. To overcome this inability, Fernàndez-Garcia26

and Gómez-Hernández [16] extended this study and introduced an enhanced block dispersion tensor to27

compensate for the loss of information. They found that, with this approach the median travel time could28

be reproduced but that the tails of the breakthrough curves were largely underestimated. They suggested29

that a mass transfer process should be introduced at the coarse scale to make up for the information at the30

small scale that cannot be resolved by the upscaled model in heterogenous media. Fernàndez-Garcia et al.31

[18] examined the use of a mass transfer process with different memory functions as part of the constitutive32

transport equation at the coarse scale, in conjunction with hydraulic conductivity upscaling with the simple-33

Laplacian technique in 2D. The results showed that considering a double-rate or a truncated power-law mass34

transfer model at the coarse scale was enough to properly describe the ensemble average behavior of the main35

features associated with the breakthrough curves. However, the uncertainty associated with the predictions36

is underestimated after upscaling due to the lack of memory in space during the upscaling process.37

It is important to note that the use of a mass transfer process as part of the constitutive equation for38

transport at the coarse scale model has also been proposed by Guswa and Freyberg [26], Zinn and Harvey39

[64], Willmann et al. [59] and Frippiat and Holeyman [20]. However, these studies mainly focus on upscaling40

up to a completely homogeneous aquifer. Guswa and Freyberg [26] conclude that a mass exchange term41
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is needed only if the equivalent hydraulic conductivity is larger than the geometric mean of the underlying42

conductivity field, Zinn and Harvey [64] suggest that a mass exchange is necessary and conclude that the43

multi-rate model should better compensate for the loss of resolution than the single-rate model, and later44

Fernàndez-Garcia et al. [18] demonstrated that, indeed, the double-rate model and the power-law mass45

transfer model outperform the single-rate model for upscaling purposes.46

In the current work, we extend to 3D the study by Fernàndez-Garcia et al. [18], who proposed a transport47

upscaling method using a multi-rate mass transfer. We also introduce an elaborated interblock Laplacian-48

with-skin hydraulic conductivity upscaling approach, for optimal reproduction of the flows at the coarse scale.49

Although the extension of the methodology to three-dimensions may appear as conceptually straightforward,50

we have found that it is necessary to make some adjustments to efficiently reproduce the breakthrough curves.51

Additionally, unlike most studies that focused primarily on a single realization analysis, the present study52

analyzes the upscaling at the ensemble level in order to analyze also how prediction uncertainty upscales.53

The outline of this paper is as follows. We first introduce the flow and transport governing equations54

at two different support scales. Next, the importance of using an interblock Laplacian-with-skin hydraulic55

conductivity upscaling is illustrated, with emphasis on the numerical implementation in three-dimensions.56

We then describe the transport upscaling with mass transfer in two dimensions and discuss the modifications57

of the method for its application in three-dimensions. Finally, numerical tests demonstrate the accuracy and58

efficiency of the method. We end with a discussion on the weaknesses and strengths of the proposed approach,59

with an indication of avenues for improvement.60

2. Methodology61

2.1. Background62

2.1.1. Fine scale equations63

At the fine scale, denoted herein by the superscript f , under steady-state flow conditions and in the64

absence of sinks and sources, the flow equation of an incompressible fluid in saturated porous media in a65

Cartesian coordinate system can be obtained by combining the continuity equation and Darcy’s law [1]:66

∇·
[
Kf (xf )∇hf (xf )

]
= 0 (1)

where hf [L] is the piezometric head; Kf [LT−1] is a symmetric positive-definite rank-two tensor; xf represents67

the fine scale coordinates.68
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Similarly, using the solute mass conservation equation and assuming that Fick’s law is appropriate at the69

local scale, the three-dimensional advective-dispersive equation (ADE) for solute transport is often written70

as [19]:71

φf ∂C
f (xf , t)

∂t
= −∇·

[
qf (xf )Cf (xf , t)

]
+ ∇·

[
φfDf∇Cf (xf , t)

]
(2)

where Cf [ML−3] is the dissolved concentration of solute in the liquid phase; φf [dimensionless] is the porosity;72

qf [LT−1] is the Darcy velocity given by qf (x) = −Kf (x)∇hf (x); Df [L2T−1] is the local hydrodynamic73

dispersion coefficient tensor with eigenvalues (associated with the principal axes, which are parallel and74

perpendicular to the direction of flow) given by [5]:75

Df
i = Dm + αi

|qf |

φf
(3)

where αi are the local dispersivity coefficients, more specifically, αL, α
H
T and αV

T are, respectively, the lon-76

gitudinal dispersivity coefficient and the transverse dispersivity coefficient in the directions parallel and77

orthogonal to flow, and Dm is the effective molecular diffusion coefficient.78

The fine scale transport equation (2) is only valid if the Fickian assumption is satisfied at the small scale.79

Here, we assume that the ADE is capable of reproducing the tracer spreading at the fine scale. Salamon80

et al. [47] at the MADE site and Riva et al. [42] at the Lauswiesen site have shown that for cases in which,81

apparently, the transport spreading does not look Fickian at the macroscopic scale, the ADE equation is82

applicable if the small-scale variability of hydraulic conductivity is properly modeled at the smallest scale83

possible.84

2.1.2. Coarse scale equations85

There are two main approaches to get the coarse scale equations. On one hand, those who work analyt-86

ically from the fine scale equations and apply regularization techniques to derive the equations that would87

express the state of the system on a larger scale. Examples of these works can be found in [9, 39, 32, 25].88

