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Abstract

Stochastic mathematical modeling of multi-phase flow in heterogeneous porous media is

of great interest in petroleum engineering and subsurface hydrology. Reservoir simula-

tion models are essential for the management of petroleum production or remediation

water resources. The stochastic framework gives the possibility to characterize the

natural spatial variability of the flow parameters. Within this stochastic framework,

multiphase flow simulations are used in order to evaluate different recovery or clean

up processes, to make decisions regarding the placement of the wells, and to specify

various operating procedures associated with injection and production wells.

It is common knowledge that inverse modeling theory provides a methodology to

integrate both static and dynamic data in reservoir characterization. The inversion

method can make the model geologically consistent at the same time that it reproduces

parameter measurements and dynamic responses of the reservoir. Production data

integration in reservoir modeling is performed through an inverse technique because

dynamic data are non linearly related with reservoir heterogeneous properties through

multiphase flow equations. In fact, the inverse modeling tool is a key factor in drawing

up the field development plan, and for managing the available reserves over time. The

advances in computational algorithms and hardware are continuously improving every

day. New inverse numerical techniques take advantage of these progresses. However,

still remains a practical tool for reservoir characterization which takes into account all

the complex processes and parameters that are important for multiphase flow.

Absolute permeability is one of the parameters that are typically estimated with

inverse flow simulators. The inversion techniques that estimate the spatial distribution

of absolute permeability are commonly apply to multi and single phase flow problems.

During last decades this issue has been submitted to intensive research. However,

when studying multiphase flow there is another important property that complements

absolute permeability. This parameter is relative permeability, which controls the

rate of displacement of the different phases present in the reservoir. Altough relative

permeabilities are so important to characterize the movement of two immiscible fluids,

like oil and water or non aqueous contaminants and water, there are not studies nor
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techniques to estimate the spatial distribution of relative permeabilities as it is done

with absolute permeability. Normally these functions are assumed to be equal to

measured values from laboratory experiments performed on core samples. Or, if there

are not core samples available, they are taken from studies with similar geology and

flow configuration.

In any case, if the output value from the core experiment is assigned to represent

the relative permeability value of the whole reservoir, or if the relative permeability

is taken from another reservoir study, the model of the multiphase flow simulator is

subjected to an important source of error. This dissertation proposses to characterize

relative permeabilities assuming that they have a spatial distribution, and estimate

this spatial variability as it is usually done with absolute permeability distributions.

The objective of the research work presented here is to develop a new inverse technique

to estimate both absolute and relative permeabilities spatial distributions from static

parameter measurements and production data, such as pressures and saturations. This

technique has to deal with the non linearities present in the multiphase flow equations.

As relative permeabilities are dependent on one of the state variables (saturations) the

optimization problem is highly non linear, increasing the difficulty of the problem that

has to be solved.

The governing equations for immiscible two-phase flow are formulated in terms of

water saturation and fluid pressure. The proposed formulation simplifies the equation

by disregarding gravity and capillary pressure terms, and using finite differences nu-

merical approach. Calibration of the flow model to non linear data is formulated as

an optimization problem, which tries to minimize some objective function. This objec-

tive function measures the differences between the historical production data (water

breakthrough and pressure changes) and the corresponding simulated values. The

inverse method presented here follows the technique developed in the Sequential Self-

Calibrated method. A computer code, written in C, couples the forward two-phase

flow simulator TOUGH with the iterative inverse method. The optimization algorithm

is based on gradient methods, and the concept of master points is borrowed from

the Sequential Self-Calibrated method to reduce the number of parameters subjected

to calibration. After calibration, the result is one equally likely reservoir realization

honoring historical pressure and saturation data.

Calibration parameters were chosen from the relative permeability expressions in

function of saturation. These parameters are: the two end-points of oil and water rela-

tive permeability functions and the two residual saturations. These four values control

the shape of the relative permeability curves. The method is tested with different synt-

hetic examples in one and two dimensions. All simulations shown in this dissertation
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assume that porosity is known. The goal of these examples is to test the applicability

of the method and to study the influence of relative permeability parameters in the dy-

namic behavior of the reservoir. In the implementation different injection/production

configurations have been assumed and different kind of heterogeneities for the relative

permeability function have been proposed.

Results given by several examples of inversion simulations have shown that the

method works. Once the calibration is performed, the result is just one of the possible

representations of the medium. Using multiple equiprobable realizations it is possible

to develop a study of uncertainty of the reservoir model, and then to translate it into

uncertainty of reservoir performance predictions for reservoir management. This way

to carry out an uncertainty analysis is normally known as Monte Carlo simulation.

The objective is to analyze the influence of relative permeability parameters on the

model, as well as on the predictions of the reservoir performance. It has been found

out that uncertainties related with oil and water end-points of the relative permeability

curves are higher than the uncertainties related with residual saturations. In general, it

looks like uncertainties related with the four relative permeability parameters in study

are important. Breakthrough saturation predictions appear to have small uncertainty

when they are forecasted with the inversion technique developed, and to be better

predicted in the first states of the exploitation. The most important conclusion of the

dissertation is the high influence of relative permeability heterogeneities in the values

of the saturation shock front. Hence, the importance of research studies about how

to estimate the spatial distribution of relative permeability parameters and absolute

permeability, in order to improve predictions of the water displacement in two-phase

immiscible flow problems.
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Resumen

Los modelos matemáticos estocásticos para la simulación de flujo multifase en medios

porosos heterogéneos tienen un gran interés en ingenieŕıa del petróleo e hidroloǵıa

subterránea. Los modelos de simulación de yacimientos son esenciales en la gestión

de producción petroĺıfera o en la recuperación de acúıferos contaminados. El entorno

estocástico da la posibilidad de caracterizar la variabilidad espacial intŕınseca de los

parámetros de flujo. Dentro de este marco estocástico, la simulación de flujo multifase

se usa para poder evaluar los diferentes procesos de recuperación o limpieza, y aśı

tomar decisiones con respecto al emplazamiento de los pozos o a los procedimientos

asociados a los bombeos o las inyecciones.

La teoŕıa de modelización inversa da la posibilidad de integrar variables estáticas

y dinámicas en la caracterización del yacimiento. El método inverso puede hacer que

el modelo sea geológicamente consistente al mismo tiempo que reproduce las medidas

de los parámetros y las repuestas dinámicas del medio. La integración de los datos

de producción en la modelización del yacimiento se realiza a través de las técnicas de

modelización inversa porque los datos dinámicos están relacionados de forma no lineal

con las propiedades heterogéneas del yacimiento por las ecuaciones de flujo multifase.

De hecho, la modelización inversa es un factor clave a la hora de planificar el plan

de desarrollo de un campo petroĺıfero, o para la gestión de las posibles reservas a

explotar. Los avances en algorimos de computación y hardware mejoran d́ıa a d́ıa.

Los métodos más modernos hacen uso de estos avances para mejorar la rapidez en la

simulación de flujo. Sin embargo, todav́ıa no existe una herramienta que sea práctica

y que además tenga en cuenta todos los procesos y parámetros que son importantes en

el flujo multifase.

La permeabilidad absoluta es uno de los parámetros que que son t́ıpicamente esti-

mados por medio de simulaciones inversa de flujo. Las técnicas de simulación inversas

que estiman la distribución espacial de la permeabilidad absoluta se utilizan normal-

mente tanto en problemas de flujo de multifase como para flujo de una sola fase. En

las últimas décadas este tema ha sido sujeto de intensas investigaciones. En cambio,

cuando se estudia flujo multifase hay que tener en cuenta otra propiedad que com-

v



vi RESUMEN

plemente la permeabilidad absoluta, y que es muy importante. Este parámetro es la

permeabilidad relativa, que controla la tasa de desplazamiento de las diferentes fases

presentes en el yacimiento. A pesar de que la permeabilidad relativa es muy importante

para caracterizar el movimiento de dos fluidos inmiscibles, como por ejemplo el agua

y el petróleo o el agua y un contaminante no acuoso, no existen estudios o técnicas

que estimen la distribución espacial de las permeabilidades relativas como se hace ha-

bitualmente con la permeabilidad absoluta. Normalmente, estas funciones se suponen

conocidas, cuyo valor se toma de medidas en laboratorio tomadas en testigos. En el

caso de que no hayan testigos, las permeabilidad relativas se asignan por similitud con

otros yacimientos de geoloǵıa y condiciones de flujo similares.

En cualquier caso, si se asume que el valor obtenido en el laboratorio representa el

valor de la permeabilidad relativa en todo el yacimiento, o incluso si se toma de otro

yacimiento similar al de estudio, el modelo del flujo multifase experimentará impor-

tantes errores. Esta tesis doctoral propone caracterizar las permeabilidades relativas

asumiendo que tienen variabilidad espacial, y estimar esta variabilidad espacial como

se hace normalmente con las distribuciones de permeabilidad absoluta. El objetivo

del trabajo de investigación que se presenta a continuación es desarrollar una nueva

técnica de simulación inversa que estime la distribución espacial de las permeabilida-

des absoluta y relativa a partir de las medidas de parámetros estáticos y los datos

de producción, como las presiones y las saturaciones. Esta técnica tiene que tener en

cuenta las no linearidades que existen en las ecuaiones de flujo multifase. Al ser la per-

meabilidades relativas dependientes de una de las variables de estado (la saturación)

el problema de optimización el altamente no lineal, incrementando las dificultades del

problema a resolver.

Las ecuaiones que gobiernan el flujo inmiscible bifase están formuladas en términos

de las saturaciones y las presiones. Además, las ecuaciones se simplifican desestimando

las fuerzas gravitatorias y capilares, y usando aproximación numérica por diferencias

finitas. La calibración del modelo de flujo a los datos no lineales se expresa como un

problema de optimización, que minimiza una función objetivo. Esta función objetivo

mide las diferencias entre los datos históricos de producción y los valores simulados

correspondientes. El método inverso que se presenta en esta tesis sigue la técnica

desarrollada por el método autocalibrante. Se ha escrito un código, en lenguaje C,

que acopla el modelo de flujo directo TOUGH con el método inverso iterativo. El

algoritmo de optimización se basa en el método de los gradientes, y el concepto de

puntos maestros se toma prestado del método autocalibrante para reducir el número

de parámetros que se van a calibrar. Después de realizar una calibración se obtiene

una realización, que una más del conjunto de realizaciones posibles que reproducen los
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datos de saturación y presión.

Los parámetros elegidos para la calibración se toman de las expresiones de las per-

meabilidades relativas en función de la saturación. Estos parámetros son: los dos

puntos finales de las curvas de permeabilidad relativa del agua y del petróleo y las

saturaciones residuales. Estos cuatro parámetros controlan el tamaño y la forma de

las curvas de permeabilidad relativa. Se ha probado el método con varios ejemplos

sintéticos en una y dos dimensiones. En todas las simulaciones mostradas en esta tesis

la porosidad es conocida. El objetivo de estos ejemplos es mostrar que el método es

aplicable y estudiar la influencia de la distribución espacial de los parámetros de la per-

meabilidad relativa. Se han probado distintas configuraciones de inyección/producción

y diferentes tipos de heterogeneidad para las curvas de permeabilidad relativa.

Los resultados dados en distintos ejemplos de simulaciones inversas han demostrado

que el método funciona. Una vez que la calibración se ha realizado, el resultado es una

posible representación del yacimiento. Usando múltiples realizaciones equiprobables es

posible desarrollar un estudio de incertidumbre del modelo del yacimiento, para trasla-

darlo a incertidumbres en las predicciones de gestión del mismo. Esta forma de realizar

un estudio de incertidumbre es lo que comúnmente se conoce como simulación de Monte

Carlo. El objetivo es analizar la influencia de los parámetros de permeabilidad relativa

en el modelo, aśı como en las predicciones del funcionamiento del yacimiento. Los re-

sultados encontrados en este trabajo de investigación muestran que las incertidumbres

relacionadas con los puntos finales de las curvas de permeabilidad relativa son mayores

que las incertidumbres relacionadas con las saturaciones residuales. En general parece

que las incertidumbres para los cuatro parámetros que se calibran son bastante impor-

tantes. Las predicciones de los datos de saturación tienen menor incertidumbre cuando

se predicen con la técnica aqúı desarrollada, y se obtienen mejores resultados para los

primeros tiempos de explotación del yacimiento. La conclusión más importante que

aporta este trabajo es la gran influencia que tienen las heterogeneidades de las curvas

de permeabilidad relativa en los valores de saturación. Es por ello que es muy impor-

tante que los estudios sobre como estimar la distribución espacial de la permeabilidad

absoluta y relativa continúen y sobretodo que se consigan algoritmos más rápidos para

hacer estudios de mayores dimensiones más reales.
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Chapter 1

Introduction

1.1 Motivation and scope

The mathematical modeling and simulation of fluid flow in underground reservoirs

is an indispensable tool for planning aspects associated with production petroleum

and remediation of water resources. Flow simulation is used in order to evaluate

different recovery (or remediation) processes, to make decisions regarding the placement

of the wells, and to specify various operating procedures associated with injection and

production wells.

The objective of reservoir evaluation is to decide on a reservoir management stra-

tegy. The reservoir engineer needs not only to match the past, but also has to forecast

the dynamic behavior of a reservoir over its total production period in order to optimize

hydrocarbon production. Predictions of production, and the corresponding uncertain-

ties, are commonly performed with simulation models and inverse modeling.

Current geostatistical methods for reservoir characterization can be effectively used

to integrate a variety of static data such as cores, logs, seismic, etc. Nevertheless, they

are not well suited to directly integrate dynamic data, that are for example transient

pressure response, or water breakthrough measurements. Realizations generated just

based on static data tend to overestimate uncertainty in performance predictions. The-

refore, to better estimate uncertainty in the predictions, the incorporation of dynamic

data becomes primarily important. Besides, in general there are much more measu-

rements of dynamic variables, which provide information about the direct response of

the reservoir to recovery processes.

It is now common knowledge that inverse problem theory provides a methodology

to integrate both static and dynamic data in reservoir characterization. In fact, the

1
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inverse modeling tool is a key factor in drawing up the field development plan, and

for managing the available reserver over time. There has been a continual progress

in both computational algorithms and hardware, however, numerical simulation and

inverse modeling of multiphase flow through porous media remains a challenging task.

Improvements are still needed in order to make the approach fast, so it can be partially

automated to complete history matches and forecasts of stochastic models as they are

updated with the drilling of additional wells. The fact that inverse modeling yields

nonunique reservoir description and the widespread recognition that reservoir hetero-

geneities largely control the performance of reservoirs, has served to motivate intense

interest in reservoir characterization.

In parallel to the reservoir interest, soil and groundwater contamination by nona-

queous phase liquids (NAPL), such as contaminants from oil and gasoline leakage or

other organic chemicals, has received increasing attention in recent years. The tech-

niques used in petroleum engineering have given a base for the analysis of immiscible

contaminant migration, and have been adapted to conditions typical in groundwater

contamination. The NAPL related environmental concern, has motivated research ac-

tivities in developing and applying multiphase flow and transport models for assessing

NAPL contamination and the associated clean up operations. As a result, many nu-

merical models and computational algorithms have been developed and improved for

solving multiphase fluid flow.

Multiphase flow inverse modeling, so far, has mainly focused on estimating spatial

distribution of absolute permeability. Among the various properties important for si-

mulating reservoir behavior, the relative permeability functions may be by far the most

poorly determined by present methods. Typically relative permeabilities are assumed

to be known homogeneous functions within the reservoir domain, while generally they

are obtained from core analysis. However, only few small core samples are taken wit-

hin the reservoir, and therefore, they can hardly represent the entire reservoir. When

cores are not available, the relative permeability functions might have to be obtained

by analogy with other similar reservoirs.

Thus, during reservoir characterization, the assumption that the relative permeabi-

lities are known homogeneous functions can be a major source of weakness. This lack

of an addequate technique to estimate the spatial distribution of relative permeabi-

lity in reservoir characterization has motivated the subject of this dissertation. What

is proposed here is to develop a new technique to estimate both absolute and rela-

tive permeabilities spatial distributions from production data, such as pressures and

saturations. The estimation of relative permeability simultaneously with absolute per-

meability is a strongly nonlinear problem, which dramatically increases the simulation
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difficulties.

1.2 The importance of stochastic inverse modeling

Eventhough there are analytical solutions for single phase flow (e.g., De Marsilly, 1986;

Bear, 1979) and multiphase flow (e.g., Buckley y Leverett, 1942; Morel and Seytoux,

1973), the solutions are obtained under very restrictive assumptions for the reservoir

properties and geometry. Alternatively, there are methods that are hybrids of numerical

and analytical solutions, for both one phase (e.g., Bakr et al., 1978; Gutjahr et al.,

1978; Gelhar, 1986) and multiphase flow (e.g., Douglas, 1983; Dahle et al., 1990;

Langlo and Espedal, 1994). These semi-analytical solutions can handle the spatial

variability of hydraulic parameters as permeability, however they only can be applied

under certain suppositions (in groundwater flow, small hydraulic conductivity variance

or simple aquifer geometries and boundary conditions). The lack of an analytical

solution, applicable to the real cases, brought on numerical solutions for groundwater

flow and mass transport equations (e.g., De Marsily, 1986; Kinzelbach, 1986; Zhen and

Bennet, 1995), and similarly with the multiphase flow equations (Aziz and Settari,

1979).

Predicting multiphase flow and mass transport processes in the subsurface by means

of numerical simulation involves a number of steps, represented in Figure 1.1 (Sun,

1994; Deutsch, 2002):

I Developing a conceptual model of the natural system.

II Assigning values to the input parameters through the available static data.

III Running the model in order to predict the system state.

IV Interpreting the results and assessing the uncertainty of the predictions.

The first step is the most difficult and also most important task, because the concep-

tual model provides the basis for all the subsequent steps. The errors in the conceptual

model usually have the largest impact on model predictions.

The second step, assigning parameter values, can be tedious because some of these

properties display a large spatial heterogeneity, with possible variations of several orders

of magnitude within a short distance. Moreover, while the equations for modeling

many different displacement processes are fairly well established, the specification of

the appropriate porous media properties to input into the flow simulator is an enormous

problem. The characterization of the parameter spatial variability in a deterministic
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Figure 1.1: Here are schemed the different steps that should be followed when
performing numerical model for flow simulation.

way is difficult, if not impossible. This fact was first pointed out by Matheron (1973)

and Freeze (1975): there is some structure in the natural spatial variability that can be

characterized only in a statistical way, and nowadays it is commonly accepted (Smith,

1981; Hoeksema and Kitanidis, 1985a; Sudicky, 1986). A stochastic framework has

been addopted in order to give this statistical nature to the spatial distribution of

parameters, resulting in more realistic models.