On the other hand, those who empirically postulate the coarse scale expression (after the fine scale one) and89

then try to determine the parameter values of the postulated coarse scale expressions. Examples of these90

works can be found in [43, 24, 23, 26]. In the first approach, the authors generally obtain equations which are91

nonlocal, that is, the parameters associated to a given block at the coarse scale depend not only on the fine92

scale parameters values within the block, but also on the values outside the block. This fact is recognized93

by some authors using the second approach when the coarse block parameters are computed on local flow94
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and/or transport models which extend beyond size of the block being upscaled, so that the influence of the95

nearby cells is captured [57]. We have opted, in this paper, for the second approach.96

At the coarse scale, denoted herein by the superscript c, the flow equation is taken to have the same97

expression as the fine scale equation, but with Kf replaced by an upscaled hydraulic conductivity tensor Kc:98

∇·
[
Kc(xc)∇hc(xc)

]
= 0 (4)

where hc[L] designates the coarse scale piezometric head, and xc refers to the coarse scale coordinates.99

In earlier studies of transport at the coarse scale, only upscaling of the flow controlling parameters was100

performed [e.g., 49, 7, 37]. That is, upscaled Kc values were derived, and the same advection dispersion101

equation was used both at the fine and coarse scales. However, recent findings have demonstrated that102

the transport equation to be used at the coarse scale should include an enhanced dispersion tensor and a103

fictitious mass exchange process as a proxy to represent the mass transfer processes taking place within the104

coarse block and largely associated with the within-block heterogeneity [e.g., 64, 16, 59, 18].105

We have chosen the multi-rate mass transfer model (MRMT) [27, 6] as the mass exchange expression to106

be used at the coarse scale. Alternative models such as the continuous time random walk [3] or fractional107

derivatives [2] could be used as well. Fernàndez-Garcia et al. [18] discussed the use of the MRMT for upscaling108

purposes in 2D, and its versatility to treat complex heterogeneities; furthermore, it was successfully applied109

at the MADE aquifer by Feehley et al. [15] and at the Lauswiesen site by Riva et al. [42]. Many transport110

codes based on the MRMT model [e.g., 61, 6, 45, 50] indicate the great potential of this approach.111

The upscaled transport equation, including the MRMT model, can be described by the following governing112

equation [27, 6]:113

φc
m

∂Cc
m(xc, t)

∂t
= −∇·

[
qc(xc)Cc

m(xc, t)
]
+ ∇·

[
φc

mDc∇Cc
m(xc, t)

]
− φc

mΓ(xc, t) (5)

where φc
m [dimensionless] defines the pore volume fraction of the mobile domain; Cc

m[ML−3] is the solute114

concentration in the mobile region of the coarse block; qc[LT−1] is the Darcy velocity derived from the115

upscaled hydraulic conductivity; Dc[L2T−1] is an enhanced block dispersion tensor, which includes the fine116

scale local hydrodynamic dispersion (αi) and a macrodispersivity term (Ai) [16, 18]:117

Dc
i = Dm + (αi +Ai)

|qc|

φc
m

(6)

where Dc
i are the eigenvalues of Dc associated with the principal axes, which are parallel and perpendicular118
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to the flow direction. The additional mass exchange term Γ(xc, t) [ML−3T−1] can be expressed in terms of119

mobile concentrations by using a convolution product with a memory function g(xc, t) [T−1] [6, 28]:120

Γ(xc, t) = β(xc)

∫ t

0

g(xc, τ)
∂Cc

m(xc, t− τ)

∂τ
dτ

g(xc, t) =

∫
∞

0

αf(xc, α)e−αtdα

(7)

where β(xc) [dimensionless] is the so-called capacity ratio; α [T−1] is a continuous positive variable repre-121

senting the multiple mass transfer rate coefficients, and f(xc, α) [T ] denotes the probability density function122

of the mass transfer rate coefficients. Therefore, once f(xc, α) is given, the MRMT model equation (5) can123

be numerically solved. It is worth emphasizing that, the macrodispersivity term Ai and the mass transfer124

model are introduced as fictitious processes to make up for the presence of low and high conductivity zones125

which are smeared out after upscaling, and for the diffusive-like process occurring within the coarse block126

due to the heterogeneity. In this respect, it is consistent with Zinn and Harvey [64], Willmann et al. [59],127

and Riva et al. [42] who used the MRMT model to account for the subgrid heterogeneity in the upscaled128

transport model.129

2.2. Hydraulic conductivity upscaling using the Laplacian-with-skin method130

In contrast with the previous studies by Fernàndez-Garcia and Gómez-Hernández [16] and Fernàndez-131

Garcia et al. [18] that used the simple-Laplacian scheme to compute the block equivalent conductivities in two132

dimensions, here, we use a more sophisticated interblock Laplacian-with-skin three-dimensional full-tensor133

hydraulic conductivity upscaling technique, which is an extension of an earlier two-dimensional approach134

[21]. In essence, the Laplacian-with-skin upscaling scheme is an improved version of the simple-Laplacian135

approach. With regard to the simple-Laplacian method, Li et al. [37] have already demonstrated that it136

fails to reproduce interblock flow at the coarse scale and further underestimates contaminant spread at the137