Another important task in the numerical modeling is the integration of static and

dynamic data, particularly it is very effective in identifying preferential flow paths or

barriers to flow that can adversely impact sweep efficiency. This integration of different

data, here called inverse modeling, it is also termed with different names as parameter

estimation, history matching and model calibration. All of them describe essentially the

same technique with a slightly different objective in mind. During the last two decades a

considerable number of inverse methods, for groundwater flow and transport modeling,

have been developed towards the generation of hydraulic realizations conditioned on
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different kinds of field data (e.g., Hoeksema and Kitanidis, 1984; Carrera and Neuman,

1986a; Rubin and Dagan, 1992; Sahuquillo et al., 1992; RamaRao et al., 1995; Oliver

et al., 1996; Yeh et al., 1996; Wen, 1996; Gómez-Hernández et al., 1997; Oliver et

al., 1997; Abbaspour et al., 1997; Hendricks-Franssen, 2001; Jang and Choe, 2002).

Among them, the Sequential Self-Calibrated (SSC) method is computationally efficient

and flexible for the fast generation of permeability realizations conditioning on both

permeability and pressure data (Sahuquillo et al.,1992; Gómez-Hernández et al. 1997;

Hendricks-Franssen, 2001).

There is also an enormous number of papers published about multiphase flow inverse

modeling with historical data (Guérillot and Roggero ,1995; Roggero and Guérillot,

1996; Batycky et al., 1996a; 1996b; Batycky, 1997; Ates and Kelkar, 1998; Roggero

and Hu, 1998; Vasco et al., 1999; Wu et al., 1999; Wang and Kovscek, 2000; Hu, 2000a;

Hu, 2000b; Romero et al., 2000; Wen et al., 2002;). Wen et al. (1997) and Oliver et al.

(2001) provide a thorough review of the most important inverse techniques.

In general, the aim is not only to search a single best estimate of the parameter

spatial distribution, which matches the historical data. The best estimate is usually

oversmoothed compared to the spatial variability observed in the reality. Modern

inverse approaches have shown a great ability to construct multiple realizations of

reservoir properties, having the same spatial variability as observed from field data, at

the same time that honoring historical data. These techniques are generally within a

stochastic framework and are used to find a measure of the uncertainty in the parameter

estimates and, more importantly, in the response values of the models in which these

parameters are used.

The propose of this dissertation is to develop a technique to incorporate dynamical

data to better define both spatial distribution of absolute and relative permeabilities.

The inverse philosophy followed is the same as the one of the Sequential Self-Calibrated

method. This method is adapted for two-phase flow. The extensions of the Sequential

Self-Calibrated method are: (i) to consider two immiscible fluids, (ii) to incorporate

the information about the differential variation in water breakthrough and pressure

response, (iii) to characterize the spatial variability of the relative permeability curves.

1.3 Why calibration of relative permeability cur-

ves?

Simulation of multiphase flow in porous media requires knowledge of relative permea-

bility. The relative permeability is a macroscopic property that is defined through

extensions of Darcy’s law to multiphase flow. The relative permeabilities are satura-
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tion dependent functions describing the fluid flow when several phases are present and

flowing in a porous media. Accurate estimates of these functions are of great impor-

tance for proper exploitation of the petroleum resources. These functions are, however,

inaccessible to direct measurement, and are typically determined through interpreta-

tion of flow data collected from laboratory displacement experiments in which one fluid

is injected into a core sample that is saturated with another fluid or fluids. The inter-

pretation of displacement data, at the core scale, is usually based on the application of

semi-analytical approaches (Mitlin et al., 1999), or inverse modeling (Grimstad et al.,

1997; Valestrand et al., 2002)

After estimating a relative permeability curve from the core sample, it is usually

assumed that it represents the entire reservoir, being this assumption a major source of

error. To the best of our knowledge, there exist few studies trying to estimate relative

permeability curves at reservoir scale (e.g., Kulkarni and Datta-Gupta, 1999; Ates and

Kelkar, 2000; Bennett and Graf, 2002), but none of them treats the heterogeneity of the

relative permeabilities. Relative permeability is often assumed to control the part of the

history match that corresponds to the saturation match, consequently not only absolute

permeabilities should be adjusted in the inversion, but also relative permeabilities. This

dissertation explores the development and application of an inverse modeling technique

for the simultaneous calibration of absolute and relative permeabilities, considering

their heterogeneous nature. Reservoir production data, such as well pressures and

water saturations are used in the calibration.

1.4 Objectives and dissertation outline

The purpose of this dissertation is to develop and new two-phase flow inverse technique

and to address practical issues related with the heterogeneity of relative permeability

curves. To resume, the main objectives of this dissertation are:

• To perform a literature research on the methods for multiphase flow inverse

modeling, looking for existing techniques which calibrate relative permeability

functions to static and dynamic data. The research has to be focused on the

estimation of relative permeabilities at reservoir scale.

• To develop a new two-phase flow inverse technique following the ideas of the SSC

method, in what refers to perturbation on master points, static and dynamic

data integration and generation of multiple realizations.

• To program a computer code that enables the automatic calibration of absolute

and permeability parameters against static and dynamic measurements.
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• To apply the developed technique to 1D and 2D cases in order to test its feasibility.

• To study the uncertainties related with relative permeability parameters.

• To study the influence of these parameters on the prediction of the reservoir per-

formance, how important these parameters are to obtain a good model predictor.

This dissertation is organized as follows. Chapter 2 presents a literature review on

relevant studies on stochastic simulation and inverse modeling of groundwater flow,

mass transport and multiphase flow, conditioning on field data, with emphasis in the

relative permeability calibrations. Chapter 3 recalls the general procedure of numerical

solution of multiphase flow and presents the numerical difficulties that have to be taken

into account. Chapter 4 is dedicated to the inverse technique for the generation of

permeability realizations conditioned on both pressure and saturation data. The SSC

method adaptation to two-phase flow is presented. Practical considerations related to

the implementation of this technique are discussed. In chapter 5 different applications

in 2D are tested. The consideration of additional data as seismic information is also

analyzed in this chapter. In chapter 6 the worth of taking into account the heterogeneity

of relative permeability curves is investigated, as well as the improvements get when

conditioning on pressure and saturation data. Several uncertainty studies are described.

This is done through a series of Monte Carlo analyses. Finally, chapter 7 summarizes

the discussion and conclusions of this dissertation, recalls the limitations of the method

proposed, and provides some guidelines for the future research directions.
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Chapter 2

Literature Review

This chapter presents a literature review of the numerical modeling for groundwater

and multiphase flow, inverse modeling and production data integration. It was pointed

out before that calibration of relative permeability curves at reservoir scale still needs

further research. Following this idea, this review of current approaches was focused

in the search of existing methods to calibrate simultaneously absolute and relative

permeabilities.

2.1 The beginnings

The beginnings of the studies about multiphase flow were developed in the field of

petroleum engineering. One of the very first works published about this issue was the

one of Buckley and Leverett (1942). Buckley and Leverett presented the basic equation

that describe the movement of two immiscible fluids in one dimension. When petroleum

is displaced by water, the Buckley and Leverrett’s theory gives the equation to calculate

the velocity of a constant water shock that is moving across a lineal medium. Buckley

and Leverett found an analytical solution for the one dimensional horizontal flow,

considering zero compressibility and no gravitational or capillary forces.

From the petroleum perspective, the starting research works about multiphase flow

modeling in porous media were Douglas et al. (1959), Peaceman and Rachford (1962)

and Coasts et al. (1967). Bear (1972) published the book Dynamics of Fluids in Porous

Media, in which there is one chapter exclusively dedicated to the description of the

physical phenomena related with multiphase flow in porous media. The paper of Morel-

Seytoux (1973) had crucial relevance to merge the advances reached by petroleum

engineers and hydrogeologists, in parallel until that moment. In Morel-Seytoux’s study,

it was shown that air and water fluxes in unsaturated porous media can be seen as

a multiphase system. Thus, it was possible to apply petroleum experience to better

9
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understand multiphase flow problems in hydrology.

In late seventies and early eighties, several seminal books dealing with the descrip-

tion of the multiphase flow, from a petroleum perspective, were published. The most

relevant were: Dake (1978), Aziz and Settari (1979), and Marle (1981).

Because of the increasing concern over the environmental impact of nonaqueous

phase liquids spilled into the subsurface, modeling multiphase systems has now become

relevant for environmental and hydrogeology fields. The first works in this direction

were Abriola and Pinder (1985a and 1985b) and Faust (1985).

After these initial studies there have been uncounted publications about multiphase

flow from a petroleum and hydrogeologist point of view. Below there is a resume of

the works that have been more significant for the development of the stochastic inverse

simulation for multiphase flow.

2.2 Current numerical approaches for multiphase

flow

The fundamental principles for multiphase flow are material and energy conservation.

Each of the phases has its own properties and quantities such as viscosity and density

and it is studied as if it filled all the medium, simultaneously with the other phase.

Starting with this idea, the conservation equation can be directly applied to each of

the phases. The mass-balance equation is derived by equating the rate of mass change,

corresponding to a component, in a given control volume (Bear, 1979):

∂ (φρlSl)

∂t
+∇ · ρlul = −qlρl para l = o, w (2.1)

where the subscripts w and o are phase qualifiers corresponding, respectively, to wetting

(water) and non-wetting (oil) phases. The subscript l is a phase qualifier, ul is Darcy’s

velocity of the phase [L/T ], Sl is the saturation (volume fraction of the total void space

occupied by the phase l, with no dimensions), φ is the porosity (with no dimensions),

ρl the phase density [M/L3], ql is the injection/production rate per unit volume [T−1]

and t is the time [T ]. For injection the rate will be negative, while for production it will

be positive. Equation (2.1) can also be used to describe a pseudo-three-phase system

in which the third phase is assumed to be at constant pressure.

Darcy’s law is an empirical expression that describes the relation between the flux

and the fluid pressure. Since its discovery last century, it has been derived from the

momentum balance equations (Dullien, 1979). Although Darcy’s law was originally

developed for one fluid that completely saturates the medium, it can also be applied to
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describe the flow of each of the immiscible fluids, which move simultaneously. In this

case, the permeability concept that defines the flow of one fluid, has to be modified

depending on the quantity of the other fluid. Assuming that density and porosity are

constant, and negligible gravitational effects, Darcy’s equation for each of the phases

l, can be expressed as:

ul = −kkrl

µl

∇pl (2.2)

where k is the absolute permeability [L2] of the porous medium, krl is the relative

permeability of the phase l (no dimensions), µl is the phase viscosity [M/LT ] of the

phase l, and ∇pl is the pressure gradient [M/L2T 2]. Relative permeability concept

isolates mathematically the physical phenomena that explains the interference of each

fluid phase with the flow of the other. The relative permeabilities are normally taken

to be scalar functions of phase saturations, ranging between 0 and 1.

Substituting equation (2.2) into mass conservation equation (2.1), the formula to

express the movement for each of the phases is:

∂ (φρlSl)

∂t
−∇ ·

[
ρl

kkrl

µl

∇pl

]
= −ql para l = w, o (2.3)

This generalization was introduced in the petroleum field rejecting the gravitational

effects, and thus the equations appear in function of the pressure function gradient

∇pl and not in function of the potential or piezometric heads. describes two-phase

immiscible flow, these equations are completed with the next auxiliary relations:

1. Continuity of fluid saturations and pore volume,

Sw + So = 1 (2.4)

which simply says that the pore space is completely occupied by the two fluid

phases.

2. Capillary pressure-saturation relationships,

Pc(Sw) = po − pw (2.5)

Pc is the capillary pressure [M/LT 2] function. It reflects the fact that two im-

miscibly mixed fluids will have different pressures due to surface tension.

3. Relative permeability-saturation relationships,

krl = krl(Sw) (2.6)
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Other assumptions taken for two-phase immiscible flow formulation, include uni-

que functional relations for Pc(Sw) and krl(Sw), ignoring hysteresis and organic liquid

entrapment. Non linearities inherent in the above system of equations (2.5) are due

to capillary pressure Pc and relative permeabilities krl, which can be approximated

as functions of saturation. The relative permeability dependence with saturation is

commonly represented by either a set of tabled values or in a functional form such as

those described by van Genuchten (1980) and Brooks and Corey (1966).

These partial differential equations (2.3)-(2.6) are the basic equations used to des-

cribe the flow of two immiscible fluid phases in underground reservoirs. The state

quantities are pressures and saturations for each fluid phase, as a function of position

and time.

There are two main methods to solve the system of equations (2.3)-(2.6). Analytical

methods (Buckley and Leverett, 1942; Morel and Seytoux, 1973) have been used for

more than a century to deal with differential equations. On the other hand, numerical

approaches have also existed for many years, but they were not fully exploited until

the development of computers to solve approximate forms of the governing equations

(Aziz and Settari, 1979). The main power of the analytical methods is their capability

in many cases to produce exact solutions in terms of the controlling parameters. The

analytical methods provide an insight into how the processes control flow, at the same

time that can be used to check on the accuracy of numerical methods, which can be

subjected to a variety of different errors. To solve real problems analytical methods

are not useful as only work under very restrictive conditions on the geometry and

the medium and fluid properties. Hence, equations for multiphase flow have to be

solved with numerical approximations complemented with a suitable set of initial and

boundary conditions. As it has been mentioned in the introduction, in addition there

are hybrid methods of numerical and analytical solutions (e.g., Douglas, 1983; Dahle

et al., 1990; Langlo and Espedal, 1994), but they also have the limitation of being

applicable only under certain circumstances.

2.2.1 The choice of primary variables

The system of equations (2.3)-(2.6) is very difficult to solve because of two main reasons:

the highly non linear nature of the coupled partial differential equations governing the

system, and the lack of reliable constitutive data for these problems. These difficulties

have led many researches to explore alternative forms of the governing equations, and to

seek specialized numerical algorithms that can improve the computational performance

of the simulators. These studies have identified that the different choices of primary

variables not only impact on the computational performance of a numerical code, but
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may also determine the feasibility of a numerical modeling study in field applications

(Forsyth et al., 1995; Forsyth et al., 1998).

Recent studies regarding general recommendations for selecting primary variables in

the mathematical formulation for the multiphase flow modeling through porous media

are the ones of Wu and Forsyth (2001) and Kees and Miller (2002). Wu and Forsyth

(2001) propose a dynamic variable switching or variable substitution scheme, in order

to achieve optimal numerical performance and robustness.

The most common possibilities for the election of the solution variables are (Aziz

and Settari, 1979, Kiss and Miller, 2002): two fluid pressure, pressure and saturation

or fractional flow approximations. Let’s describe these three approximations.

Two fluid pressures approximation

The governing equations are written in terms of the fluid pressures. Expanding the ac-

cumulation derivatives in terms of capillary pressure, equations (2.3) can be rearranged

as (Abriola and Rathfelder, 1993):

φρlCl

[
∂po

∂t
− ∂pw

∂t

]
+ φρlSlβl

∂pl

∂t
+

1

2
ρlSlφ

0βm

[
∂po

∂t
+

∂pw

∂t

]
−

−∇ ·
[
kkrl

µl

∇pl

]
= −ql

(2.7)

where βl and βm are the l-fluid and matrix compressibilities LT 2/M ,φ0 is the porosity

at the reference pressure, and Cl = ∂Sl/∂Pc is the l-fluid capacity coefficient. This

pressured-based approximation can easity consider the matrix and fluid compressibility

effects. Anyway, these effects are often neglected in typical contaminant hydrology

applications (Faust, 1985; Kaluarachchi and Parker, 1989; Kueper and Frind, 1991;

Abriola and Rathfelder, 1993), as, for example, they are neglected in this dissertation.

This approach has been used very often in hydrology and nowadays it is adopted

by a considerable number of authors (i.e., Pinder and Abriola, 1986; Kaluarachchi

and Parker, 1989; Sleep and Sykes, 1989; Abriola and Rathfelder, 1993; Schrefler

and Xiaoyong, 1993). This formulation is limited to situations where both phases

are present through the domain (Abriola and Rathfelder, 1993), i.e., this method is

unable to handle situations often involved in environmental simulations, when one of

the phases disappears and the pressure of that phase is poorly defined.

Pressure and saturation approximation

It is possible to reformulate the governing equations in terms of a saturation and

pressure of whichever phase is present throughout the simulation. The second phase
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pressure can then be removed from the equations by expressing it in terms of the

saturations and pressures of the other phase, using equations (2.4) and (2.5) the system

(2.3) is:

φ
∂Sw

∂t
−∇ ·

[
kkrw

µw

(∇po −∇Pc)

]
= −qw

−φ
∂Sw

∂t
−∇ ·

[
kkro

µo

∇po

]
= −qo (2.8)

The importance of this method is its suitability for problems where one fluid com-

pletely saturates the medium and the other one disappears. In the formulation of

equations (2.8) this would mean So = 0, because So does not appear explicity. The

pressure-saturation formulation has been employed by several authors (Faust, 1985;

Kueper and Frind, 1991a and 1991b; Forsyth et al. 1995; Binning and Celia, 1999).

Fractional flow approximation

This approach is motivated almost exclusively by the petroleum reservoir simulation.

One of its main characteristics is that it is necessary to formulate streamline simulators.

The basic idea of the fractional flow definition, fw, is to treat the total multiphase flow

as a single mixed fluid, and then describe individual phases through fractions of the

total flow,

fw =
| uw |
| uT |

(2.9)

Total flux uT , can be defined as the sum of the phase volumetric fluxes:

uT = uw + uo (2.10)

Under the assumption that fluids are incompressible, if (2.4) and (2.10) are applied

to (2.1), divergence of total Darcy’s velocity is obtained:

∇ · uT = −(qo + qw) = −qT (2.11)

In one dimesion this equation has the particularly simple solution that the total flux

is constant in space and it is determined by boundary conditions.

P is the total (or global) fluid pressure. It is defined as the pressure that would

produce the flow of a fluid of a mobility (krl/µl) equal to the sum of the flows of fluids

w and o,

uT = −k

(
krw

µw

+
kro

µo

)
∇P (2.12)
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the use of this variable reduces the coupling between pressure and saturation equations.

With these definitions the water flux can be expressed as a function of the total

flux with the help of the fractional flow function:

uw = uT fw (2.13)

Using this formulation (2.13), the mass-balance equation (2.1) for the water can be

expressed as:

φ
∂Sw

∂t
+∇ · (uT fw) = −qw (2.14)

developing the second term,

φ
∂Sw

∂t
+ uT · ∇fw + fw∇ · uT = −qw

Substituting the equation (2.11) and assuming that fw is function of saturation

(∇fw = dfw(Sw)
dSw

∇Sw), equation for the two-phase flow in function of the fractional flow

is:

φ
∂Sw

∂t
+ uT ·

∂fw

∂Sw

∇Sw = fwqT − qw (2.15)

Total Darcy’s velocity uT is derived from the solution to the total pressure field (equa-

tion (2.10)).