MADE site. The major disadvantage of the simple-Laplacian approach is the assumption that the upscaled138

conductivity tensor is diagonal. For the details on the different upscaling processes, the reader is referred to139

the work by Wen and Gómez-Hernández [57], or more recently by Li et al. [37].140

Gómez-Hernández [21] presented the Laplacian-with-skin approach recognizing the nonlocal nature of141

the upscaled conductivity tensor. The skin (a ring of cells surrounding the block) is used to approximate the142

actual boundary conditions around the block being upscaled without having to solve the flow problem for143

the entire aquifer (as previous authors had done, i.e., White and Horne [58]). For each block being upscaled,144

the algorithm consists of three steps: (a) isolate the block, plus a surrounding ring of cells (referred to as the145
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skin), and solve a local flow problem numerically for a set of boundary conditions inducing fluxes in different146

directions across the block; (b) for each boundary condition the spatially-averaged flow and gradient within147

the block are calculated; (c) and then, the components of the upscaled hydraulic conductivity tensor are148

determined by solving the following overdetermined system of linear equations by a standard least squares149

procedure:150




〈∂h/∂x〉1 〈∂h/∂y〉1 〈∂h/∂z〉1 0 0 0

0 〈∂h/∂x〉1 0 〈∂h/∂y〉1 〈∂h/∂z〉1 0

0 0 〈∂h/∂x〉1 0 〈∂h/∂y〉1 〈∂h/∂z〉1

〈∂h/∂x〉2 〈∂h/∂y〉2 〈∂h/∂z〉2 0 0 0

0 〈∂h/∂x〉2 0 〈∂h/∂y〉2 〈∂h/∂z〉2 0

0 0 〈∂h/∂x〉2 0 〈∂h/∂y〉2 〈∂h/∂z〉2

· · · · · · · · · · · · · · · · · ·

〈∂h/∂x〉n 〈∂h/∂y〉n 〈∂h/∂z〉n 0 0 0

0 〈∂h/∂x〉n 0 〈∂h/∂y〉n 〈∂h/∂z〉n 0

0 0 〈∂h/∂x〉n 0 〈∂h/∂y〉n 〈∂h/∂z〉n




·




Kc
xx

Kc
xy

Kc
xz

Kc
yy

Kc
yz

Kc
zz




= −




〈qx〉1

〈qy〉1

〈qz〉1

〈qx〉2

〈qy〉2

〈qz〉2

· · ·

〈qx〉n

〈qy〉n

〈qz〉n




(8)

where qx qy qz are the components of the Darcy flux q obtained from the local solution of the flow equation;151

angle brackets indicate spatial averaging within the block; subscript n denotes an index referring to the152

different boundary conditions; Kc
xx · · · Kc

zz are the components of the upscaled equivalent conductivity Kc.153

Note that the requirement of symmetry is enforced implicitly [62] in this system of equations.154

Although we are aware of the works by Zijl and Stam [63] and Bierkens and Gaast [4] in which they155

argue that the upscaled conductivity tensor may be non-symmetric, we prefer to maintain symmetry at the156

block level to preserve its physical meaning: that opposite gradient vectors should induce opposite specific157

discharge vectors. Likewise, we enforce positive definiteness, since it is non-physical that the scalar product158

of the gradient vector and the specific discharge be positive (flow never goes upgradient). However, the159

approach would be equally applicable without imposing symmetry on the upscaled conductivity tensor.160

Since we plan to solve the flow equation by finite differences, a further improvement in the hydraulic con-161

ductivity upscaling consists in computing the upscaled hydraulic conductivity tensors at the block interfaces162

rather than at block centers. This is done by isolating an aquifer volume centered at the interface, plus a skin,163

prior to solving the local flow problem [62]. In fact, this suggestion of an upscaled hydraulic conductivity164

based on the interface agrees with the works of Chen et al. [8], Wen et al. [55], and He and Durlofsky [31],165
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who already pointed out that the upscaling of transmissibility (the equivalent to interblock conductivity in166

petroleum engineering) provided a more accurate coarse scale result than permeability upscaling.167

2.3. Transport upscaling using mass transfer168

Both in petroleum engineering and in subsurface hydrogeology, many studies have demonstrated that169

hydraulic conductivity upscaling is not enough to reproduce transport at the coarse scale [e.g., 49, 8, 16].170

We have adopted the method proposed by Fernàndez-Garcia et al. [18] to address this problem, whereby171

the coarse scale transport equation includes a mass transfer term to compensate for the loss of information172

at the coarse scale. The problem we face is replacing a heterogeneous block within which the heterogeneity173

induces solute dispersion by a homogeneous block with enhanced dispersion and an associated multi-rate174

mass transfer process, the parameters of which have to be determined to induce the same solute dispersion175

induced by the within block heterogeneity. To this extent mass transport is solved at the fine scale using a176

particle tracking random walk approach and the residence times of the particles within the block are computed177

resulting in a cumulative distribution of residence times Fτ (τ). The objective of transport upscaling is to178

determine the multi-rate mass transfer parameter resulting in the same residence time distribution. This179

is accomplished by a curve fitting process making use of an approximate solution for the residence time180

distribution of the multi-rate mass transfer transport equation in 1D, F ∗

τ (τ). The Laplacian transform of181

F ∗

τ (τ) is given by [29, 18]:182

F̃ ∗

τ (p) ≈
1

p
exp

[
Lb

(
vm

2Dc
ℓ

−

√
v2

m

4Dc
ℓ
2

+
ψ̃(p)