This approach leads to two equations: a saturation equation (2.15), that is parabolic

for Sw and it has an advection diffusion form, and a global pressure equation ((2.10)

and (2.12)) whose form is elliptic for P . The advective term is nonlinear and usually

leads to shock formations.

Examples about the use of this approximation can be found in Douglas (1983),

Morel-Seytoux and Billica (1985a y 1985b), Dahle et al. (1990) Wagen (1993), Langlo

and Espedal (1994) and Chen et al. (1995). The principal drawbacks of the fractional

flow approach are: complex to be applied in three dimensions, poor performance for

general boundary conditions, and difficult performance in more general problems in-

volving heterogenous material properties (Binning and Celia, 1999). On the contrary,

the great advantage is its low computational costs.

2.2.2 Numerical approximation

Numerical simulation of multiphase flow, expressed with any of the mentioned appro-

ximations, can be performed with several techniques:

• Finite differences: This is the method addopted in this dissertation, so it

will be explained in detail along next chapter. Examples of its applications are
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Abriola (1985), Morel-Seytoux and Billica (1985), Faust (1985) and Kueper and

Frind( 1991).

• Finite elements: It overcomes the difficulties in the treatment of complicated

geometry and boundary conditions. It has been applied by a high number of

authors like Li et al. (1990), Schrefler and Xiayong (1993) Forsyth et al. (1995),

Chen et al. (1995) and Kim et al. (1996)).

• Techniques based on the characteristics method for the saturations

equation: This method is used when the equations are expressed in function of

fractional flow (Douglas, 1983; Dahle et al., 1990; Langlo and Espedal, 1994).

• Streamline simulators: Streamline based methods have received significant

attention over the last years. Nowadays they are accepted to be an effective

and complementary technology to more traditional flow modeling techniques as

finite differences and finite elements. A comprehensive review of the theoretical

basis for streamline simulation technology can be found in Batycky (1997) and

Thiele (2001). The key principles are to express the mass conservation equation

in terms of the time of flight and to reproduce the 3D solution by combining one

dimensional solutions along streamlines. One benefit of streamline simulators

is its inherent memory and computational efficiency, being for many problems

2 to 3 order of magnitude faster than conventional finite difference simulators.

Applications of streamline simulators in different cases have been performed by

Batycky and his team (e.g., Batycky et al., 1996a and 1996b; Batycky, 1997).

Several works comparing the different behavior of the different approaches can

be found in the literature. Young (1984) compares the sensitivity to the grid size

and orientation. Ewing (1991) reviews numerical techniques for the solution of the

pressure equations in the fractional flow approach, and demonstrates the importance

of accurate determination of velocities. Abriola and Rathfelder (1993) analyse the mass

balance errors, and Binning and Celia (1999) study the advantages and disadvantages

of the characteristics method. Recently, the control volume finite element method and

the control volume function approximantion (Li et al., 2003) have been developed to

enforce the conservation property and get accurate fluid velocities using finite element

methods.

For temporal discretization there are also several choices, being the fully-implicit

time stepping the dominant approach in hydrology, while in traditional petroleum

engineering literature the predominant approach is the explicit or semi-explicit.

Anyway, it should be pointed out that a non mass conservative numerical scheme

may still give accurate and correct solutions with mass conservative results as long as
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both spatial and temporal discretization are sufficiently small. A mass conservative

solution may not guarantee the accuracy of the solution. In other words, the ability

of a numerical model to conserve mass is a necessary but no sufficient condition for

convergence (Cella et al., 1990).

When the working scale is large a great computational time is required. There has

been a huge advance in new computational algorithms for solving the problem faster

and with better discretization. This fact, and the extraordinary advances in computer

hardware have resulted in quite good algorithms and codes that allow to perform fairly

efficiently the multiphase flow simulation. Although, it is always desirable to obtain

more speed and capacity for computing to achieve better model discretization and

characterization. Consequently, numerical simulation of multiphase flow remains a

challenging task. In Wu et al. (2002) there is a review of the last advances, and the

presentation of a new technique that allows to improve the compute efficiency with the

parallel-computing method (Larsen and Bech, 1990).

2.3 Inverse stochastic simulation

2.3.1 Stochastic framework

Until the eighties decade, most reservoir descriptions employed in simulation models

consisted of a layered system, where along each layer the petrophysical and flow pro-

perties (permeability, porosity, dispersivity, etc.) were homogeneous. This view of

modeling a reservoir suffered a major revolution with the recognition that it can be

impossible to characterize the natural variability in a deterministic way (Freeze, 1975).

This natural heterogeneity of the medium properties affects significantly the flow beha-

vior through porous media (i.e., Miller et al., 1998 and its references). Unfortunately,

it is quite difficult to characterize the heterogeneity of the different properties because

they are sampled at few locations, they are defined at laboratory scale, and they must

be specified at every location represented in the numerical model by smooth interpo-

lating the data at sampled locations. For example, porosity is generally less variable

than permeability, and can be measured fairly directly by well logging or experiments

on reservoir core samples, but permeability is much more heterogeneous, and difficult

to measure.

Stochastic analysis revealed to be a method that permits to model the spatial varia-

bility of heterogeneous hydraulic properties, by a space random function characterized

by its multivariate distribution (Matheron, 1973; Freeze, 1975; Smith, 1981; Hoeksema

and Kitanidis, 1985a; Dagan, 1986; Sudicky, 1986). In the stochastic framework, with

a few selected statistical parameters of the subsurface properties such as mean and
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variance, the overall variability of the flow processes can be determine. Geostatistical

techniques provide efficient tools to generate equi-probable distributions of unknown

fields from sampled data.

2.3.2 Inverse modeling problem

With the stochastic analysis the model can be established, in a relatively easy way, to

generate plausible reservoir models that reproduce static data such as well logs, core

analysis, stratigraphic interpretations, geostatistical data analysis, seismic data, ana-

log studies, outcrop information and geological setting models. However, it is far more

difficult to generate plausible reservoir models that reproduce dynamic data such as

transient pressures, saturations, and flow rates. The origin of the lack in the reproduc-

tion of dynamic data is the non linear connection between parameters and production

data (e.g., relative permeabilities and saturation data in a heterogeneous reservoir).

Classical inverse modeling techniques consisted on the modification of relative permea-

bilities, porosity and permeability at each grid block. The results of the classical inverse

modeling is that the reservoir model no longer matches the geologic interpretation, the

log data, or the core data. Thus, once the flow equations and the stochastic model are

established still remains the problem of estimating the properties from the available

data in such a way that the historical data are reproduced.

Traditionally, permeability estimates have been obtained from well-tests. Well-

tests are essentially reservoir-scale experiments in which the fluid pressures at wells are

observed in response to a perturbation in the flow rate. Historically, well-tests have

been interpretted using simplified solutions, assuming uniform properties, and with

graphically-based procedures. Well-test analysis provides good insight into the average

properties of the reservoir at the vicinity of a well.

Calibration (also termed parameter estimation, history matching or inverse mode-

ling) of the numerical model using the observations of the response of the system has

revealed to be a much efficient technique than well-testing. This technique permits

to integrate the heterogeneity pattern of the system given by the dynamic variables.

These type of data differ from well-tests in that they are usually available over a longer

period of time, and may include a number of wells. The flow encountered in these

situations is usually much more complex than in the controlled well-test. Integration

of dynamic data has revealed its importance in constructing more realistic geological

models. For example, pressure data carry important information on the spatial va-

riation of reservoir permeability (Wen et al., 1996) or tracer data on the connectivity

features in the underlying permeability field (Harvey and Gorelick, 1995).

Reservoir history matching is a difficult problem, which has historically been carried
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out with trial and error processes. Nowadays the automatic history matching is used

to achieve a solution to the inverse problem. Automatic inverse modeling is based on

minimizing an objective function, J , which includes a sum of squared production data

mismatch terms:

J =
Ts∑
t=1

Ns∑
i=1

ws,i(S
SIM
i,t − SMEAS

i,t

)2
+

Tp∑
t=1

Np∑
i=1

wp,i

(
pSIM

i,t − pMEAS
i,t

)2
(2.16)

Ns and Np are, respectively, the number of saturation and pressure measured points.

Ts and Tp are, respectively, the number of times in which saturation and pressure are

measured, and the indexes SIM and MEAS are referred to simulated and measured

values. ws,i and wp,i are weighting terms.

Minimization is done based on least squares methods (linear or non linear multiple

variable regression) or optimization routines, which due to the non linearity of the

parameters requires the usage of iterative processes.

One of the first works presented for automatic history matching was the one of

Jacquard and Jain (1965). They applied the gradient method to the estimation of

permeability in a two dimensional reservoir from pressure data obtained under single-

phase flow conditions. They based their procedure on the computation of sensitivity

coefficients, using an electric-circuit analog, and used zonation to limit the number

of parameters to be estimated. Later, motived by Jacquard and Jain’s ideas, Carter

et al. (1974) presented a derivation of the method to compute sensitivity coefficients

for two dimensional single-phase flow problems. This procedure can be applied to

compute sensitivity of simulator grid block pressures to all grid block permeabilities

and porosities. Despite their efficiency, these initial studies are limited by the fact that

they are restricted to linear problems and consequently are not applicable to multiphase

flow problems.

2.3.3 Ill-posedness

The minimization problem is said to be ill-posed as its solution does not guarantee the

following properties (Carrera and Neuman, 1986a; Sun, 1994):

• Existence: The observation error (or noise) of state variables cannot be avoided.

As a result, an accurate solution of the inverse problem may not exist.

• Uniqueness: Different combinations of hydrogeologic conditions may lead to

similar observations of production variables. Hence, it is impossible to uniquely

determine the particularities of the reservoir by only observing the state variables.
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• Stability: Instability frequently results due to poor degree or lack of one-to-one-

ness in the pertinent operator. This feature produces a flat objective function

surface around minima.

For example (Watson et al., 1994), the estimation of the absolute permeability k(x)

(equation (2.2)) from pressure data taken at a well p(x0, t). The estimation of k(x) in

two or three dimensions cannot be appropriately done from the one dimensional data

p(x0, t). This feature results in non uniqueness in the solution. It is also possible that

no minimum of the objective function exists, or that two different sets of k give two

different p(x0, t) which are close. This makes inversion to be unstable.

In order to mitigate or eliminate these problems more information, apart from the

state variable observations, can be used. The technique known as regularization is a

way of alleviating the ill-posedness of inverse problems through the incorporation of

prior constrains or information into the objective function (Sun, 1994). Carrera and

Neuman (1986a, 1986b and 1986c) used prior information to modify the likelihood

function and showed that the use of prior information reduces the ill-posedness of the

problem. In this sense, the introduction of prior data is similar to a regularization of

the ill-posed problem as reduces the non uniqueness, but also reduces the instability

in the computational algorithms (Chu et al., 1995).

2.3.4 Optimization algorithms

There are a number of strategies to find parameter combinations that yield smaller

values of the objective function, eventually identifying a local or hopefully global mi-

nimum. The available algorithms can be classified as follows (Sun, 1994):

• Search methods: In this kind of methods the objective function is evaluated

for different parameter combinations, mapping out the objective function in the

n-dimensional parameter space, looking for the minimum. While no derivatives of

the objective functions with respect to the parameters must be calculated, these

methods usually require many function evaluations and are therefore inefficient.

Examples of search methods include trial-and-error, Fibonacci section search,

golden section search and quadratic interpolation method. Detailed discussions

about these methods can be found in any textbook on numerical optimization

(e.g., Scales, 1985).

• Gradient based methods: For this set of methods it is required the calculation

of the gradient of the objective function with respect to the parameter vector,

along the direction given by the gradient. The procedure is robust, but time ex-

pensive. The basic gradient method is steepest descent method, which uses the
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negative gradient direction as the search direction in each iteration. However,

steepest descent usually terminates far from the solution due to round-off effects.

Instead, a conjugate gradient method as the one of Fletcher and Reeves allows to

find the minimum more efficiently (Carrera and Neuman, 1986b). For conjugate

gradient methods the computational requirement for each iteration is relatively

low, but the number of iterations required can be large, especially for multiphase

flow problems (Makhlouf et al., 1993). Other possibility is the adjoint method,

which is very efficient because the flow problem and the adjoint sensitivity pro-

blem have the same form, hence the calculation of the sensitivity coefficients is

straightforward. The adjoint method has also been applied to multiphase flow

problems, altough in many cases it resulted to be high computationally cost.

Carrera and Neuman (1986b) studied the convergence when switching from one

method to another when the former slows down or fails to convergence. Their

conclusion is that changing the optimization algorithm, an improvement in the

rate of convergence can be obtained.

• Second order methods: When the method is based on the Hessian matrix,

instead of the gradient, the approach is known as second order method. The com-

putational cost of calculating the second derivatives is compensated with a rat-

her efficient stepping in the parameter space. Examples of second-order methods

are Newton method, Gauss-Newton method and Levenberg-Marquardt method.

Standard implementations of these algorithms require calculation of sensitivity

coefficients, which formally represents the derivative of predicted variables with

respect to the model parameters. An excellent review of methods for computing

sensitivity coefficients and solving inverse problems was presented by Yeh (1986).

Chu et al. (1995) presented an efficient method of computing sensitivity coeffi-

cients. Additional information can be incorporated when it becomes available.

This method yields a smoothed version of the true distribution. Wu et al. (1999)

presented a good review about the calculation of sensitivity coefficients, and de-

veloped an algorithm to use the adjoint method to get the sensitivity matrix for a

two-phase flow problem, in a way that the Gauss-Newton method can be used for

inverse modeling. The drawback is that the adjoint approximation needs storage

of pressures and saturations for all the nodes and times of discretization. There

exist analytical developments of sensitivity parameters for the multiphase flow

like the ones of Ates and Kelkar (1998) or Vasco et al. (1999). Applications of

Gauss-Newton method and the calculation of sensitivity coefficients in the inte-

gration of well-test information, production history and time-lapse seismic data

can be found in the work of Landa (1997 and 2001).
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• Heuristic methods: The most common are simulated annealing (Hegstad et

al., 1994) or genetic algorithms (Romero et al., 2000). These methods sample a

much larger solution space than gradient methods and increase the likelihood of

obtaining global minimums to the objective function. However, their convergence

is reached quite slowly.

2.4 Inverse modeling methods

Depending on the assumptions taken, the optimization algorithm, the way the para-

meters are estimated, or the strategy for inversion, there are many different kind of

methods for inversion. The most extended methods are the ones that calibrate pertur-

bing non calibrated realizations of the model. For this type of methods the efficiency

depends on the way realizations are perturbated. For an extensive and comprehen-

sive review about the existing methods for integration of production data in reservoir

models, it is recommended to look at Wen et al. (1997), Oliver et al. (2001) or

Hendricks-Franssen (2001), and the references contained therein. In this section it is

presented a brief resume of the principal methods, developed until present time, that

integrate dynamic variables through inverse modeling. In Zimmerman et al. (1993)

there is a complete study comparing some of the inverse approaches described here.

The main conclusion achieved on this study was the importance of the appropriate

selection of the variogram and the time and experience devoted by the user of the

method in analyzing and modeling the observed data.

2.4.1 Cokriging method

Cokriging is a geostatistical tool for estimating two or more random fields together

by using their measurements, when they are correlated. This method was applied to

inverse groundwater modeling by Dagan and Rubin (Dagan, 1985; Rubin and Dagan,

1987a; Rubin and Dagan 1987b; Dagan and Rubin, 1988) and Hoeksema and Kitani-

dis (Hoeksema and Kitanidis, 1984; Hoeksema and Kitanidis, 1985b). The unknown

transmissivity value at a point is estimated by a weighted linear combination of the

observed transmissivity and pressure. Dagan (1985) and Rubin and Dagan (1987b)

showed that when the random transmissivity and pressure fields are jointly Gaussian

with known mean and covariance, the cokriging estimate and cokriging covariance are

equivalent to the conditional mean and conditional covariance of the new joint probabi-

lity distribution function conditioned on the measurements. The statistical parameters

are estimated by the maximum likelihood method that includes linearizations of the

steady state flow equations. Analytical expressions of cross-covariances of permeabi-
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lity and pressure are obtained assuming uniform flow and infinite domain. Harvey

and Gorelick (1995) have applied the cokriging method to flow and tracer transport

integrating tracer arrival time data, concluding that it improves the accuracy of the

permeability estimation.

As transmissivity and pressure are non linearly related, the classical cokriging met-

hod needed a modification. To overcome this problem Yeh et al. (1996) proposed

an iterative stochastic inverse method to estimate transmissivity and pressure fields

that account for transmissivity and pressure data. It first estimates a transmissivity

field by cokriging from the available transmissivity and steady state pressure data.

The flow equation is then solved numerically to obtain a pressure field. The cova-

riance and cross-covariance of transmissivity and pressure are then updated and a new

transmissivity field can be obtained by again cokriging using the updated covariance

and cross-covariance. This process is continued until the variance of estimated trans-

missivity stabilizes. Later the method has been changed in the sense that a Monte

Carlo simulation approach is adopted (Hanna and Yeh, 1998) to account for the mass

conservation of the approach. The method requires significant computational effort,

while its advantages are that it is very simple to implement and has not suffered from

convergence problems.

2.4.2 Fast Fourier transform method

This method was developed by Gutjahr (Gutjahr, 1989; Gutjahr et al., 1993), and

allows to condition to both transmissivity and pressure data by using linearization and

fast Fourier transform method. The covariance and cross-covariance are represented

as functions of the spectral and cross-spectral density. Transmissivity realizations

conditioned to the pressure data are constructed by adding the difference between

the unconditional simulation and kriged values of the unconditional simulation to the

kriged values using the field data. The key assumption is the linearized flow equation

as in the linearized cokriging method. Later this method has been extended to account

for the non linear relationship between transmissivity and pressure in the computation

of the pressure covariance and the pressure-transmissivity cross-covariance using an

iterative approach (Gutjahr et al., 1994). This technique is very efficient and is capable

to generate many realizations with modest computing resources over times on the order

of minutes.
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2.4.3 Pilot point method

The pilot point method (de Marsily et al., 1984) reproduces pressure data by calibrating

the transmissivity field. The method starts by generating a conditional simulation

of the transmissivity field with geostatistical techniques. Then, the generated field

is modified by adding other transmissivity data at some select locations (called pilot

points). Adjoint sensitivity analysis is used to determine the locations where additional

transmissivity data should be included in order to improve the reproduction of the

pressure data. The new transmissivity data at the selected pilot points are treated as

local data, a new conditional realization of transmissivity is then generated, and, the

flow model is run again. The iteration of adding pilot points is continued until a least-

squared error criterion is met or the addition of more pilot points does not improve the

calibration. One of the disadvantages of this method is that is very CPU intensive.

Lavenue and Pickens (1992) and Ramarao et al. (1995) applied the pilot point

method to reproduce pressure data. In their work, they generated a selected number

of conditionally simulated transmissivity fields and calibrated each of the fields to

reproduce the pressure data.

2.4.4 Self-calibrated method

This method is also an iterative geostatistical based inverse technique, which reduces

the parameter space to be estimated in the optimization process. The conditioning to

pressure is done by solving the groundwater flow equation, not through any lineariza-

tion. It was introduced by Sahuquillo et al. (1992), and developed later by Gómez-

Hernández and others (Gómez-Hernández et al.,1997; Capilla et al., 1997; Capilla et

al., 1998). It was the first inverse stochastic simulation method to construct multiple

equiprobable transmissivity fields honoring single-phase historical pressure data.

In the self-calibrated method the spatially variable transmissivity values are para-

meterized as the sum of a seed transmissivity field, obtained by standard geostatistical

techniques, plus a perturbation of the entire field, which is expressed as a linear func-

tion of the perturbations at a selected number of locations referred to as master blocks.

This approach can also account for uncertainty in flow boundary conditions (pressure

or flowrate).

The self-calibrated method basic ideas and numerical schemes will be addopted in

this dissertation for the development of a two-phase inverse modeling method, therefore,

more details about the self-calibration method can be found in the following chapters.

In Wen et al. (1998) the self-calibrated method was extended to integrate pro-

duction data, such as fraction flow rate data and pressure at production wells. To



2.4. INVERSE MODELING METHODS 25

reach this aim a streamline based multiphase flow simulator was adapted for fast flow

simulation. One dimensional single-phase analytical streamline solution was utilized

for fast calculation of fractional flow sensitivity coefficients.

The self-calibrated method has also been extended by Hendrics-Franssen (2001) to

handle transient groundwater flow, joint conditioning of transmissivity and storativity

fields, and to couple inverse modeling of groundwater flow and mass transport (the

objective function also includes the mismatch corresponding to concentration data).

An application of the self-calibrated method to two-phase flow has been presen-

ted by Wen et al. (2002), using multiphase production data to estimate the spatial

distribution of lithofacies in 2D.

2.4.5 Maximum likehood method

This is a general non linear technique that estimates reservoir parameters using prior

estimates along with transient or steady state pressure data. Early development of this

method was presented in a series of three papers of Carrera and Neuman (Carrera and

Neuman, 1986a; Carrera and Neuman, 1986b; Carrera and Neuman, 1986c). Parameter

estimation is performed using the maximum likelihood theory, incorporating the prior

information into the likelihood function. The non linear flow equation is solved by a

numerical method.

The likelihood function expresses how likely are the parameteres to have producted

the observed data. The method of maximum likelihood consists of finding the specific

value of the parameter that is most likely to have produced the data. The inverse

problem solution is obtained iteratively. The most important characteristic of the

method is that aquifer parameters are estimated for a limited number of zones which

partition the aquifer. Different parameteres can be estimated for each zone such as,

values and directions of principal hydraulic conductivities in anisotropic media, specific

storage, boundary conditions, or recharge rates. This method is also computationally

intensive in the optimization process.

2.4.6 Markov Chain Monte Carlo Method

In the Bayesian approach, parameters are taken as random and through the differential

equation the state variables are also random, yielding the same results as conceptua-

lized from the geostatiscal approach. The method has been proposed by the team at

the Norwegian University of Science and Technology to integrate historical production

data (Hegstad et al., 1994; Omre and Tjelmeland, 1997; Tjelmeland and Omre, 1997;

Hegstad and Omre, 1997). This team was one of the pioneers in the applications of
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Markov chain Monte Carlo methods to the earth science for generating realizations

from a specified (but unnormalized) probability density function in reservoir characte-

rization. Inspired by their work, Oliver and others (Oliver et al., 1996; Oliver et al.,

1997) employed the Markov chain Monte Carlo method for the generation of reservoir

models that are conditional to transient pressure data. The most probable model (the

maximum a posteriori estimate) conditioned to both prior information and pressure

data is obtained by minimizing an objective function derived directly from the a poste-

riori probability density function. The decision to accept or reject the resulting history

matched realization is made on the basis of the Metropolis-Hastings algorithm. As in

most of the methods mentioned until this point, with the exception of the fast Fourier

method, in many applications the computational demands of the simulator can greatly

restrict the number of forward simulations that can be carried out. Consequently, the

Markov chain Monte Carlo method is hard, or even impractical, to implement. One

way to overcome this difficulty is to us the multi-scale computational model. Slightly

following the ideas suggested by Celia et al. (1993), Higdon et al. (2002) speed up the

forward simulator by running it on a smaller, coarsened version of the original inputs.

Then, use the resulting posterior simulation output to guide and speed up the posterior

simulation on the original, fine-scale specification.

2.4.7 Simulated annealing method

Simulated annealing has its basis in statistical theory, being a flexible and generally

applicable heuristic optimization technique (Hegstad et al., 1994). It does not require

neither a functional form for the covariances, nor gradient calculations. A perturbation

is applied in a set of grid blocks and an energy objective function is evaluated. The

decision of wether accepting or not the perturbation is based on the change of energy

caused by this perturbation. Its extensive use arises from the fact that additional data

constraints can be incorporated by a simple modification of the objective function

and its success in generating parameter fields that give a good approximation to the

global minimum of the objective function. The computational costs become immense

if the objective function includes production data that must be generated at each

iteration by solution of a forward problem using a reservoir simulator. It belongs to

the class of Markov chain Monte Carlo techniques, but when it is used without careful

consideration of the stopping temperature, the results will not be random realizations

from the correct probability density function.

Datta-Gupta et al. (1995) were able to use the simulated annealing method to

generate stochastic permeability fields conditioned to both spatial statistics and tracer

data. They also applied it to water-oil displacement calculations. Several examples of
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simulated annealing usage for estimating model parameters in order to solve remedia-

tion management problems are provided in Finsterle and Pruess (994).

2.4.8 Genetic Algorithms

In the same way that simulated annealing is applied to address the optimization pro-

blem, the genetic algorithms have been used for reservoir engineering in several works,

including those by Romero et al. (2000), Romero et al. (2000b) and Romero and

Carter (2001). Genetic algorithms are a class of optimization methods which draw

on ideas from natural evolution and genetics. They are randomized search algorithms

based on an analogy to the mechanics of natural selection according to the Darwinian

evolutionary theory and the survival of the fittest principle. In the case of Romero et

al. (2000) and Romero and Carter (2001) the genetic algorithms has been applied to

optimize the inversion problem in which the pilot points method (de Marsily et al.,

1984) is used. Like the simulated annealing method the genetic algorithm has a slow

rate of convergence and is computationally inefficient. The main attractions of simula-

ted annealing and genetic algorithm formulations are their simple integration of static

data and their ability to converge to the global minimum of the objective function

whereas in the gradient based methods it is common to end up in a local minima or a

saddle point.

2.4.9 Two-step inversion for multiphase flow

A two step inversion method was developed by Vasco et al., 1999. This method utilizes

a multiphase streamline simulator as a forward model. The parameter sensitivities

are formulated in terms of one dimensional integrals of analytic functions along the

streamlines. The integration of dynamic data is then performed using a two-step

iterative inversion: (1) match the breakthrough times at the producting wells and (2)

matching the production history. The pressure and streamlines are recalculated for each

iteration during inversion. The approach follows from an analogy between streamlines

and ray tracing in seismology. One advantage is that sensitivities for all the reservoir

parameters require a single simulation. Yoon et al. (1999) have extended this approach

to multiscale, relying on a hierarchical parameterization and a scale-by-scale inversion

of the production response. With this extension, they are able to account explicitly for

varying data resolution.

Another two-step approach was presented by Wang and Kovscek (2000). However,

their method does not compute sensitivity coefficients nor is their formulation of the

inverse problem similar to Vasco et al’s approach. Their basic idea is to relate the
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fractional flow curve at a producer to the water breakthrough of individual streamlines.

By adjusting the effective permeability along streamlines, the breakthrough time of

each streamline is found that reproduces the reference producer fractional-flow curve.

The second step is to map the streamline permeability modification onto the grid blocks.

Then, flow simulation is performed to check the match and the process is iterated until

convergence. Argarwal and Blunt (2001) have extended the method proposed by Wang

and Kovscek (2000) to compressible models with gravity. However, Argawal and Blunt

(2001) consider gravity and compressibility only for the forward streamline simulator,

and do not take them into account to find the permeability perturbation.

2.4.10 Gradual Deformation

Developed very recently (Roggero and Hu, 1998; Hu, 2000a; Le Ravalec-Dupin, et al.,

2000), gradual deformation is a parameterization method that reduces considerably

the unknown parameter space of stochastic models. The method is based on the fact

that linear combinations of multi-Gaussian random functions remain multi-Gaussian

random functions. It consists in iteratively optimize combinations of independent rea-

lizations of a stochastic model until the constrains are satisfied. This method, initially

developed for Gaussian stochastic models, has been extended to non Gaussian realiza-

tions (Hu, 2000b).

The gradual deformation method has been developed by combining independent

realizations, the different features of the procedure using dependent realizations have

been recently analyzed by Hu (Hu, 2002). This new formulation improves the nu-

merical stability of the method, at the same time that explicitly takes into account

the numerical dependence between realizations, allowing the deformation of conditio-

nal realizations. However, this procedure is limited to global deformations with fixed

structural parameters. The modification of the gradual deformation algorithm made

by Ying and Gómez-Hernández (2000) allows to honor the well data while preserving

the permeability variogram. In the paper mentioned above by Wen et al. (2002), Ying

and Gómez-Hernández’s algorithm is modified to invert lithofacies distribution from

production data within the framework of truncated Gaussian simulation.

2.4.11 Fractal simulation method

This method treats the spatial distribution of reservoir permeability as fractal (Grin-

drod and Impey, 1993). The fractal parameters are estimated from field data (per-

meability and pressure) by maximum likelihood estimation method. Reservoir models

conditional to the pressure data are constructed through a linear superposition of un-
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conditional fields, as in the linearized fast Fourier transform method with randomly

generated phase and amplitude coefficients. A linear superposition of the unconditio-

ned fields is used to condition them to observed data, minimizing the difference between

the variance of the final field and the data.

2.4.12 Neural networks

Artificial neural networks can be trained to predict the outcome of the flow code. For

example, Rogers and Dowla (1994) trained an artificial neural network to predict the

mass of contaminant removed during 50-year simulation period, and then they used the

neural network to optimize a groundwater remediation plan. The principal advantage

that this technique gives for history matching is its potential to be implemented in

parallel processes in order to improve the speed of flow simulations.

2.5 Uncertainties

Having defined the parameters to be used in the reservoir model, the way to minimize

the objective function and the inversion approach, the result is a reservoir model which

is conditioned to both static and dynamic data. This model is then used to forecast

the future behavior of the reservoir. Traditional inversion techniques result in a single

best reservoir model that minimize the differences between the observed and simulated

historical data. But this prediction is affected by errors or uncertainties, as the error in

the input parameters lead to errors or uncertainties in the model predictions. Integra-

tions of additional data reduces the uncertainty of the model (Wen et al., 1998), but

the resulting best model is usually oversmooth compared to the real reservoir. either

this parameter uncertainty at unsampled locations is quantified. When using the re-

servoir model for prediction, the next step is to quantify the forecast uncertainty. The

purpose of inverse modeling is not only to estimate best parameters for a given model

structure, but also to reduce and estimate the parameter uncertainty.

Uncertainty quantification in the dynamic reservoir modeling is one of major cha-

llenges facing reservoir modeling. There are mainly two approaches to quantify the

flow-prediction uncertainty using the simulation methods described.

One of the methods to solve this problem is the Monte Carlo approach. This

method, as it has been explained in the section above, consists in performing a high

resolution flow simulation for each of a large number of realizations of the reservoir

description. It is based on the fact that the resultant distribution is an equal likely

representation. The dependent variables are averaged over many realizations to ob-

tain statistical moments, or probability distribution functions of the model prediction.
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Since it is a statistical postprocessing of deterministic flow simulations, the Monte Carlo

simulation approach is flexible. However, because of computational expense, someti-

mes it can be very difficult to generate sufficient conditional realizations to evaluate

uncertainty. Often, only few realizations are generated; for example, in the PUNQ

(production forecast uncertainty quantification) study, comparing several uncertainty

quantification methods for production forecasting, most participants generated 10 rea-

lizations (Floris et al, 2001). Another drawback of the Monte Carlo approach is that

the ensemble of realizations could provide a poor representation of uncertainty because

of a defect in the model or the sampling algorithm. The advantages are that any dis-

tribution function can be chosen, the non linearities are taken into account and the

results have a physical meaning.

One class of Monte Carlo techniques is the Markov chain Monte Carlo method

(Hegstad and Omre, 1997), which has been explained before. In Hegstad and Omre

(1998) an application to that approximation was shown and in Omre (2002) several

algorithms for the sampling of the posterior model were presented. One of that algo-

rithms to estimate the uncertainty of the model predictions is described in Oliver et al.

(1996) and Oliver et al. (1997), employing the Markov chain Monte Carlo technique

to generate a set of realizations. In Oliver’s approach a sample is drawn from the

prior reservoir model. Concurrently, a sample is also drawn from the production data.

This production sampling is done because the production data contains observation

errors and the reservoir model contains modeling error. Pairs of prior reservoir sam-

ples and production samples are subsequently history matched. The matching criterion

is formed by both the mismatch between the production sample and the simulated pro-

duction data and the deviation of the reservoir model from the sampled prior reservoir

model used as starting point for the optimization. Applications of Oliver’s approach

to full-field reservoir problems can be found in Wu et al. (1999) and Floris and Bos

(1998).

As it has been mentioned before the self-calibrated method (Sahuquillo et al., 1992;

Gómez-Hernández et al., 1997; Capilla et al., 1997; Capilla et al., 1998; Hendrincks-

Franssen, 2201) was the first method to use inverse modeling techniques in the context

of generating multiple realizations. The self-calibrating method uses stochastic appro-

ximation to solve single-phase inverse flow problem. For example, in Gómez-Hernández

et al. (1997) inverse modeling is applied to a number of stochastic reservoir models

and the range of forecasts is used as a quantification of uncertainty. In Ramarao et al.

(1995) there is an application of pilot point method and Monte Carlo techniques for

the quantification of uncertainty.

To avoid the computation of a high number of realizations, there is an alternative
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to the Monte Carlo methods, this technique consists in solving the statistical moment

equations of the interest variables (Zhang and Tchelepi, 1999; Zhang et al., 2000). The

stochastic differential equations that describe the flow process are averaged to obtain

the equations governing the statistical moments of the dependent variables. Then

the moment differential equations are solved either analytically or numerically. The

moment differential equations are commonly derived under the assumption that small

perturbation and with some kind of closure approximation. Zhang and Techelepi’s work

presents analytical solutions for simple 1D and 2D non linear problems, but is limited

to uniform mean flow in unbounded domains. Zhang et al. (2000) have extended the

Lagrangian statistical moment approach to more complex domains and flow patterns

due to the presence of wells. Huang et al. (1996) presented one of the first attempts to

quantify uncertainties for multiphase systems. They showed that secondary production

performance uncertainty is more affected by the iner-well variation of the permeability

field than primary production. Thus, descriptions obtained based on matching primary

performance are inadequate for secondary production performance matching. Other

studies as the one of Wen et al. (1998) have pointed out that the uncertainty is highly

influenced by the flux conditions of the system, for example the production state in

the wells.

To finish with the review about methods for estimation the parameter and model

uncertainties, gradual deformation method applications are analyzed. Le Ravalec et

al. (2000) presented a study proving that the realizations constructed with the gradual

deformation method do not reflect properly the posterior probability density function.

Hence, their conclusion was that the gradual deformation method cannot be used to

infer the uncertainty. At the same time, in this work it is proposed an improved gradual

deformation method. In this extension additional conditions for the objective function

were considered, allowing to investigate the conditioned realizations space from the

calibrated realizations, and then to obtained a measure for the uncertainty.

2.6 Relative permeability

History matching makes possible to build a reservoir model that satisfies static as well

as dynamic data. Integration of dynamic data centers its attention in the estimation

of absolute permeabilities. Relative permeability functions are generally estimated by

interpreting flow data collected from laboratory displacement experiments in which one

fluid is injected into a core sample that is saturated with another fluid or fluids. Typi-

cally the data consist of time dependencies of the differential pressure across the core

sample and the cumulative production of the fluid displacement. The interpretation
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of displacement data is usually based on the application of semi-analytical approa-

ches (Mitlin et al., 1999) or numerical simulations. The minimization of the objective

function in the semi-analytical method developed by Mitlin et al. (1999) is ensured

by using the simulated annealing method. They improved the model accounting for

presssure drop data before breakthrough in the laboratory experiments. Over the last

decade numerical inverse algorithms have been developed for the estimation of relative

permeabilities at core scale (Watson et al., 1994; Grimstad et al., 1997). Considerable

progress has been made in the methodology for interpretting core flow experiments

and recent experimental advances are providing exciting prospects for even more ef-

fective solutions on the laboratory scale. However, relatively little attention has been

directed to the estimation of these properties at reservoir scale. The values obtained in

the laboratory can be very different to the ones corresponding to the conceptual and

numerical model, mainly due to the scale effects (Frykman and Lindgaard, 1997) and

differences in reservoir conditions and laboratory conditions. In the study presented by

Smith (1991) the influence of heterogneities on average relative permeability functions

is analyzed. However, this study is performed for steady state conditions. Hastings

et al. (2001) presented a streamline simulator that permits to calculate multiphase

flow taking into account both heterogeneities of absolute and relative permeabilities

at reservoir scale. They apply the inverse method in order to calculate the uncertain-

ties of these parameters nor to the simultaneous estimation of absolute and relative

permeabilities. Alpak et al. (2001) is another of the few articles for the estimation of

two-phase relative permeabilities at reservoir scale. The problem of their application

to two-phase flow is that they use a single-phase inversion algorithm. Their idea was to

detect radial variability in the water saturation profile from the corresponding profile

of relative permeabilities.