Dc
ℓ

)]
(9)

where Lb[L] is the mean travel displacement of solute mass particles; the mobile velocity vm[LT−1] is defined183

by:184

vm =
‖qc‖

φc
m

φc
m =

φc
e

1 + β
(10)

and ψ̃(p) is defined by:185

ψ̃(p) = p+ β

∫
∞

0

f(α)
pα

p+ α
dα (11)

p is the Laplace transform variable; f(α) is the density function given in terms of the mass transfer coefficients,186

the expression of which depends on the multi-rate process considered. For instance, for the case of the double-187

rate mass transfer process it is:188

f(α) =
β1

β
δ(α − α1) +

β2

β
δ(α− α2) (12)
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with189

β1 + β2 = β (13)

where β1 and β2 [dimensionless] are the capacities of each immobile phase; α1 and α2 [T−1] are the transfer190

rates in each immobile phase and δ(·) is the Dirac delta.191

We also found that, in order to preserve the mean travel time of the plume to each control plane, it was192

not enough to match the particle residence time distributions for each block but that it was necessary to193

make a local upscaling of the effective porosity. For our purpose it was sufficient to define a coarse scale194

effective porosity φc
e [dimensionless] piecewise in between each pair of control planes as follows:195

φc
e,i =

τ̄f
cp,i − τ̄f

cp,i−1

τ̄c
cp,i − τ̄c

cp,i−1

i = 1, 2 · · ·ncp (14)

where τ̄f
cp,i is the mean travel time at the i control plane computed at the fine scale with porosity φf ; τ̄c

cp,i196

is the average travel time computed with unit porosity at the coarse scale at the ith control plane, and ncp197

is the number of control planes. This estimated effective porosity is an artificial numerical value which also198

compensates for the loss of information in the upscaling process. This need of upscaling the porosity to199

preserve the mean travel times is also reported by Zhang [60] and Fernàndez-Garcia et al. [18].200

For each block, once the particle residence time distribution has been obtained numerically, the model-201

independent nonlinear parameter estimation program, PEST [14], is used to determine the best set of mass202

transfer parameters in equation (9) that matches the distribution Fτ (τ). For this purpose, a penalty function203

is established as follows:204

P (Θ) = ξ1[τ̄ − τ̄∗(Θ)]2 + ξ2[σ
2

τ − σ∗

τ (Θ)
2
]2 +

nq∑

i=1

ωi

[
Fτ (τi) − F ∗

τ (τi,Θ)
]2

(15)

where Θ represents a vector with the transport parameters being estimated (we have noted explicitly the205

dependence of the distribution function on Θ), τ̄ is the average residence time computed from the particle206

distribution, τ̄∗(Θ) is the average residence time of F ∗

τ (τ), which can be derived from equation (9) as [36, 18]:207

τ̄∗(Θ) =
Lb

vm

(1 + β) (16)

στ
2 is the variance of residence time computed from the particle distribution, σ∗

τ (Θ)
2

is the variance of the208
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distribution, which can be derived from equation (9) as:209

σ∗

τ (Θ)
2

=
2Dc

ℓ

v3
m

(1 + β)2Lb +
2Lb

vm

β

∫
∞

0

f(α)

α
dα (17)

nq is the number of particles that travel through the block, and ξ1, ξ2 and ωi are weight coefficients, which210

in this case are all set to 1.211

The PEST code has to evaluate multiple times expression (9) for different sets of the mass transfer212

coefficients being determined; for this purpose we have used the code STAMMT-L [29].213

3. Numerical Evaluation214

3.1. Model Configuration215

Consider a synthetic three-dimensional confined aquifer under a uniform, natural-gradient flow condition,216

as shown in Figure 1, it will be the reference. A set of 30 hydraulic conductivity fields was generated using217

the code GCOSIM3D [22]. The field is parallelepipedic with dimensions of x = 200 m, y = 140 m, and z = 70218

m and a discretization of ∆x = ∆y = ∆z = 1 m. Only the inner domain consisting of 180 × 120 × 60 cells219

will be uniformly upscaled to 18×12×12 blocks, resulting in an overall scale-up factor of 500. The following220

standardized exponential semivariogram was used for the simulation of the isotropic hydraulic conductivity221

field:222

γx(r)

σ2
x

= 1 − exp

[
−

r

λx

]
(18)

where λx [L] is the range with a value of 12 m in all the directions and r [L] is the directional lag distance.223

The variance σ2

x of the natural logarithm of hydraulic conductivity is 4.0 (similar to the one found, for224

instance, at the MADE site [40]), to represent highly heterogeneous media. The aquifer was modeled with225

constant head boundaries at x = 0 m and x = 180 m and with no-flow boundaries at the remaining model226

faces. The average hydraulic gradient induced by the constant head boundaries is 0.01. The porosity is227

assumed constant and equal to 0.3.228

At the fine scale, the five-point block-centered finite-difference groundwater flow model MODFLOW229

2000 [30] was employed to solve the flow equation (1). The interface velocities were calculated, and then230

utilized in the random walk particle tracking code RW3D [17, 46], which was used to solve the fine scale231

transport equation (2). In this approach, the evolution in time of each particle is comprised of a deterministic232

component, which depends only on the local velocity field, and a superposed Brownian motion responsible233

for dispersion. A hybrid scheme is used for the velocity interpolation which provides local as well as global234
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divergence-free velocity fields within the solution domain. Meanwhile, a continuous dispersion tensor field235

provides good mass balance at grid interfaces of adjacent cells with contrasting hydraulic conductivities236