During last years several works about the estimation of absolute and relative per-

meabilities with inverse techniques have been published (Watson et al., 1994; Kulkarni

and Datta-Gupta, 1999; Ates and Kelkar, 2000; Valestrand et al., 2001). In these works

different approaches are used, for different scales, but always considering homogeneous

relative permeability curves all over the study area. Kulkarni and Datta-Gupta (1999)

used the streamline based method developed by Vasco et al. (1999) to estimate re-

lative permeabilities from production data at reservoir scale for homogeneous relative

permeability curves. They concluded that the water front is highly sensitive to the

end-point water relative permeability. They also showed that water breakthrough data

are not sufficient to derive reliable estimates of both absolute and relative permeabili-

ties, and pressure information needs to be added. Valestrand et al. (2001) developed

an inverse method for simultaneous determination of absolute and relative permeabi-
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lities, but at core scale and for homogenous relative permeabilities. In their method

the relative permeabilities are estimated first by utilizing the harmonic mean value of

the absolute permeability. Then the absolute permeability is estimated, keeping the

relative permeabilities fixed at their first estimate. The procedure is repeated until

convergence. Some examples in 1D are presented.

Different analytical expressions have been developed for relative permeability cur-

ves. B-Splines (Kulkarni and Datta-Gupta, 1999; Valestrand et al., 2001) or potential

functions (Mitlin et al., 1999; Ates and Kelkar, 2000; Akin, 2001) are frequently used.

For this dissertation, the conventional Corey functional representations are used to

approximate water relative permeability, krw, and oil relative permeability, kro:

krw = k0
rw

(
Sw − Srw

1− Srw − Sro

)nw

(2.17)

kro = k0
ro

(
So − Sro

1− Srw − Sro

)no

k0
rw and k0

ro are the end-point relative permeability curves, Srw and Sro the residual

saturations, and nw and no the shape exponents, for water and oil respectively.

Depending on which expressions for relative permeability curves are selected, the

parameters for the calibration change. For example, Ates and Kelkar (2000) used the

Corey function representations. They applied the method of the double loop (Ates and

Kelkar, 1998) for optimizing both relative and absolute permeabilities. They study the

sensibility of breakthrough with respect to the end-point relative permeability ratio

(k0
ro/k

0
rw) and the exponents (nw and no). The conclusion of the work is that, in

synthetic cases, their method can produce adequate descriptions of both absolute and

relative permeabilities. Bennet and Graf (2002) studied various parameters affecting

pressure and breakthrough performance, like permeability multipliers and end-point

water relative permeability.

To summarize, it has been shown that at present time there exist enough tools and

techniques to perform simultaneous absolute and relative permeabilities inverse mode-

ling at reservoir scale. Besides, the need to real characterize the reservoir properties

through heterogeneous absolute and relative permeabilities, can be done similarly to

the existing stochastic inverse techniques. However, to the best of our knowledge, this

kind of problems have not been performed yet, and this is the target of this disserta-

tion. In the following chapters a new technique to characterize the spatial distribution

of absolute and relative permeability curves is going to be described and applied.
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Chapter 3

Two-phase flow numerical approach

In this section the equations for immiscible flow of two phases, already presented in

last chapter, are expanded and approximated numerically. In general these equations

have important petroleum and hydrology applications. For example, it is often the case

that oil is found in geological formations together with water, the presence of which

must be accounted for in the modeling process. Moreover, improved oil recovery tech-

niques usually involve the injection of fluids such as water into the reservoir with goals

of maintaining reservoir pressure and sweepping the oil to production wells. Some of

the most popular models of groundwater flow (e.g., Richards equation) are based on

certain simplifications of the multiphase model. For more complex hydrological appli-

cations such as cleanup of hazardous water, it is often necessary to remove some of the

simplifying assumptions leading to Richards equations and return to more complete

multiphase models. It should be noted that in both the petroleum and groundwater

remediation contexts, there may arise more complex situations in which mass transfer

between phases and chemical reactions can occur. This creates the need for genera-

lizations of the multiphase immiscible flow model not presented here. However, the

formulation presented here is the basis for mathematically simulating two-phase flow

in a wide range of very important applications, and hence are used in this dissertation.

3.1 Governing equations

If a porous medium is saturated with one fluid and a second fluid, immiscible with the

first one, is introduced in the medium, the fluid that initially was filling the medium

suffers a displacement. For the petroleum engineering the two fluids are oil and water

(or gas and oil) while for hydrology are, for example, water and air (or a non aqueous

contaminant and water). To simplify, it can be assumed that there is an interphase

between the two fluids which moves changing its configuration depending on the flow.

35
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The curvature of the interphase is given by the heterogeneity of the medium and the

fluid properties.

The mathematical formulation of the multiphase system in a porous, or fractured

formation, is developed here assuming that the system is composed of two phases:

water and oil. Altough each of these two phases contains a number of components,

they are treated a a single pseudo-component with averaged properties of the fluids.

The processes of interphase transfer are not considered, and the two fluid components

of water and oil are assumed to be present only in their associate phases. Each phase

flows in response to its pressure, gravitational, and capillary forces according to the

multiphase extension of Darcy’s law. In an isothermal system containing two mass

components, two mass-balance equations are needed to fully described the system for

flow. Let’s consider a very small part of the reservoir, called a control volume (see

Figure 3.1). The three sides are of lengths dx, dy and dz, respectively. The area of the

face normal to the x-axis is dydz, the area of the face normal to the y-axis is dxdz and

the area of the face normal to the z-axis is dxdy (figure 3.1). The mass balance equation

for both phases is normally formulated for standard conditions, requiring that the rate

of change of mass within the control volume (∂(φρlSl)
∂t

) is equal to the net rate at which

the fluid is entering in the control volume through the control surface (−∇ · ρlul, see

Figure 3.1) plus the net rate at which the mass is produced (−qlρl) within the control

volume:

∂ (φρlSl)

∂t
= −∇ · ρlul − qlρl for l = o, w

where subscripts w and o refer, respectively, to water (wetting phase) and oil (non-

wetting phase). ul is the volumetric flux vector or Darcy’s velocity [L/T ] for phase l,

Sl is the saturation (volume fraction of the total porous space occupied by the phase

l: Sw + So = 1), φ is the porosity (dimensionless parameter), ρl is the fluid density

[M/L3], ql is the injection or production rate per unit volume T−1] and t is the time

[T ]. For the injection case, the term ql is negative, while in the production case is

positive.

Rearranging the different terms for each fluid phase l, the mass balance equation

may be written as:

∂ (φρlSl)

∂t
+∇ · ρlul = −qlρl for l = o, w (3.1)

The air-water system could be treated in the same manner, simply substituting

subscript o (oil) by a (air). It was shown in chapter 2 that this equation (3.1) can be

written in many ways with different dependent variables and constitutive relations.
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Figure 3.1: Control volume flow through a reservoir.

In the same way that the mass balance equation has been employed for each of

the fluids, Darcy’s law, originally developed for a single fluid completely saturating the

medium, can be applied to describe the flow of each of the immiscible fluids simulta-

neously moving. Darcy’s law is a linear relation between the gradient of fluid pressure

and the fluid flux. It is valid for viscous dominated flow which occurs at low velocities.

At higher fluid velocities, slip flow, or non zero flux along the pore walls is increasingly

important and Darcy’s law must be modified to include additional terms.

For multiphase flow the concept of permeability, which defines the flow for a single

fluid, has to be modified depending on the quantity of the other fluid that is present.

For the purposes of this dissertation all fluids, as well as the solid matrix, will be

considered to be incompressible (constant porosity and density), as well as the absence

of gravity. Darcy’s law for each of the fluids l is:

ul = −kkrl

µl

∇pl (3.2)

where ∇pl is the pressure gradient of phase l. The product of the absolute permeability

tensor (also called intrinsic permeability), k [L2], by the dimensionless relative permea-

bility, krl, is known as the effective permeability kefec [L2]. The absolute permeability

depends exclusively on the porous medium properties. The relative permeability is
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function of the saturation, the rock properties and the fluid properties, although it is

possible to approximate the relative permeability as a function of saturation (Bear,

1972).

Substituting the mass conservation equation (3.1) in Darcy’s equation (3.2) the

equation for the flow of each fluid is obtained (3.3). This generalization was introduced

in the oil field rejecting the gravitatory component in the fluid potential, resulting the

equations in function of the pressure gradient and not in function of the potential or

the piezometric head:

∂ (φρlSl)

∂t
−∇ ·

[
ρl

kkrl

µl

∇pl

]
= −ql for l = w, o (3.3)

The equation system for the incompressible two-phase flow of water and oil, assu-

ming absolute permeability is isotropic (k is a scalar, k), is:

φ
∂Sw

∂t
−∇ ·

(
kkrw

µw

∇pw

)
= −qw

(3.4)

φ
∂So

∂t
−∇ ·

(
kkro

µo

∇po

)
= −qo,

where pw and po are respectively the water and oil pressures [M/LT 2].

Auxiliary relations have to be included in order to solve the system of equations.

These relations are the capillary pressure between the aqueous and non-aqueous phases

,Pc [M/LT 2], and the continuity of fluid saturations and pore volume:

Pc = po − pw

Sw + So = 1 (3.5)

The equations (3.4) and (3.5) define the differential equation system which describes

the two-phase immiscible flow, where the unknowns are the pressures po and pw, and

the saturations Sw and So. Given this set of equations, boundary and initial conditions

must be supplied to complete the mathematical description. They are usually given

as known pressures, saturations or fluxes for each of the fluid phases. Many different

combinations of these boundary conditions occur in practical problems. An important

criteria for acceptance of a solution method is that it must be able to solve the governing

equations for the wide variety of possible boundary conditions. This fact and the non

linear nature of the problem make difficult to find an analytical solution for this system

of equations ((??) and ??)).
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Figure 3.2: Typical capillary pressure dependence with water saturation, for a
water-oil system.

Capillary pressure, Pc, is the physical variable to describe the pressure difference

in the interphase between the two fluids that are in contact. An expression can be

established to calculate capillary pressure at any point in the interphase, in function of

the saturation (Sw). This relation, Pc-Sw, can be measured in the laboratory, resulting

in a series of curves, similar to the one shown in Figure 3.2. For a complete description

of the functions Pc-Sw, hysteresis effects have to be taken into account. This means that

capillarity depends on the wetting fluid saturation and direction of saturation change

(drainage or imbibition curve). As is shown in Figure 3.3, the capillary pressure curve

for an imbibition process is different from the drainage curve, and terminates at a

different saturation. Anyway, in most situations the direction of flow can be predicted

and only one set of capillary pressure curves is required. Capillary pressures are often

ignored in large-scale reservoir displacement studies, because their effect is small in

relation to the numerical dispersion associated with the large grid blocks in the reservoir

model. In the development of this dissertation this assumption has been adopted.

3.2 Relative permeability functions

Let’s now take a look to the behavior of the functions that have most interest in this

dissertation, relative permeability functions. In general, when studying the flow in

porous media for more than one fluid the permeability is defined with the effective
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Figure 3.3: Typical drainage and imbibition capillary pressure functions.

permeability. The effective permeability of the medium to each fluid is the product

of the absolute permeability times the relative permeability of each phase (kefec =

kkrl). The relative permeabilities are dimensionless and vary with the void ratio for

a saturated soil and the void ratio and degree of saturation (or water content) for an

unsaturated soil. In many situations, the change in void ratio may be of secondary

importance and the coefficient of permeability can be satisfactorily defined as a function

of degree of saturation (or water content). For example, krw is the water relative

permeability which varies from 0.0 (for a completely dry soil) to 1.0 (for a fully saturated

soil). For each particular soil, the relations krl(Sw) are either predicted by models based

on some more or less realistic capillary assumptions or experimentally determined in

laboratory as well as in field conditions. The result is a series of curves krl−Sw, like the

schematic oil-water relative permeability curve given in Figure 3.4 (other examples in

Lake, 1989). For further information about oil and water relative permeabilities curves

(water-oil system), or water and air relative permeability curves (water-air system), the

reader is referred, respectively, to Holm et al. (1965) and Brooks and Corey (1966).

The relative permeability of one fluid decreases when the saturation of this fluid is

also decreasing. However, the relative permeability of one fluid disappears at a point

in which the saturation of this fluid is different from zero (Figure 3.5). This saturation

is called residual saturation (Srw and Sro), due to the zero relative permeability of

this fluid at this point. At residual saturation the fluid cannot move any more and

the saturation cannot be further reduced. Apart from the residual saturation there
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Figure 3.4: Typical saturation dependent relative permeabilities for water-oil systems.

are another two points that characterize the length of the curves, they are known as

the end-points (k0
rw y k0

ro). These points correspond to the residual saturations of the

other fluid. The end-points are a measure of wettability, being the end-point of the

wettable fluid smaller than the corresponding the non wettable fluid. In the case of

water and oil, the water relative permeability, krw, has a value less than one for the

residual saturation Sro, however kro takes a value close to one for the saturation Srw.

This means that the presence of water has little influence in the oil flow, while the

presence of oil highly interferes in the water flow. The sum of the water and oil relative

permeabilities for the same saturation is always less than 1. This implies that for

multiphase flow, the total capacity through a porous medium is reduced.

Although there is not a theoretical expression for the relative perpermeability func-

tions, there are several empirical functions for the water-oil curves. When analytical

expressions are needed, B-splines or potential expressions are used. The potential

formulation given by Brooks and Corey (1996) are:

krw = k0
rw

(
Sw − Srw

1− Srw − Sro

)nw

(3.6)

kro = k0
ro

(
So − Sro

1− Srw − Sro

)no

where no and nw are the shape indexes. These equations are adjusted in most ex-

perimental cases and separate explicitly the modeling of the curvature through the
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Figure 3.5: Water and oil relative permeability curves.

exponents. In Figure 3.5 indexes nw and no are equal to 2.

Wettability also has a great influence on the shape of relative permeability curves.

Residual oil saturation decreases and the water relative permeability increases as the

system becomes more oil-wet. For systems with preferential wettability, the relative

permeability for the non-wetting phase and the capillary pressure function exhibit

hysteresis effects, depending on wether the saturations are increasing or decreasing. In

this dissertation hysteresis effects of relative permeability functions are also neglected.

3.3 Fractional flow formulation

The fractional flow approach was first developed by petroleum engineers, but it has

also been used by hydrologists. This approximation appeared due to its possibilities

from a numerical point of view.

In chapter 2 it has been already developed the deduction of the fractional flow

approximation for two-phase flow (equations (2.9) to (2.15)). In any case, some of

these concepts should be reminded here, as they are needed for the development of the

numerical approach. Fractional flow is an adimensional variable defined as the ratio

between the module of water Darcy’s velocity and the module total Darcy’s velocity:

fw =
| uw |
| uT |

(3.7)

Following the assumptions taken is this dissertation capillarity, gravity forces, and
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compressibility are neglected, resulting the fractional flow variable as:

fw =
krw/µw

krw/µw + kro/µo

(3.8)

With these assumptions, and provided that oil displacement occurs at a constant

temperature, oil and water viscosities have fixed values and relative permeabilities

are strictly function of water saturations, the fractional flow is as well function of

saturation. For a typical set of relative permeabilities, fractional flow can take the

shape shown in Figure 3.6, with values ranging between 0 to 1. The shape of this curve

varies with the viscosity ratio of oil to water.
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Figure 3.6: Typical fractional flow curve as a function of water saturation.

When flow is consider incompressible and the gravity term is rejected, the mass

conservation equation (3.1) can be written like:

φ
∂ (Sl)

∂t
+∇ · ul = −ql para l = w, o (3.9)

As in equation (3.2), Darcy’s law for the water (w) and oil (o) are respectively

written in the following form:

uw = −kkrw(Sw)

µw

∇pw uo = −kkro(So)

µo

∇po

being uT the total flux, defined as the sum of the phase-volumetric fluxes:
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uT = uw + uo

and its divergence:

∇ · uT = −(qT + qw) = −qT (3.10)

In one dimesion this equation has a simple solution, the total flux is constant in

space and determined by the boundary conditions. This equation is obtained adding

both equations (3.9) and applying the second of the equations (3.5). If in the equations

(3.9) there are no terms of production or injection, the divergence of uT will be zero.

The water flux can be written in function of the total flux with the help of the

fractional flow:

uw = uT fw (3.11)

Applying this expression (3.11), equation (3.9) for the water is:

φ∂Sw

∂t
+∇ · (uT fw) = −qw

φ∂Sw

∂t
+ uT · ∇fw + fw∇ · uT = −qw

Substituting the equation (3.10) and taking into account that fractional flow fw

is only function of saturations (∇fw = dfw(Sw)
dSw

∇Sw), the formulation of the two-phase

immiscible flow formulation with the fractional flow is the following:

φ
∂Sw

∂t
+ uT ·

∂fw

∂Sw

∇Sw = fwqT − qw (3.12)

The solution to this equation for the saturation Sw(x, t) needs to solve first the

equation (3.10) for the total flux uT , which solution is trivial only for the one dimen-

sional case. Buckley and Leverett (1942) found an analytical solution for the equation

(3.12) using the fractional flow values measured experimentally. In the appendix A

solution given by Buckley and Leverett is described in detail.

Sw has been taken as the state variable, but it is also possible to take So as Sw+So =

1 and fw + fo = 1. Neglecting capillary forces, fw can be expressed in function of Sw

through the relative permeabilities relations. In fact, the shape of fw-Sw is the principal

factor to determine the fluid displacement.

The source term, qw − fwqT , will be zero if it represents production, being for this

case qw = fwqT by the Darcy’s law. However, for injection the source term can be

different from zero, for example when only water is injected, qT = qw, and qw− fwqT =

(1− fw)qw 6= 0.
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The volumetric flow for oil and water given by Darcy’s law (equation (3.2)) is

respectively inverse proportional to the viscosities µo and µw. The dependence of both

viscosities on temperature, they decrease with increasing temperature, is ignored in

the present study. The oil is normally more viscous than water. behave

3.4 Discrete equations in 1D

The equation for two-phase flow in function of fractional flow has been derived (equa-

tion (3.12)), resulting in a differential partial equation of first order. In one dimension

this equation is expressed:

φ
∂Sw

∂t
+ uT ·

∂fw

∂Sw

∂Sw

∂x
= fwqT − qw

where ∇Sw is represented by ∂Sw

∂x
.

The solution to this equation for one injection and one production well, situated

in the extremes of the domain, is the so called two-phase Buckley-Leverett displace-

ment (see appendix A and Figure 3.7). This problem can be solved numerically or by

the characteristics method. The characteristic method reduce the partial differential

equation system to a system of ordinary differential equations. It has been already

mentioned in the literature review that there are several possibilities to numerically

approximate this equation. In this dissertation the approach addopted is the finite

differences.

The spatial derivative is approximated with the following finite difference expres-

sion:

∂fw

∂Sw

∂Sw,i

∂x
'

fw,i+1/2 − fw,i−1/2

∆x

where ∆x is equal to the grid spacing between nodes i− 1 and i (see Figure 3.8). The

one point upstream weighting scheme, used in this dissertation, approximates the value

of fw at faces i+1/2 and i−1/2 with the value in the grid block on the upstream side,

in this case a smaller value of x:

∂fw

∂Sw

∂Sw,i

∂x
' fw,i − fw,i−1

∆x
(3.13)

Figure 3.8 illustrates the block centered grid that is commonly used in reservoir

simulation. The dependent variable is defined at the center of the grid block and the

fluxes are evaluated across the faces separating the grid blocks. The divergence of the

flux in grid block i expressed with finite differences is the net efflux from the grid block.

The developments presented here are for equal grid spacing, for unequal grid spacing
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Figure 3.7: Water saturation distribution as a function of distance, prior to breakt-
hrough in the producing well. Result given by the Buckley-Leverett solution. The
values taken for the parameters of relative permeability functions, equation (3.6), are
the following: the final points k0

rw = k0
ro = 1.0, residual saturations Srw = Sro = 0.0,

indexes n1 = n2 = 2.0 and viscosity ratio µo/µw = 2.0.

the concepts are the same but the equations would need to be expressed with more

details.

The accuracy of the finite difference approximation for the time derivative and the

stability of the procedure is dependent on the time level at which the flux terms in the

conservation equation is evaluated. The formulation taken here is said to be the implicit

procedure. This formulation evaluates the spatial differences for the flux terms on the

new time level, t + 1, using the yet unknown values of the dependent variable. Thus,

the difference approximation in time couples the finite difference equation backwards

in time to the known value of the dependent variable at the old time level, t. Each

finite difference equation has several unknown values of the dependent variable at the

new time level. Since the dependent variable at the new time level has to be computed

by solving a system of equations, this formulation is said to be an implicit procedure.

With this temporal discretization the temporal derivative is equal to:

∂St+1
w,i

∂t
'

St+1
w,i − St

w,i

∆t
(3.14)

being t the calculation time step and ∆t the increment between two time steps.

The total flux is given by equation (3.10). In one dimension it is equal to uT =
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Figure 3.8: Block centered grid.

QT /A. By using the approximations in equations (3.13) and (3.14), the two-phase flow

equation in one dimension can be discretized, obtaining the following expression:

φ

∆t

(
St+1

w,i − St
w,i

)
+

QT

A ·∆x

[
f t+1

w,i − f t+1
w,i−1

]
= f t+1

w,i qT − qt+1
w (3.15)

The terms in the right term disappeared in case inside the block there are not neither

injection nor production wells, or in case a production well is located. Multiplying by

A∆x, where A is the transversal area and ∆x is the spatial increment, equation (3.15)

can be expressed as:

Vi

∆t

(
St+1

w,i − St
w,i

)
+ QT

[
f t+1

w,i − f t+1
w,i−1

]
= f t+1

w,i QT −Qt+1
w,i (3.16)

where Vi is the cell volume multiplied by porosity, Vi = φA∆x, and Q is the production

term, Q = A∆xq.

Rearranging the terms of equation (3.16), the system of equations that results, for

each time step, is:

Vi

∆t
St+1

w,i −
Vi

∆t
St

w,i = −QT

[
f t+1

w,i − f t+1
w,i−1

]
−Qt+1

w,i + f t+1
w,i QT (3.17)

and the matrix form for each iteration time is:

[A]
(
{St+1} − {St}

)
= {Qt+1} (3.18)
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The matrix [A] is equal to:

[A] =



A1 0 0 0 . . .

0
. . . 0 0 . . .

0 0 Ai 0 . . .
...

... 0
. . . . . .

...
...

... 0 AN


being N the number of nodes which are used to discretize the work domain. The

definition of the matrix components is:

Ai =
Vi

∆t
(3.19)

Saturations vector {St} and production vector {Qt} for time t are expressed:

{St} =



St
w,1
...

St
w,i
...

St
w,N


{Qt} =



Qt
1
...

Qt
i

...

Qt
N


the components of the production term vector {Q} are equal to:

Qt
i = QT f t+1

w,i−1 −Qt+1
w,i (3.20)

To solve a problem similar to the one of Buckley and Leverett the medium is

supposed to be initially occupied by oil with a saturation equal to So = 1− Srw, being

Sw(x, 0) = Srw. At point x = 0 water is injected with a constant rate of qw. Following

the former notation Srw and Sro are respectively water and oil residual saturations.

The injection term is a boundary condition, its saturation is constant and it is not

necessary to calculate. This makes that for every node the right term of equation (3.16)

is equal to zero. Because of that, and to simplify the equations from now on, the right

term of equation (3.16) is ignored.

Considering all the equations for the whole discretized time space, it is possible to

write the system of equations in a compact form:

[A] {S} = {Q} (3.21)

the matrix [A] is constituted by a series of submatrices [Alt] with size NxN . Coefficients

t and l take the values 1, ...T , where T is the final discretization time. Matrix [A] will

have the following non zero submatrices:
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[A] =



A00 0 0 0 . . .

A01 A11 0 0 . . .

0 A12 A22 0 . . .
... 0

. . . . . . . . .
...

... 0 AT−1T ATT


where

Att
ii = φ

∆t
At−1,t

ii = φ
∆t

Att
ij = 0 At−1,t

ij = 0 if i 6= j

{S} and {Q} vectors are given by:

{S} =



S0

S1

0
...

ST


{Q} =



Q0

Q1

0
...

QT


The N size vectors {St} and {Qt} correspond to the unknown saturations and the

production term:

St
i = St

w,i Qt
i =

QT

A∆x

(
f t

w,i − f t
w,i−1

)
Once the system of equations (3.21) is solved, saturations for each time step at

every node are available, and consequently pressure values could easily be deduced

from equation (3.9).

3.5 Discrete equations in 2D

The formulation with fractional flow, saturation as the only dependent variable, can be

used for one dimensional problems but can not be extended to two or three dimensions.

The total flux is no longer known in advance for dimensions higher than one. An alter-

native is to calculate the total flux field and calculate stream tubes in which the fluid

flows as if the displacement is one dimensional within the stream tube. This approach,

known as streamline method, is valid if the total flux field does not change with time.

However, the total flux changes if relative well rates change or the displacement is not

a unit mobility ratio displacement (k0
rwµo/k

0
roµw 6= 1).
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In 2D is necessary to include pressure as dependent variable. The typical formula-

tion in reservoir engineering for finite differences is the implicit pressure and explicit

saturation (IMPES method). Its basic idea is to obtain a single pressure equation by a

combination of the flow equations. After the pressure has been advanced in time, the

saturations are updated explicitly.

The finite difference approach applied to the equations of multiphase flow (3.4),

using the spatial and temporal discretization defined before and the definition λl = kkrl

µl
,

results for 2D in the following equations:

φ
St+1

l,ij − St
l,ij

∆t
−

λl,(i+1/2)j

(
pt+1

l,(i+1)j − pt+1
l,ij

)
− λl,(i−1/2)j

(
pt+1

l,ij − pt+1
l,(i−1)j

)
(∆x)2

−
λl,i(j+1/2)

(
pt+1

l,i(j+1) − pt+1
l,ij

)
− λl,i(j−1/2)

(
pt+1

l,ij − pt+1
l,i(j−1)

)
(∆y)2

= −ql,ij for l = w, o

where i and j are respectively row and column indexes. This system of equations has

to be complemented with capillary pressure and saturation continuity equations (3.5).

The coefficient λl can be upstream weighted as it was explained before. This means

that λl,(i+1/2)j is approximated by λl,ij and l,(i−1/2)j by λl,(i−1)j, and similarly with the

column indexes j. With the upstream approach 2D equations are equal to:

φ
St+1

l,ij − St
l,ij

∆t
−

λl,ij

(
pt+1

l,(i+1)j − pt+1
l,ij

)
− λl,(i−1)j

(
pt+1

l,ij − pt+1
l,(i−1)j

)
(∆x)2

−
λl,ij

(
pt+1

l,i(j+1) − pt+1
l,ij

)
− λl,i(j−1)

(
pt+1

l,ij − pt+1
l,i(j−1)

)
(∆y)2

= −ql,ij for l = w, o

(3.22)

If the IMPES method is used to solve this system of equations, the capillary pressure

definition, Pc, is used to express both equations (3.22) in function of Pc and the pressure

of one of the fluids, p. Done that, the IMPES solution consists of two steps, first with

Pc evaluated explicitly pt+1 is evaluated implicitly, and second St+1
l is solved explicitly.

In this study the flow formulation in two dimensions is taken from the code TOUGH2

(Pruess and Oldenburg, 1999). The modified version of TOUGH2, T2VOC module

(Falta et al., 1995) has been taken to solve the two-phase flow equations in 2D. In the

TOUGH2 code the equations are discretized in space using the integral finite difference

method. For systems of regular grid blocks, the integral finite difference method results
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identical to a conventional finite difference formulation (equations (3.22)), but the de-

rivation of the finite differential equations is based on a discrete conservation principle.

This method does not need the partial differential equations (3.4) to derive the nume-

rical approximation. All that is needed is a physical problem involving a density of

some material and a rule for the flux of that quantity. For the two-phase flow problem

that it is studied here, the governing mass balance equation for each component can

be written in the following integral form:

∂

∂t

∫
V

Mldv =

∫
Γ

Fl · ndΓ +

∫
V

qldv

The integration is over an arbitrary subdomain V of the flow system, which is

bounded by the closed surface Γ, with inward normal vector n. Ml is the mass accu-

mulation term for fluid l, Fl is the mass flux term, and ql is a term representing sinks

and sources. The mass accumulation term is (Finsterle and Pruess, 1995)

Ml = φ
∑

Slρl

thus, Ml is the total mass fraction of component l present per unit volume. The mass

flux term, neglecting gravity effects, is equal to:

Fl = −kkrl

µl

ρl(∇pl)

The time discretization is carried out with an implicit finite difference scheme. The

resulting discrete non linear equations used in TOUGH2, derived with the technique of

integral finite differences with regular spacing discretization, are similar to equations

(3.22).

3.5.1 Numerical solution scheme

The code TOUGH2 is programmed to solve the discrete non linear system (3.22) by

Newton-Raphson iteration, which is implemented as follows. Let’s first write equations

(3.22) in a residual form as:
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Rl,n+1
ij =

− φ
St+1

l,ij − St
l,ij

∆t
+

λl,ij

(
pt+1

l,(i+1)j − pt+1
l,ij

)
+ λl,(i−1)j

(
pt+1

l,ij − pt+1
l,(i−1)j

)
(∆x)2

+
λl,ij

(
pt+1

l,i(j+1) − pt+1
l,ij

)
+ λl,i(j−1)

(
pt+1

l,ij − pt+1
l,i(j−1)

)
(∆y)2

− ql,ij

for l = w, o

(3.23)

For a two-phase flow system, 2 × N coupled non linear equations must be solved

(N= number of grid blocks), with two equations at each node for water and oil flow

equations. The unknowns are the independent primary variables which completely

define the state of the flow system at a given time. In this work the two primary

variables are fluid pressure and saturation, and the rest of the dependent variables, such

as relative permeability, as well as non selected pressure and saturation, are treated as

secondary variables. In general the unknowns, can be expressed as ξi i = 1, . . . , 2N .

An iteration index κ is introduced and the residuals Rl,t+1
n , for node n, in equations

(3.23) at iteration step κ + 1 in a Taylor series in terms of those at index κ are:

Rl,t+1
n (ξi,κ+1) +

∑
i

∂Rl,t+1
n

∂ξi

∣∣∣∣
κ

(ξi,κ+1 − ξi,κ)) + · · · = 0 (3.24)

Retaining only terms up to first order, the following set of linear equations for the

increments (ξi,κ+1 − ξi,κ) is obtained:

−
∑

i

∂Rl,t+1
n

∂ξi

∣∣∣∣
κ

(ξi,κ+1 − ξi,κ)) = Rl,t+1
n (ξi,κ) (3.25)

All terms ∂Rn

∂ξi
in the Jacobian matrix are evaluated by numerical differentiation.

Equation (3.25) is solved by sparse direct matrix methods or iteratively by means of

preconditioned conjugate gradients. Iteration is continued until the residual, Rl,t+1
n ,

for solving changes in primary variables, ξi,κ+1, over an iteration is reduced below a

present convergence tolerance ε,

∣∣Rl,t+1
n

∣∣ 6 ε (3.26)
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3.6 Convergence and Stability

Likewise in single phase flow numerical solvers, spatial and temporal truncation error

estimation have to be included in multiphase flow solution approaches (Kees and Miller,

2002). The numerical solution of the governing equation has only finite precision and

may suffer from discretization errors such as numerical dispersion. While care must

be taken when choosing the numerical scheme, errors from the numerical model are

usually smaller than errors made by using wrong parameter values, which in turn are

small compared with the errors from using an inappropriate conceptual model.

The beginnings of the research work for this dissertation encountered a curious and

important feature of the numerical approach taken for 1D fractional flow equations.

Here a resume of these results is submitted as these results are important to take into

account when performing 1D two-phase flow simulations expressed with the fractional

flow approach.

To commence with the research about the two-phase flow numerical approach, se-

veral 1D studies to reproduce the Buckley and Leverett displacement were planed.

Fractional flow approximation was taken for that exercises, while it was not yet deci-

ded what numerical approximation for two-phase flow was the most suitable for the

inversion method to be developed. The first possibility considered was the spatial

numerical approximation suggested by Aziz and Settari (1979):

∂fw

∂Sw

∂Sw,i

∂x
'

f ′
w,iSw,i − f ′

w,i−1Sw,i−1

∆x
(3.27)

where f ′
w,i is the fractional flow derivative with respect water saturation Sw. This

approximation differs from the one described in section 3.4, given by equation (3.13),

which ended up to be much more appropriate. Let’s see what happens when approxi-

mation (3.27) is used instead of approximation (3.13).

Equation (3.27) is common in petroleum engineering for cases in which the system

of equations for multiphase flow is given in terms of pressure and saturation, or for the

two-pressure approximation. Taking this spatial approach and the time discretization

given by equation (3.14), the two-phase flow equation in one dimension is:

Vi

∆t

(
St+1

w,i − Sn
w,i

)
+ QT

[
f ′ t+1

w,i St+1
w,i − f ′ t+1

w,i−1S
t+1
w,i−1

]
= 0 (3.28)

This equation is the equivalent to formula (3.17), but with spatial discretization corres-

ponding to (3.28). The way it was deduced is equivalent, and compressibility, gravitary

and capillary forces are neglected.

To check the behavior of this approach the next step was to compare the numerical

results given by expression (3.28) with the analytical solution given by Buckley and
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Figure 3.9: fw in function of Sw for cases A, B, C and D. In equation (3.29) case A: no =
nw = 1.0 and µok

0
rw/µwk0

ro = 2.0, case B: no = nw = 1.0 and µok
0
rw/µwk0

ro = 0.5, case C:
no = nw = 2.0 and µok

0
rw/µwk0

ro = 2.0 and case D: no = nw = 2.0 and µok
0
rw/µwk0

ro = 0.5.

Leverett (e.g., Figure 3.7) described in appendix A. The work domain consisted of 500

discretization nodes and the time domain was discretized with 500 time steps. The re-

sults are given in function of adimensional spatial coordinate xD and adimensional time

tD, both defined following the analytical formulation given by Buckley and Leverett

(see appendix A).

Comparing equation (3.28) with equation (3.17), fractional flow derivative appears

instead of fractional flow. This new variable, saturation dependent, is analytically

calculated. Substituting analytical expressions for relative permeability curves given

by equations (3.6) in the fractional flow equation (3.8), the fractional flow in function

of saturation is:
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fw =
1

1 + µwk0
ro

µok0
rw

(1−S)no

Snw

(3.29)

where S is the water reduced saturation:

S =
Sw − Srw

1− Srw − Sro

The fractional flow derivative with respect saturation is:

f ′
w =

µwk0
ro

µok0
rw

nw(1− S)noSnw−1 + µwk0
ro

µok0
rw

no(1− S)no−1Snw(
Snw + µwk0

ro

µok0
rw

(1− S)no

)2

(1− Sro − Srw)
(3.30)

Assuming immiscible displacements, the shape presented by the fractional flow

curve has an important influence on the numerical results (Young 1984). Four different

fractional flow curves were used, varying the values of the two indexes nw and no and

the mobility ratio µok
0
rw/µwk0

ro. The four curves fw-Sw are drawn in Figures 3.9(a) to

3.9(d). The four cases are going to be called case A for fw in Figure 3.9(a) no = nw = 1.0

µok
0
rw/µwk0

ro = 2.0, case B in Figure 3.9(b) no = nw = 1.0 µok
0
rw/µwk0

ro = 0.5, case

C in Figure 3.9(c) no = nw = 2.0 µok
0
rw/µwk0

ro = 2.0 and case D in Figure 3.9(d)

no = nw = 2.0 µok
0
rw/µwk0

ro = 0.5.

Numerical approach given by equation (3.28) resulted in the saturation fronts grap-

hed in Figures 3.10(a) to 3.10(d), corresponding respectively to cases A to D. Analytical

and numerical solutions for time tD = 0.5 are shown in these figures. In cases A and B

it is found quite good reproduction of the analytical solution, but in cases C and D the

match is not good enough. So, it can be concluded that numerical approximation given

by equation (3.28) does not converge to the analytical solution for some fractional flow

curves.

However, if instead of using approximation (3.28) equation (3.17) is used, the results

are good for all the four fractional flow curves tested. These results are shown in Figures

3.11(a) to 3.11(d) for the four cases A, B, C and D, also for tD = 0.5. Hence, the results

suggest that this discretization is more appropriate when studying the fractional flow

approximation.

It has been already mentioned that it is very important to choose spatial and

temporal increments small enough to converge the numerical approach. The temporal

increments have to be taken such as the maximum change of saturation is not too big.

Aziz and Settari (1979) affirm that to make the solution stable the temporal increment

has to follow this relation:

4t <
φ

uT f ′
wi

4x. (3.31)
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Figure 3.10: Sw in function of xD for time tD = 0.5. fw −Sw curves are given in Figures 3.9
for cases A, B, C and D. Numerical approach for the discretization is equation (3.28) case A:
no = nw = 1.0 and µok

0
rw/µwk0

ro = 2.0, case B: no = nw = 1.0 and µok
0
rw/µwk0

ro = 0.5, case
C: no = nw = 2.0 and µok

0
rw/µwk0

ro = 2.0 and case D: no = nw = 2.0 and µok
0
rw/µwk0

ro = 0.5.

This guarantees that the saturation front advances with a velocity of, at least, a grid

block per unit time step.