[35, 46]. Furthermore, in contrast to the common constant-time scheme used in random walk modeling, a237

constant-displacement scheme [56], which modifies automatically the time step size for each particle according238

to the local velocity, is employed in order to decrease computational effort.239

At the coarse scale, the nineteen-point block-centered finite-difference groundwater model FLOWXYZ [38]240

was employed to solve the flow equation (4). The most remarkable characteristic of this forward flow simulator241

is the capacity to deal with full conductivity tensors defined at block interfaces. Hydraulic conductivity242

tensors are defined at the block interfaces eliminating the need to average conductivity tensors at adjacent243

blocks to approximate their values at the interfaces. This scheme has been shown to perform better than244

the MODFLOW LVDA package [38], and has been successfully applied in other studies [e.g., 62, 37]. Again,245

the RW3D was used to solve the coarse scale multi-rate transport equation (5) based on the methodology246

presented by Salamon et al. [45]. Mass transfer processes are efficiently incorporated into the particle tracking247

algorithm by switching the state of the particle between mobile/immobile states according to appropriate248

transition probabilities.249

For the sake of simplicity, we neglect dispersion, and only consider advection, at the fine scale, i.e.,250

Dm = 0 and αi = 0. A total of 20000 particles (a number that we have tested yields stable transport251

predictions for this specific case) randomly distributed in a rectangular-shaped area of 60 m width and 30252

m height located orthogonal to the principal flow direction in the plane at x = 20 m were released at time253

t = 0. The variable time step was computed on the basis of a grid Courant number of 0.01. A unit mass254

was assigned to each particle. Control planes are located within the aquifer to measure the mass arrival at255

10 m intervals (see Figure 2).256

Figure 1: A realization of reference lnK field (σ2

lnK
=4.0) overlaid with the discretization of the numerical model at the coarse

scale.

3.2. Flow upscaling results257

Prior to transport upscaling we wish to demonstrate the effectiveness and robustness of the interblock258

Laplacian-with-skin approach to flow upscaling as compared with other methods, such as the block-centered259
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Figure 2: Sketch of transport simulations. The shaded rectangle located in the upstream zone delineates the initial particle
injection zone. Control planes are also shown for measuring the mass fluxes.

simple-Laplacian approach, the interblock-centered simple-Laplacian approach, and the Landau-Lifshitz-260

Matheron conjecture for 3D isotropic media [41]. For this purpose a single realization is analyzed. Our261

goal, as that of any upscaling exercise, is to generate a heterogeneous coarse model which predicts the262

interblock flows as close as possible to those derived from a fine scale simulation. We will focus on interblock263

flow reproduction and disregard the analysis of piezometric heads, since the errors in piezometric head264

reproduction are always much smaller.265

We compare the coarse scale flows obtained after solving the flow equation with the upscaled conductivi-266

ties, with the reference flows obtained from the solution of the flow equation at the fine scale. The mismatch267

between these two values is measured by a Relative Bias defined as:268

RB =

(
1

N

∑

N

∣∣qf
x − qc

x

∣∣

qf
x

)
· 100, (19)

where N is the number of interblocks used to compute the relative bias; qf
x is the specific discharge computed269

on the fine scale solution, and qc
x represents the specific discharge from the coarse scale simulation. Because270

the x flow direction plays an important role in this case, the flow comparisons mainly focus on this direction.271

Similar results (not displayed) are obtained for the orthogonal directions. Also, as noted by Vermeulen et al.272

[54], the boundary conditions have an impact on the performance of upscaling for the nearby blocks, for273

this reason, and in order to filter out this impact in the comparison of the different methods, only the inner274

14 × 8 × 10 blocks are used to calculate the relative bias.275
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Figure 3: Flow comparisons at the fine and coarse scales on a single realization. (A) the block-centered simple-Laplacian
method; (B) the interblock-centered simple-Laplacian method; (C) the interblock-centered full-tensor Laplacian-with-skin (skin
size 3 m); (D) the interblock Laplacian-with-skin (skin size: 10 m along rows, 10 m along columns and 5 m along layers); (E)
Landau-Lifshitz-Matheron conjecture for 3D isotropic media.
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Figure 3 shows the cross-plots between the flows computed on the fine scale (reference values) and the276

ones computed on the coarse scale for several upscaling approaches. Results indicate: (1) interblock upscaling277

is better than block-centered upscaling, since it avoids the additional averaging process within the coarse278

flow simulator needed to approximate the interblock values (31% relative bias using block-centered simple-279

Laplacian to 23% relative bias using interblock-centered simple-Laplacian, see Figures 3A and 3B). This280

result agrees with previous finding [38]. (2) Compared with the simple-Laplacian method, the Laplacian-281

with-skin significantly improves the coarse scale results (23% relative bias using interblock simple-Laplacian282

to 9% relative bias using interblock Laplacian-with-skin, see Figure 3B and 3D); the main reasons for these283

results are the use of a full hydraulic conductivity tensor to represent the interblock property and the use284

of a skin to approximate the “real” boundary conditions around the interblock, in contrast with the simple-285

Laplacian approach which seeks a diagonal hydraulic conductivity tensor with boundary conditions directly286

at the block sides. (3) The significance of the skin size is evident as it was already pointed out by Zhou et al.287

[62] (17% relative bias using interblock Laplacian with a skin size of 3 m, down to 9% relative bias using288

interblock Laplacian with a skin of 10 m in the x and y directions and 5 m in the z direction, see Figures289

3C and 3D). The high variance of hydraulic conductivity, as is the case in this example with σ2

lnk=4.0, can290

result in local flows departing significantly from the average flow direction (along the x axis in this case), in291

which case the use of a full tensor and the skin size is more important. (4) For a mild isotropic heterogeneous292

field, the Landau-Lifshitz-Matheron conjecture (a close expression that gives the upscaled conductivity as a293

p-norm of the fine scale conductivities within the block, in which p only depends on the dimensionality of the294

problem) performs well [12]. However, when the global variance increases, the conjecture loses its accuracy295

and it is better to resort to the numerical flow experiments as is the case here, i.e., the Laplacian-with-skin296

method (38% relative bias using conjecture to 9% relative bias using interblock Laplacian-with-skin of 10 m297

along rows, 10 m along columns and 5 m along layers), see Figure 3D and 3E).298

In short, the best reproduction of the fine scale flows is given by the interblock-centered Laplacian-with-299

skin approach. This scheme is retained for the subsequent transport upscaling.300

3.3. Transport upscaling results301

We examined two transport upscaling approaches using the same set of upscaled hydraulic conductivities302

obtained in section 3.2; in the first one, we only model advection using the velocities from the coarse scale303

flow simulation, and in the second one, we include the multi-rate term in the transport equation at the coarse304

scale and perform transport upscaling to determine enhanced macrodispersion coefficients, upscaled effective305

porosities and the parameters of the multi-rate transfer model. The multi-rate model estimates the mass306
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transfer parameters as described in section 2.3. It should be noted that we do not make the comparison307

with an intermediate model including only enhanced macrodispersion coefficients, since it has already been308

shown [e.g., 64, 16, 20, 59, 18] that upscaled macrodispersion coefficients are not sufficient to reproduce the309

transport behavior for highly heterogeneous media.310

As mentioned previously, the synthetic studies of Fernàndez-Garcia et al. [18] have shown that the double-311

rate mass transfer model is better than the singe-rate model in 2D mass transport upscaling. Herein, we312

only consider the double-rate mass transfer model to represent the mass transfer process, i.e., in each coarse313

block, the solute transport is assumed to happen in three zones: transport in the mobile zone is mainly by314

advection, while transport in the other two immobile zones is by diffusion-like processes.315

With regard to the double-rate mass transfer model, the mass transfer rate density function f(α) and316

the memory function g(t) are:317

f(α) =
β1

β
δ(α − α1) +

β2

β
δ(α− α2)

g(t) = α1

β1

β
e−α1t+ α2

β2

β
e−α2t

(20)

Accordingly, the parameters being estimated, are collected as a vector in Θ = [α1, α2, β1, β2, Al]. Notice318

that the parameters are spatially variable since they are estimated for each upscaled block independently.319

We compare the effectiveness of the transport upscaling by analyzing the breakthrough curves at different320

control planes in one specific realization and by looking at the ensemble results. For the ensemble results we321

will look at the early (5th percentile of the BTC), median (50th percentile) and late (95th percentile) travel322

times.323

Results using the advective-only model and the double-rate transport model are shown (see Figure 4 for324

the reproduction of BTCs in one realization and Figure 5 for the ensemble behavior of early, median and late325

travel times). From these results, we see that: (1) In contrast to the advective-only model, the double-rate326

mass transfer upscale model displays a higher accuracy to reproduce the fine scale breakthrough curves, in327

particular, the late travel times. Therefore, it is important to include the fictitious mass transfer process328

for solute transport predictions after upscaling. (2) In agreement with the study of Fernàndez-Garcia and329

Gómez-Hernández [16], it is shown that the advective-only model even when using a sophisticated hydraulic330

conductivity upscaling (interblock Laplacian-with-skin here) can result in overestimating the early travel331

times and underestimating the late travel times in very heterogeneous media. (3) The small deviations in332

the reproduction of the BTCs by the mass transfer model may be due to fact that the upscaled mass transfer333

parameters are derived from a one-dimensional analytical solution of the double-rate transport model (see334
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Equation (9)).335

3.4. Propagation of Uncertainty336

Due to the inherent lack of information in groundwater modeling, an uncertainty assessment is commonly337

requested in solute transport simulations [e.g., 47, 42]. Quantifying the uncertainty associated with flow and338

transport modeling should be important for the decision maker to assess the degree of confidence of his339

decisions. Here, we have analyzed how the uncertainty is estimated from the ensemble of realizations at the340

fine scale and after flow and transport upscaling. We will analyze the propagation of uncertainty through341

the upscaling process, along the same line as Fernàndez-Garcia and Gómez-Hernández [16].342

The use of 30 realizations may seem a small number to perform an uncertainty evaluation in such a343

heterogeneous aquifer. However, our purpose is not so much to analyze the number of realizations needed344

to obtain a good estimation of model uncertainty, but rather to compare the uncertainty derived from 30345

realizations, before and after upscaling. If uncertainty upscales well for 30 realizations, it should do so for a346

larger number of realizations.347

We evaluate uncertainty by calculating the spread in the ensemble of cumulative breakthrough curves at348

all the control planes. More precisely, we quantified uncertainty by the 95% confidence interval related with349

the early, median, and late arrival time of particles to each control plane. The early arrival time reflects350

the fastest pathways between source and control plane, which is for example of importance for the safety351

assessment of nuclear waste repositories. The late arrival time constitutes important information for the352

calculation, for example, of clean-up times in contaminated aquifer remediation.353