Using different spatial discretization that obey relation (3.31), several two-phase

flow runs have been performed. The results are represented in Figure 3.12. The

spatial discretization that represent almost exactly the Buckley and Leverett analytical

solution are ∆xD = 0.002 y ∆xD = 0.004, while for ∆xD = 0.05 the convergence is not

good enough. In all the runs the mobility ratio is taken as µok
0
rw/µwk0

ro = 2.0. These

results mark the need to use adequate spatial and temporal discretization (Aziz and

Settari, 1979) at the same time that show the applicability of the 1D fractional flow

numerical approximation in order to reproduce the analytical solution of the saturation
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Figure 3.11: Sw in function of xD for time tD = 0.5. fw −Sw curves are given in Figures 3.9
for cases A, B, C and D. Numerical approach for the discretization is equation (3.17) case A:
no = nw = 1.0 and µok

0
rw/µwk0

ro = 2.0, case B: no = nw = 1.0 and µok
0
rw/µwk0

ro = 0.5, case
C: no = nw = 2.0 and µok

0
rw/µwk0

ro = 2.0 and case D: no = nw = 2.0 and µok
0
rw/µwk0

ro = 0.5.

front.

3.7 Applying numerical two-phase flow solver

To give an idea of the applicability of the numerical scheme taken for the two-phase

flow solver in 1D an 2D, a series of examples are presented. At the same time, the

relevance of heterogeneities in relative permeability curves is going to be shown for

both one and two dimensional cases.

All numerical studies were run on dedicated machines running Suse Linux 8.0 with

1800+AMD processors, 1 Gb of RAM. The code was compiled with gcc/ifc and -O3
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Figure 3.12: Comparison between Buckley and Leverett analytical solution and
numerical solution using different spatial discretization. The problem is similar
to the Buckley and Leverett displacement problem where water is injected in the
left node (xD = 0.0) and is pumped in the right node (xD = 1.0). The different
discretizations used are: ∆xD = 0.05, ∆xD = 0.002, ∆xD = 0.004 y ∆xD = 0.002,
and the mobility ratio taken is equal to µok

0
rw/µwk0

ro = 2.0.

optimization.

As the goal of this dissertation is to take into account the heterogeneity of both ab-

solute and relative permeabilities it was necessary to modify the code T2VOC (Falta et

al., 1995) in order to be able to input absolute permeabilities and relative permeability

curves for each of the nodes, or at least, for a number of zones in which the domain

can be divided.

3.7.1 Spatial parameters estimation

Remember the diagram in chapter 1 (Figure 1.1), ones the conceptual model is built,

the parameter values have to be assigned (step II in Figure 1.1). Here the parameters

subjected to study are absolute and relative permeabilities, and their spatial distri-

bution has to be estimated. Geostatistics has given a wide variety of techniques for

spatial data analysis, estimation and simulation. Kriging is the basic geostatistical tool

in order to interpolate measured data, for mapping application purposes. Kriging, and

in general all estimation techniques have several drawbacks. Estimation produces a

smooth map of the variable, and moreover this smoothing is not uniform (e.g., a map

of kriging estimates displays artifact structures). Instead of estimating, simulation

techniques give a possible solution to the estimation drawbacks. Simulation techniques
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Figure 3.13: One dimensional example of the logarithm of absolute permeability
field. This field is the result of performing a sequential Gaussian simulation for 225
nodes.

go further than just estimating a permeability field, they can generate multiple equally

likely realizations of permeability fields with the desired geostatiscal features. The idea

of simulations is to build a representation of the field that is consistent with the data

observed, as kriging is, but the result is one of the possible versions of the reality.

There are many algorithms that can be applied to simulate spatial distribution of per-

meability: matrix approaches (LU Decomposition), turning bands, spectral methods

using fast Fourier transforms, moving averages, probability-field simulation, simulated

annealing, and sequential Gaussian simulation. This last method is the most common

approach adopted in recent times for reservoir modeling applications. For more infor-

mation about kriging and simulation algorithms the reader is referred to Armstrong

and Dowd (1994), Goovaerts (1997), Chiles and Delfiner (1999) and Deutsch (2002).

Before performing the simulation, a structural analysis and a statistical parameter

inference must be performed. The purpose of this stage is to identify different zones

of permeability within each of which the spatial statistical properties (e.g., histogram

and variogram) can be inferred from the available data. In some occasions, when the

number of data available are not enough to infer a spatial structure, the variogram is

imposed from similar data set or case studies. With the variogram model defined, the

sequential Gaussian simulation consists of visiting each grid node in a random order

and following next steps:

1. Look for nearby data and previously simulated grid nodes.
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Figure 3.14: Two dimensional example of the logarithm of absolute permeability
field. This field is the result of performing a sequential Gaussian simulation for
15x15 nodes.

2. Perform kriging and construct the conditional distributions calculating a mean

and estimation variance by simple kriging.

3. Draw a simulated value from the conditional distribution (normal with mean and

variance from step 2).

This entire procedure can be repeated with different random number of seeds to gene-

rate multiple realizations.

In the present study absolute permeability field is considered to be heterogeneous

but isotropic. Conditional or unconditional simulations can be used to construct ab-

solute permeability, which can be represented by a lognormal distribution with known

mean and variance. Hence, it is also assumed that the spatial variability of absolute

permeability is characterized by a known omnidirectional variogram. To generate si-

mulated fields in this dissertation it was used the code GCOSIM3D (Gómez-Hernández

and Journel, 1993). For 1D, the resulting simulated absolute permeability field could

be the one shown in Figure 3.13, in which the total domain consists of 225 nodes. The

graph in Figure 3.13 represents the logarithm of absolute permeabilities.

In 2D a simulation of absolute permeability values is represented in Figure 3.14.

The heterogeneities are reflected by an area of low permeability and an area of high

permeability, both of them quite close to each other.

To represent relative permeability functions power analytical expressions have been

chosen. The formulas given in equations (3.6), corresponding to Brooks and Corey

(1966), are taken for this dissertation. In the estimation of heterogeneous relative
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Figure 3.15: One dimensional example of Srw, Sro, k0
rw and k0

ro simulations. These
parameters correspond to the relative permeability formulation given in equation
(3.6). The total simulated field consists of 225 nodes.

permeabilities indexes nw and no are assumed to be known, the two residual saturations

Srw and Sro, and two end-points k0
rw and k0

ro for water and oil are assumed to be the

parameters representing the heterogeneity. This means that to simulate heterogeneous

relative permeabilities of water and oil, four simulations for Srw, Sro, k0
rw and k0

ro have

to be run. The results for one case in 1D are shown in Figure 3.15. Four simulations

has been carried out giving a simulated field for each of the parameters, Srw, Sro, k0
rw

and k0
ro, at every node.

In 2D one possibility for relative permeability simulated fields is drawn in Figures

3.16(a) to 3.16(d). For absolute permeability fields the variogram taken to represent

its spatial structure is spherical, while for the relative permeability parameters the

variogram is Gaussian. Figure 3.16(a) corresponds to the end-point of water relative

permeability, Figure 3.16(b) to water residual saturation, figure 3.16(c) to end-point of

oil relative permeability and Figure 3.16(d) to oil residual saturation.

3.7.2 Flow results

Simulated fields for absolute and relative permeabilities are introduced in the numerical

solver (step III in Figure 1.1) for two-phase flow. Initial and boundary conditions are

also necessary to get a solution for the problem. In 1D, the problem that is going to

be solved has one injector well at one extreme of the domain (node number 1) and one

production well at the other extreme (node number 225). Constant mesh with block
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Figure 3.16: Two dimensional example of simulated values for k0
rw, Srw, k0

ro and Sro (equation
(3.6)). 15x15 grid blocks.

grids of 1 meter length by 10 meter width is taken. The initial conditions are Sw = 0.2

and P = 6.895e6 Pa. The water is injected into the porous medium filled with oil and

water. Water is injected at constant rate of 75×10−3kg/s. For these examples mobility

ratio is taken to be equal to one, k0
rwµo/k

0
roµw = 1. Constant 10.35 hour time steps are

prescribed, an the simulation is run to 345.18 days.

Two different runs are performed, both of them with the absolute permeability

field shown in Figure 3.9, but with different relative permeability fields. The first run

is done assuming homogeneous relative permeabilities, so just one relative permeability

curve for each of the fluids is taken. The parameters k0
rw, k0

ro, Srw and Sro are set to

be equal to the average values taken to perform the simulations in Figure 3.11. These

values are: k0
rw = 0.7, Srw = 0.1, k0

ro = 0.85 and Sro = 0.2. The second run is done
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Figure 3.17: Saturation and pressure front corresponding to 1D two-phase flow
when absolute permeability is taken heterogeneous, but relative permeability curves
are homogeneous within all the domain. Injection water is applied in the grid block
situated to the left.
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Figure 3.18: Saturation and pressure front corresponding to 1D two-phase flow
when absolute and permeability are taken to be heterogeneous. Relative permea-
bility parameters correspond to Figure 3.15. Injection water is applied in the grid
block situated to the left.

with heterogeneous values for all four parameters represented in Figure 3.15. For both

runs saturation and pressure fields are obtained all over the domain (Figures 3.17 and
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3.18).
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Figure 3.19: Saturation and pressure front corresponding to 2D two-phase flow when
absolute permeability is taken heterogeneous, but relative permeability curves are ho-
mogeneous within all the domain. Injection water well is situated in the left lower grid
block.
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Figure 3.20: Saturation and pressure front corresponding to 2D two-phase flow when
absolute and relative permeability are taken heterogeneous within all the domain. Rela-
tive permeability parameters are taken from figures 3.16(a) to 3.16(d). Injection water
well is situated in the left lower grid block.

The main difference observed between Figure 3.17 and Figure 3.18 is that the satu-

ration front for the heterogeneous relative permeability case presents some fluctuations

in comparison to the homogeneous case. However, the pressure field does not present

important differences when the absolute permeability field used is the same.

In the 2D case the parameters used are different. The grid sizes are 10mx10m, for

a total of 15x15 grid blocks. The injector well is situated at the left lower corner, and

the production well at the right upper corner. The initial conditions for the 2D run

are Sw = 0.1 and P = 6.895e6 Pa. The water is injected into the porous medium filled
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with oil and water. Water is injected at constant rate of 2.5kg/s. Constant 4.8 hour

time steps are prescribed, an the simulation is run to 120 days.

In the same manner that it was done for the 1D case, two runs where carried

out in 2D. One with homogeneous parameters for water and oil relative permeability

curves (Figure 3.19) and the other with the heterogeneous field (figure 3.20). The

heterogeneous parameters are given by Figures 3.16(a) to 3.16(d). The homogeneous

relative permeability curves are described with the same parameter values than in the

1D case: k0
rw = 0.7, Srw = 0.1, k0

ro = 0.85 and Sro = 0.2

The results in 2D, as in the 1D case, show that for the same heterogenerous abso-

lute permeability field the pressures do not reflect the heterogeneities of the relative

permeability curves. The saturation is the variable that is highly influenced by the

changes in the spatial distribution of the water and oil relative permeability curves.

In this chapter the forward two-phase flow numerical solver has been studied and

adapted to take into account relative permeability heterogeneities. Numerical results

have been compared with analytical solutions in 1D. The method has been applied

in one and two dimensions to show the different characteristics when assuming homo-

geneous or heterogeneous relative permeability fields. The forward numerical solver

needed is ready to be used, next chapter moves on the inverse modeling process and

deals with the development of the inverse technique itself.
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Chapter 4

Inverse method

When in chapter 1 numerical flow modeling was introduced, the explanation was as-

sisted with the scheme given in Figure 1.1. Within the former chapter 3 both steps II

and III of this scheme were described and detail instructions of the existing tools, for

both parameter value assignment and numerical two-phase flow solution, were given.

The next step, following Figure 1.1, is to apply the flow simulator to field cases. The

results given by the two-phase flow solution has to be interpreted and used in order to

predict how the reservoir in going to behave in the future. Before this can be done, it

is very important to check if the model results are agree with all the available data.

Following steps II and III it is guaranteed that the static parameter data are reprodu-

ced, but quite frequently it is found out that dynamic data are not. In this chapter

the method already introduced as inverse modeling is going to be described in detail,

in particular the inverse methodology followed and developed in this dissertation is

going to be discussed. The basic ideas described in this chapter are very similar to the

self-calibrated method (Hendricks-Franssen, 2001; Gómez-Hernández et al.,1997).

4.1 Self-calibrated method

Nowadays the generation of conditioned permeability fields in order to characterize an

aquifer or a petroleum reservoir is a technique highly developed and of common usage.

However, usually this initial model does not honor the production data when they are

calculated with a numerical reservoir simulator under the same flow conditions. When

the permeability field is going to be conditioned to such a dynamic data, the problem

is the non linear relation given by the non linear differential equations (developed in

chapter 3). The determination of the input parameters for the flow equations, in order

to reproduce the saturation and pressure data, it is normally known as the inverse

problem.

67
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The main idea is based on the fact that saturations and pressures contain, indirectly,

very important information about the properties in the reservoir. Thus, it is of vital

importance that this information is incorporated in the characterization process. The

calibrated parameters that reproduce the saturation and pressure data are closer to

real values than those that cannot reproduce these dynamic data.

The self-calibrated method (Sahuquillo et al., 1992; Gmez-Hern ndez et al., 1997;

Hendricks-Franssen, 2001) was developed to obtained real estimations of the piezome-

tric heads in the aquifer. The estimation reflects the spatial variability corresponding

to the model, at the same time that contributes with an uncertainty model. The

self-calibrated method allows to integrate the most quantity of information that it is

possible in order to condition the realizations of the reservoir attributes.

In this dissertation the self-calibrated method scheme is followed, adapting the met-

hod to two-phase flow equations described in chapter 3. The differential variation of

water saturation is incorporated. The extension of the self-calibrated method presented

here consists in the calibration of a parameter set that constitute the relative permea-

bility functions. These parameters are chosen to characterize the heterogeneity of the

relative permeability curves, and are: the end-points, k0
rw and k0

ro, and residual satu-

rations Srw and Sro, for both water and oil phases, four values that control the length

of the relative permeability curves when they are expressed in function of saturation.

The main steps of the iterative process, followed by the inversion technique deve-

loped, are resumed here. The loop from step 2 to step 7 is repeated until convergence

is reached (see Figure 4.1). For each iteration IT :

1. Geostatistical techniques are used to generate a reservoir parameter model con-

ditioned to local measurements of parameters, as it was explained in chapter

3. Simulations of the four parameters k0
rw, k0

ro, Srw and Sro and absolute per-

meability k are carried out. These values can be simulated in such a way that

they only reproduce the spatial distribution taken to characterize the reservoir

(unconditional simulations). Or, they can be simulated with additional cons-

trains at the data points (conditional simulations). The built fields, conditional

or unconditional, constitute the seed or initial input fields.

2. Initial model (created in setp 1) is input into the two-phase flow numerical solver.

Saturation and pressure field are obtained for all the time steps at every grid

block.

3. An objective function is defined as the squared difference of the simulated and

observed saturation and pressures. Parameters are estimated by iteratively mi-

nimizing this objective function, which measures the deviation between the data
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Figure 4.1: Self-calibrated method scheme.

and the model calculation:

J IT =
Ts∑
t=1

Ns∑
i=1

ws,i

(
SSIM,IT

i,t − SMEAS
i,t

)2

+

Tp∑
t=1

Np∑
i=1

wp,i

(
pSIM,IT

i,t − pMEAS
i,t

)2

(4.1)

Ns and Np are, respectively, the number of saturation and pressure data points.

Ts and Tp are the number of times at which the measurements have been taken, for

saturation and pressure respectively. Indexes SIM and MEAS indicate simulated

and measured values. ws and wp are the weights that multiply the two terms in

the objective function.

4. If J is smaller than a pre-determined value, the simulated permeability values are

said to be conditioned to the measured saturation and pressure values, and the

iterative loop stops. On the contrary, if J is not small enough, the optimization

continues and k, krw and kro fields are perturbed. With this perturbation an
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improvement in the saturation and pressure values is searched, in order to get

them closer to the real ones (J smaller).

5. The optimization procedure determines the value of the perturbation that is ap-

plied to the initial field so that the objective function is reduced. In order to

diminish the parameter dimension, the optimization is parameterized as a func-

tion of the perturbations of permeability at a few selected locations, called master

points. If permeability measurements are assigned to master point positions, their

perturbation is equal to zero when measurements do not have any error. When

saturation and/or pressure is available at one point this point should be assig-

ned to be a master point. In the case of absolute permeability the logarithm of

absolute permeability, log(k), is used for the optimization instead of k. For the

method developed here, perturbations are computed from the gradient of the ob-

jective function. To explain the formulation, let’s say that iteration IT is already

finished and perturbations for iteration IT+1 are going to be calculated. Parame-

ter k0
rw is taken to illustrate the equations in detail, with the rest of parameters

the algorithm is equivalent. If the steepest descent optimization method is used,

the element of perturbation vector {∆k0
rw}

IT+1
at master point m is:

∆k0
rw

∣∣IT+1

m
= −α gk0

rw

∣∣IT+1

m
(4.2)

m represents any of the total number of master points, Nm. α is a step size

along the gradient direction, which can be obtained using linear optimization.

gk0
rw

∣∣IT+1

m
is the gradient of the objective function with respect k0

rw at point m

for the iteration IT+1 of the non linear optimization.

6. The resulting perturbations at the master points are extended throughout the

entire reservoir domain by interpolation to obtain the perturbations that are

going to be apply to the initial field to get a new field. The interpolation of

the perturbations at every node is expressed with a linear combination of the

perturbations at the master points. The perturbation ∆k0
rw|

IT+1
at any point i

is equal to:

∆k0
rw

∣∣IT+1

i
=

Nm∑
m

ei,m ∆k0
rw

∣∣IT+1

m
(4.3)

where ei,m could be ordinary kriging coefficients when estimating ∆k0
rw|

IT+1
i from

the values at master points, or the coefficients of a linear interpolation. In this

dissertation inverse distance interpolation scheme is employed. If Di,m is the
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distance between the point of interest i and the master point m, the weight ei,m

is given by:

ei,m =

1
Db

i,m∑Nm

j=1
1

Db
i,j

where b is an appropriate constant. Once the perturbations are interpolated at

every node, ∆k0
rw|

IT+1
i in equation (4.3)), the new parameter field for iteration

IT+1 at point i is equal to:

k0
rw

∣∣IT+1

i
= k0

rw

∣∣IT

i
+ ∆k0

rw

∣∣IT+1

i
i = 1, ..., N (4.4)

With vector notation:

{
k0

rw

}IT+1
=

{
k0

rw

}IT
+

{
∆k0

rw

}IT+1
(4.5)

7. Go to step 2. The modified reservoir model, {k0
rw}

IT+1
, {Srw}IT+1, {k0

ro}
IT+1

,

{Sro}IT+1 and {k}IT+1, is input again into the reservoir simulator. The squared

differences of simulated and observed saturations and pressures are re-evaluated

(step 3), and the whole process continues until the solution of pressures and

saturations corresponding to the numerical reservoir simulator is close to the

observed data.