The evolution of uncertainty with the travel distance is shown in Figure 6. We can see that: (1) For354

the early arrival time, the advection-only model and double-rate mass transfer model show a slight overes-355

timation of the uncertainty. (2) For the median arrival time, the double-rate mass transfer model is better356

in reproducing the uncertainty estimated at the fine scale than the advective-only model. (3) For the late357

time, it is evident that the use of double-rate mass transfer model clearly outperforms the advective-only358

for distances larger than 60 m, and less clearly (because of the scale the results are plotted) for the shorter359

distances.360

In highly heterogeneous formulations, hydraulic conductivity upscaling is not sufficient to preserve the361

uncertainty. Transport upscaling, through the use of a mass transfer process at the coarse scale is needed362

for proper upscaling of the uncertainty associated with solute transport predictions.363
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Figure 4: Comparison of fine scale cumulative breakthrough curves with those obtained by the upscaled transport models at
six different control planes.
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Figure 5: Ensemble travel times (early, median, and late travel times) as a function of travel distance, and comparison of the
fine scale simulations to the upscaled simulations.
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Figure 6: Evolution of uncertainty as a function of travel distance for the early, median, and late travel times, as measured by
the width of the 95% confidence interval derived from an ensemble of 30 realizations. Calculations were performed at the fine
scale, and at the coarse scale for two different upscaling approaches.
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4. Discussion364

We have presented and demonstrated an algorithm for transport upscaling to reduce the computational365

burden of transport predictions in three-dimensional highly heterogeneous media. But, how general is the366

algorithm? Will it work for different case studies? Will it work for different transport experiments? Although367

we recognize that the results obtained are specific to the case study under consideration, we believe that the368

upscaling procedure is general and it should work for other settings, as discussed below.369

We present the results for statistically isotropic fine scale conductivities. What if the fine scale conduc-370

tivities had been statistically anisotropic, with a much larger correlation length in the horizontal plane than371

in the vertical direction? What if the fine scale conductivities display curvilinear features, such as those372

associated with channels? In the case of statistical anisotropy, it would be necessary to adjust the size of the373

coarse blocks proportionally to the correlation lengths in each direction, in order to reduce the amount of374

smoothing in the directions of shortest continuity. In the case of curvilinear features, the proposed approach375

will yield upscaled conductivity tensors, the principal directions of which will change from block to block,376

inducing fluid velocities in the coarse model following those curvilinear features. The proposed approach377

has no problem in dealing with hydraulic conductivity tensors with arbitrary orientations of their principal378

directions. The block-by-block upscaling procedure is local, each block is isolated and a local flow exercise is379

performed in each block; at this local scale, the anisotropic correlation or the curvilinear features should not380

be clearly distinguishable from the intrinsic heterogeneity of the fine scale conductivities within the block;381

therefore, the upscaling algorithm should perform similarly. The question, remained to be answered, is382

whether when the blocks are assembled they will capture the global behavior of the statistically anisotropic383

formation or of the curvilinear features, or some specific corrections have to applied in these cases.384

We present an analysis for a confined aquifer under steady-state flow conditions. We have not investigated385

how the upscaled coarse model would behave under transient conditions. We conjecture that the upscaled386

model should reproduce the the transient flow response of the the fine scale model with a degree of accuracy387

similar to the one obtained here for steady-state conditions, since the upscaled block conductivities are388

determined using different flow configurations applied to the block being upscaled. However, the upscaled389

transport parameters are based on the particle residence times for a specific velocity field; since, for transient390

flow conditions, the velocity field changes with time, it should be further investigated how much the upscaled391

transport parameters change as the velocity field changes, and decide whether these transport parameters392

should be made time dependent or there is a set of optimal parameters that would work well for the entire393

transient period. Also, in the case of transient flow, the need to upscale the storage coefficient needs to394
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be addressed. Regarding the application of this approach for an unconfined aquifer, the general upscaling395

procedure should remain the same, all blocks should be upscaled as if they were fully saturated, and then,396

special caution should be taken in the numerical simulation model to account for those cells intersected by397

the phreatic surface at the time of computing the mass balances involving those cells. We have not analyzed398

this case because we do not have a numerical flow simulator capable of using full conductivity tensors and399

accounting for a phreatic surface.400

The issue of how the upscaled transport parameters will perform under transient conditions (i.e., different401

velocity fields in time), brings the question of what will happen if the flow geometry changes substantially402

with respect to that for which the parameters were computed. A priori, we anticipate that the transport403

parameters would have to be recomputed, since the flow velocity field will change, and so will the residence404

times in the blocks.405

We present a sequential upscaling procedure in which first, we compute the upscaled flow parameters,406

and then we use these parameters to compute the upscaled transport parameters. However, if the final aim407

of our analysis were to get the best transport predictions at the coarse scale, even compromising the accuracy408

of flow reproduction, we could think of performing the flow and transport upscaling jointly, therefore using409

the particle residence times within the block being upscaled in the computation of the coarse conductivity410

tensors. This is an interesting avenue of research that has not been investigated in this paper.411

We have used a homogeneous porosity throughout the exercise. If porosity had been heterogeneous it412

would have had to be upscaled, too413

There are two main drawbacks in the proposed method: the need to use the particle residence times414

obtained after a simulation of the flow and transport equations at the fine scale, and the need to correct the415

porosity at the coarse scale, even though the porosity is homogenous at the fine scale.416

The first drawback beats, in principle, the whole purpose of upscaling, which is to avoid having to417

simulate flow and/or transport at the fine scale. For this reason, this paper loses some of its practicality,418

and could be justified (from a practical point of view) only if the upscaled model is to be used for a more419

complex type of modeling (i.e. reactive transport) avoiding the need to run the complex model at the fine420

scale. In order not to have to obtain the fine scale solution for the transport upscaling, we have tried to421

follow the same local approach as for the flow upscaling, that is, to isolate the block plus a sufficiently large422

skin and to solve local transport problems for several boundary conditions, and then derive the upscaled423

transport parameters; however, we have not succeeded with this approach, which has always resulted in424

biased transport predictions. There is, therefore, additional research needed in the transport upscaling425
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procedure in order to yield it more practical. Our contribution with this paper is to demonstrate than, in 3D426

modeling of flow and transport, it is possible to systematically derive flow and transport upscaled parameters427

as long as we acknowledge that removing the heterogeneity within the block implies turning conductivities428

into tensors and including an enhanced macrodispersion and a mass transfer process for the solute transport.429

The second drawback requires further investigation. We are not the first ones to face the need to make this430

adjustment for the coarse scale porosity [64, 60, 18]. The need for this correction is due to the accumulation431

of small biases in the transport modeling for each coarse block. When the transport parameters of each432

coarse block are computed, they are determined trying to reproduce the particle residence time distribution433

within the block with emphasis in matching the mean residence time; however, there seems to be a small434

systematic bias in this determination, which, at the end, forces us to correct the coarse porosities so that435

the breakthrough curves from the upscaled model are not shifted with respect to those from the fine scale436

model.437

There is a need to know the fine scale parameters over the entire aquifer. Obviously, these parameter438

values will never be available, they have to be generated on the basis of available data. The issue of scales has439

been discussed for many years in the literature; it is a very old issue (known as the change of support problem)440

in mining [34], and a little bit more recent in hydrogeology and petroleum engineering; a good paper on the441

subject from the hydrogeology literature is the one by [10], in which Dagan talks about measurement and442

model scales, among other scales. For many years, data were measured, and without further consideration443

they were used to inform the parameter values of the groundwater flow model elements, until a concern444

about the so called “missing scale” was risen, mostly in the petroleum literature [52, 53], and the need to445

account for the disparity of scales between measurements and model cells was recognized [21]. Data are446

collected at a scale, generally, much smaller than the scale at which models are going to be discretized. Data447

spatial variability can be characterized at such scale by standard geostatistical methods [13] or by the more448

powerful and sophisticated multipoint geostatistical approaches [51], and this characterization can be used to449

generate conditional realizations, at the sampling scale, over discretized grids of multi-million cells. It is not450

proper to characterize the sampled data and use them directly for the generation of realizations at a larger451

scale suitable for numerical modeling, since the spatial variability patterns of the “equivalent” properties452

that should inform the larger blocks are completely different from that of the sampled data. Besides, as we453

have shown, for the purpose of transport modeling, removing the within-block heterogeneity requires the454

introduction of additional processes to make up for this loss of variability, which makes virtually impossible455

to generate the additional parameters directly from a few sampled data. As proposed in this, and many other456

22



papers on upscaling, the proper way to account for the disparity of scales is to build fine scale models based457

on the data, then to upscale them so that the model size is amenable to numerical modeling. It remains458

open the problem of how to integrate sampled data taken at different scales.459

We recognize that the results have been demonstrated in a single case study, but we conjecture that460

the good performance of the method proposed is not case specific, and we base this conjecture in that461

the upscaling exercise is performed on a block by block basis at a scale in which the specific features of the462

different case studies will be less noticeable. We had to upscale several thousands of blocks using a systematic463

approach, with each block having a different distribution of fine scale conductivities. The upscaled parameters464

would have been computed similarly had the flow geometry or the conductivity heterogeneity changed. We465

acknowledge that the final results we present are based on the assembly of these blocks for a specific flow466

and transport problem, and the performance of this final assembly for a different case study may not work467

so well as it did in our example.468

Further research is needed (i) to avoid the solution of the flow and transport at the fine scale in order469

to determine the coarse scale transport parameters, (ii) to explain the need for correcting the porosity when470

moving from the fine to the coarse scale, (iii) to determine how to upscale heterogeneous porosities, (iv)471

to evaluate the approach for different conditions/scenarios, such as statistical anisotropic conductivities,472

transient flow conditions or radial flow and (v) to account for data measured at different scales.473

5. Summary and Conclusions474

We have presented and demonstrated an algorithm for transport upscaling in three-dimensional highly475

heterogeneous media. This work is an extension of the work by Fernàndez-Garcia et al. [18] in two dimensions.476

Some of the critical features of this method is that it uses an elaborated Laplacian-with-skin approach to477

reproduce the flows instead of the simple-Laplacian scheme, the use of a multi-rate mass transfer process478

at the coarse scale to compensate for the loss of information during upscaling, and the need to perform a479

piecewise upscaling of effective porosity.480

We have used a synthetic example to demonstrate the advantages of the interblock Laplacian-with-skin481

approach to upscale hydraulic conductivities as compared with other approaches. We found that using482

interblock centered conductivities and that using a skin to compute them results in a good reproduction of483

flows at the fine scale.484

Moreover, we found that proper transport upscaling is particularly important for the reproduction of485

the late time behavior of the solute breakthrough curves. We also found that proper transport upscaling is486
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important to not underestimate the breakthrough curve prediction uncertainty.487
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[37] Li, L., Zhou, H., Gómez-Hernández, J. J., 2010. A comparative study of three-dimensional hydrualic575

conductivity upscaling at the macrodispersion experiment (MADE) site, on columbus air force base in576

mississippi (USA). J. of Hydrology submitted.577
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[56] Wen, X. H., Gómez-Hernández, J. J., 1996. The constant displacement scheme for tracking particles in619

heterogeneous aquifers. Groundwater 34 (1), 135–142.620
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