The equation that defines the objective function was given in step 3. The purpose

and interpretation of the weights that appeared in equation (4.1), ws,i and wp,i, could

be explained with the next points:

• They scale data of different quality, that is, an accurate measurement obtains a

higher weight than a more uncertain measurement.

• They scale observations of different types. For example, saturations and pressures

have different units and usually differ by many orders of magnitude. They need

to be scaled appropriately to be comparable in a formalize parameter estimation

procedure.

• They weight the fitting error.
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4.2 Computing the perturbations

Steps 1 to 7 described in former section summarized the whole process that is involved

in the inversion. In step 5 the change directions are computed and the step size, α,

that defines the perturbation is calculated. This process of searching the direction and

module of the perturbation, in order to get a smaller objective function, is done with

optimization methods. There exist various optimization algorithms, sorted in chapter

2. These are search methods, gradient methods and second order methods. In this

dissertation, due the complexity of the non linear problem purposed, gradient methods

are used. The objective of this section is to explain how the perturbations or variations

are computed.

The basic gradient method is the steepest descent method, for which the search di-

rection is equal to the negative gradient direction at each iteration IT (equation (4.2)).

The optimal step size along this direction can be determined by a linear search. Howe-

ver, perturbation direction does not have to be equal to the negative gradient direction.

One can avoid the gradient method using Quasi-Newton or variable metric methods.

These are second order methods that require the computation of the Hessian matrix

(which elements are the partial second derivatives of the objective function with respect

to the perturbation parameters), or the sensitivity matrix. Other alternative is to use

the adjoint methods to compute the gradient of the objective function or sensitivity

of all production data to grid block permeability. Computation of the gradient of the

objective function requires only the solution of a single adjoint system and thus requi-

res no more computational time than one reservoir simulation run. Unfortunately, the

implementation of these methods have resulted in slow convergence (Makhlouf et al.

1993). Wu et al. (1999) were the first to used the adjoint method in conjunction with

the Gauss-Newton method to perform history matching. They implemented the adjoint

method to compute the sensitivity of all production data to grid block permeabilities

and porosities. The resulting calibrating process, however, is not practically feasible for

the type of problems of interest to us where the sensitivity equations are too complex

(see Appendix B). Because it is simple to implement, the so-called gradient method is

chosen in this dissertation. This method needs the computation of the gradient of the

objective function, {g}. In this section an explanation of how the components of the

gradient are computed is given. To illustrate the procedure, let’s say that the gradient

of J is going to be computed with respect one of the five parameters, let’s call it d.

Parameter d could be k0
rw, k0

ro, Srw, Sro or logk.

The gradient of the objective function with respect d, is equal to:
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{gd} =

{
∂J

∂d

}
(4.6)

at the master point m:

gd|m =
∂J

∂d

∣∣∣∣
m

(4.7)

The forward model can be used to calculate J for any parameter. The component of

the gradient gd|m can be approximated by the forward finite difference approximation:

gd|m =
∂J

∂d

∣∣∣∣
m

≈ J(dm + ∆d)− J(dm)

∆d
(4.8)

where ∆d is an increment of the parameter d. The value for the objective function

J(dm + ∆d) and J(dm) can be calculated by running the simulation model with the

incremented parameter dm + ∆d and the parameter dm, respectively. Obviously, the

gradient is more accurate if the increment ∆d is small. Although, if it is too small,

the round-off error may control the results. Sun (1994) suggests that for the numerical

computation of the gradient of the objective function ∆d can be taken to be directly

proportional to d obtained in last iteration. The proportional factor can be determined

by a trial-error procedure. The value for this proportional factor usually ranges from

10−5 to 10−2. In this dissertation this value depends on the parameter that is considered

to be perturbed. Effectively, the proportional factor is taken to be within this range,

starting from 10−2 and making it smaller while the objective function is reducing its

value.

Equation 4.8 is used to compute the gradient of the objective function. Thus,

only for the computation of the gradient with respect each parameter, the forward

simulation model has to be run Nm times in each iteration.

The calculation of the component, let’s say M , of the gradient of the objective

function with respect d is calculated following the next steps. Subscript m represents

any master position, and can take the values m = 1, ..., Nm.

• A realization d is available from the last iteration, or from the seed field when

the first iteration is performed. The corresponding objective function has been

computed, J . The parameter value at the master point M is dM , in the point

where the component of the gradient of ∂J
∂d

∣∣
M

is going to be calculated.

• A perturbation of the parameter is assigned, ∆d. This increment is interpolated

with the increments for the rest of master points (equal to zero). The interpola-

tion results in a set of increments for all master points {∆d}. The interpolation
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can be performed with kriging or other interpolation methods. For this disserta-

tion inverse distance interpolation method is applied.

• With the interpolated increments, the parameter field is changed {d}+ {∆d}, at

every master point. The rest of parameters remain unchanged. The resulting field

is called {d}M . Subscript M means that, at master point M , the perturbation is

equal to ∆d.

• The two-phase flow equation is solved for {d}M and the rest of parameters remain

unchanged with respect the values obtained in last iteration.

• The objective function is computed with the output saturations and pressures at

every measured node and time.

• The numerical approximation for the gradient of the objective function with

respect d, at master point M in iteration IT , is approximated by equation (4.6).

gd|M =
∂J

∂d

∣∣∣∣
M

≈ J(d + ∆d)− J(d)

∆d

The process is repeated for every master point for all the parameters to obtain all

the components of the gradient:
{
gk0

rw

}
, {gSrw},

{
gk0

ro

}
, {gSro} and {glogk}.

4.3 Optimization

In step 5 of the inversion model the steepest descent method was adopted for optimi-

zation. However, this method usually terminates far from the minimum. One possible

solution is to use second order methods, which imply a considerable number of gra-

dient evaluations. An alternative is to use conjugate gradient methods, for which the

number of total evaluations of the objective function is higher, but the total amount

of time is reduced. One of this methods was presented by Hestenes and Stiefel to solve

linear systems (Scales, 1985), employing the conjugate search directions. This method

for the optimization with respect k0
rw is:

{
∆k0

rw

}0
= −

{
gk0

rw

}0

(4.9)

{
∆k0

rw

}IT
= −

{
gk0

rw

}IT
+

({
gk0

rw

}IT −
{
gk0

rw

}IT−1
)′ {

gk0
rw

}IT({
gk0

rw

}IT −
{
gk0

rw

}IT−1
)′
{∆k0

rw}
IT−1

{
∆k0

rw

}IT−1
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where ()′ is the representation of the matrix transpose operator. Similarly equation

(4.9) can be written for the rest of relative permeability parameters and the logarithm

of absolute permeability.

Hestenes and Stiefel’s method has been extended by Fletcher and Reeves to non

linear optimization (Scales, 1985), using conjugate directions, which uses successive

search directions:

{
∆k0

rw

}0
= −

{
gk0

rw

}0

(4.10){
∆k0

rw

}IT
= −

{
gk0

rw

}IT
+

{
gk0

rw

}′IT {
gk0

rw

}IT{
gk0

rw

}′IT−1 {
gk0

rw

}IT−1

{
∆k0

rw

}IT−1

where
{
gk0

rw

}′
represents the transpose of the vector

{
gk0

rw

}
.

These two methods have the drawback that for non quadratic functions can end

up with an updating direction almost orthogonal to the gradient. This will give no

progress in the minimization at the next iterations. The Hestenes and Stiefel’s variant

of conjugate gradients corrects this feature by resetting the steepest descent direction

of the current point (Scales, 1985). As suggested by Carrera and Neuman (1986c)

the optimization algorithm implemented in the inverse method developed, switches

these three methods described, steepest descent, Hestenes and Stiefel and Fletcher and

Reeves. This alternation results in a faster convergence and avoids results far from the

minimum.

4.4 Applying the inverse method

In this section an application of the developed inverse method, and the convenience

of the study of the heterogeneities in relative permeability curves and absolute per-

meability is shown. Here it is considered the simultaneous calibration of absolute and

relative permeability fields to saturation and pressure data. The problem configuration

is an application of Buckley and Leverett displacement, having a 1D medium with a

production well at one extreme, and an injection well at the other (Figure 4.2). The

simulator described in last chapter is used to generate synthetic pressure and satura-

tion data. The set of permeability values used to generate the well data are the truth

case. This process has consisted in:
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ZONE 1 ZONE 2 ZONE 3

i = 1 - 20 i = 21 - 35 i = 36 - 50

INYECTION PRODUCTION

INYECTED
WATER

RESERVOIR
WATER AND

OIL

Figure 4.2: Buckley and Leverett displacement scheme. Water is injected at a well
situated in the left extreme of the medium. At the right node there is a production
well, in which water and oil are pumped.

• Construct a synthetic field for saturations and pressures from a set of parameters

that are considered to be ‘real’.

• Define the ‘measurements’. Synthetic saturation and pressure fields are sampled

for a set of times and points. These are considered to be the times and locations

where data have been taken (as if they were well data).

• Build a set of initial parameters to start the calibration.

• Calibrate the parameters through the calculated objective function with the sa-

turation and pressures data taken, the ‘measurements’.

Zone Nodes k Srw Sro k0
rw k0

ro

1 1-20 1.0× 10−13 0.15 0.19 0.7 0.85

2 21-35 8.0× 10−13 0.20 0.22 0.8 0.87

3 36-50 1.0× 10−12 0.23 0.26 0.9 0.92

Table 4.1: Parameters that define the absolute and relative permeabilities for the
three zones. These parameters are employed for the generation of synthetic satura-
tion and pressure fields. These values are the saturations and pressures taken to be
‘real’. Indexes nw and no are equal to 1 for the three zones.
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Figure 4.3: Saturation front corresponding to the numerical solution at the end of the si-
mulation. The blue curve represents the real case, the pink curve the initial results, and the
green curve the saturation front when using the real values for absolute permeability and the
initial parameters for relative permeability curves.

The study area is discretized with a regular grid of 50 grid blocks. The medium

has been divided in three zones, within each of them permeability is considered to be

homogeneous. Grid blocks corresponding to each of the zones are graphed in figure

4.2. Parameters that describe the reality, which normally is not known, are resumed

in Table 4.1. In this example heterogeneity for both absolute and relative permeability

is built per zones. 500 time steps are used. The analysis is carried out assuming that

there are three data points at grid blocks i = 10, 25, 40, one per zone, for 10 times

(t = 50, 100, 150, 200, 250, 300, 350, 400, 450 and 500). These measurements are

directly read from the synthetic results.

k Srw Sro k0
rw k0

ro

5.0× 10−13 0.10 0.15 0.68 0.70

Table 4.2: Initial parameters taken for the example calibration. These parameters
define relative permeability curves and absolute permeability in the three zones in
which the domain is divided. Indexes nw and no are equal to 1 for the three zones.



78 CHAPTER 4. INVERSE METHOD

6.0E+06

6.2E+06

6.4E+06

6.6E+06

6.8E+06

7.0E+06

7.2E+06

7.4E+06

7.6E+06

7.8E+06

8.0E+06

0 100 200 300 400 500
x (m)

P
re

ss
ur

e 
(P

a)

Kabs. = real & Krel. = real Kabs. = intial & Krel. = initial
Kabs. = real & Krel. = initial

Figure 4.4: Pressure front corresponding to the numerical solution at the end of
the simulation. The blue curve represents the real case, the pink curve the initial
results, and the green curve the saturation front when using the real values for
absolute permeability and the initial parameters for relative permeability curves.

For the calibration it is necessary to start from a set of initial values, summarized

in Table 4.2. These parameters have been defined as homogeneous for all the domain.

In the Figures 4.3 and 4.4 saturation and pressure are graphed for all the nodes at the

last time step simulated. Blue curve represents the output values given by the two-

phase numerical flow solver with real parameter values in Table 4.1. The pink curve

corresponds to the numerical solution using initial parameter values in Table 4.2.

The objective of this exercise is to check the importance of calibrating or not cali-

brating relative permeability curves. The results are going to corroborate results shown

in chapter 2, the saturation front is much more influenced by the relative permeability

curves than the pressure front. Indeed, no calibration is necessary to arrive to that

conclusion. If saturation and pressure fronts are computed with the forward two-phase

flow simulator, assuming that absolute permeability is known, but relative permeability

values are unknown and assigned to be equal to the initial values (Table 4.2), the result

is very interesting. Saturation and pressure fronts are graphed in Figures 4.3 and 4.4

with the green curves. It can be seen that the pressure field does not change so much

with respect the real values given by the blue curve, while the saturation front is highly

affected. This property of relative permeabilities can be taken into account when the

optimization algorithm is programmed. If the pressure term in the objective function
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Figure 4.5: Saturation front corresponding to the calibrated parameters. Results for the
last simulation time. The blue curve corresponds to real values, the pink one to the initial.
The green curve is the result after the simultaneous calibration of relative and absolute
permeabilities.

has been reduced considerably, but not for the saturation term, weight for pressures

wp can be assigned to be zero and optimization can continue only for parameters of

relative permeability curves.

When the calibration is run the starting parameter values, given in Table 4.2, are

modified iteratively to end up with the values given in Table 4.3. The saturation and

pressure fronts given by the calibrated parameters are represented by the green curves

in Figures 4.5 and 4.6. In the calibration presented here it was employed a weight

for the pressures (wp,i in equation (4.1)) equal to 10−10, obtaining with it an initial

objective function value of 149.98. Saturation weights for all the examples taken in

this dissertation are equal to 1. This means that saturation measurements are assumed

to be free of any error. Saturation errors can be taken into account by just changing

this value. The election of the pressure weight wp in the objective function was made

after several tries with different weights. The value chosen was the one that resulted

in an objective function with an order of magnitude low enough to perform the inverse

modeling. After 323 iterations the objective function resulted equal to 0.00176. The

match was considered very optimum for both saturation and pressure fields (see Figures

4.5 and 4.6).
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Figure 4.6: Pressure front corresponding to the calibrated parameters. Results for
the last simulation time. The blue curve corresponds to real values, the pink one
to the initial. The green curve is the result after the simultaneous calibration of
relative and absolute permeabilities.

For this exercise the evolution of the objective function for the first 100 iterations

has been graphed in Figure 4.7. The y axis corresponds to the objective function and

it has been plotted in logarithm scale. For the first 5 iterations, when the objective

function is bigger than 2, the weight value of the saturations has been set to zero,

ws = 0. This has been done because until that point the contribution for the objective

function is mainly due to the pressure term. This avoids to compute the gradient for

the relative permeability parameters for the first iterations.

Zone Nodes k Srw Sro k0
rw k0

ro

1 1-20 1.0× 10−13 0.145 0.194 0.608 0.738

2 21-35 8.0× 10−13 0.203 0.215 0.890 0.867

3 36-50 1.0× 10−12 0.211 0.230 0.759 0.827

Table 4.3: Parameter values obtained after the simultaneous calibration of relative
and absolute permeability fields in the three zones.
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Figure 4.7: The objective function (in logarithm scale) is represented in function of
the number of iterations for 1D example.

This simple example shows that the inverse method developed works and it is

capable to match the production data. The technique is ready to be applied to more

complex 1D and 2D cases, and to perform uncertainty analysis. Next chapters present

these applications.
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Chapter 5

Calibrating absolute and relative

permeabilities in 2D

The main objective of this dissertation is to produce a technique that simultaneously

calibrate (or inverse model) both absolute and relative permabilities, considering both

parameters spatially variable within the reservoir. Former chapters have extensively

described the most important basic concepts of the inverse method developed. The

present chapter shows several applications of this method in one and two dimensions

for different reservoir configurations. In first place, calibrations of absolute and relative

permeability fields in two dimensions are shown. Also one calibration with seismic data

as dynamic variable plus production data is analyzed.

In the following examples absolute permeability heterogeneity is closer to a real re-

servoir representation than the heterogeneities used for 1D cases. These heterogeneities

are similar to the field presented in chapter 3 (Figure 3.14). Relative permeabilities are

still assumed to be homogeneous within different areas in which the domain is divided

in all the analyzed cases, except in one example. To make the hypothetical problem

closer to a real case, extra data are supposed to be available, like absolute permeability

measurements or seismic information. This additional information has a major impor-

tance for a good agreement between reality and calibrated results. First, three test

problems were run: quarter five spot configuration with production data, quarter five

spot configuration with production and seismic data and vertical section with produc-

tion data. A final forth example was carried out with relative permeabilities varying

all over the domain.

Discretization and size taken in the cases performed in this dissertation are chosen

to make the problems easy to compute. It is the aim of this research to develope a

new inverse technique, to test the possibilities to run it, and to see how this technique

can improve reservoir characterization. Future research must look for optimization

83
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techniques to speed up the forward and inverse simulator in order to perform more

realistic cases with higher discretizations and domain size.

5.1 Relative permeability field given in zones: quar-

ter five spot case.

INJECTOR

PRODUCTOR

k°_rw =0.7 k°_ro =0.75

S_rw =0.1 S_ro =0.18

k°_rw =0.8 k°_ro =0.85

S_rw =0.2 S_ro =0.23

k°_rw =0.87 k°_ro =0.90

S_rw =0.26 S_ro =0.29
ZONE 3

ZONE 2

ZONE 1

Figure 5.1: The quarter five spot scheme is represented in this figure, injector situa-
ted at lower left corner, and producer at upper right corner. The reservoir is divided
into 3 different zones, within each of them the relative permeability parameters are
assumed to be constant. The true values for the relative permeability parameters
are also resumed in the figure.

The first example chosen for a 2D immiscible two-phase flow was the so called

quarter five spot problem, which is a model problem in reservoir engineering. The

spatial domain is a horizontal cut of an oil field, where a periodic arrangement of

injection and production wells is considered. Figure 5.1 should clear the setting. In

one space dimension this problem simplifies to Buckley-Leverett displacement problem,

used in former chapters.

As in 1D, a synthetic case is created. 15 by 15 grid blocks are used to discretized

the 2D domain with no flow boundaries. Reservoir performance was simulated using

a uniform spatial grid with ∆x = ∆y = 10m. Remember that the objective of the
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Figure 5.2: 2D heterogeneous absolute permeability field that is taken as the real absolute
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Figure 5.3: When introducing real parameters in the two-phase flow simulator this is the
saturation (a) and pressure (b) field obtained at the end of the simulation.

exercise is just to check the feasibility of the inverse technique, this is the reason why

the discretization is so simple. Absolute permeability is heterogeneous all over the

reservoir, but relative permeability is constant within some areas (schemed in Figure

5.1). No statistical correlation was considered between the five parameters (k, k0
rw,

Srw, k0
ro and Sro). However, there is an implicit correlation as all the parameters are

calibrated to the same set of production data. Three relative permeability curves (one

per zone) are considered to describe the domain. Parameters corresponding to these

water and oil relative permeability curves are resumed in Figure 5.1. The sequential

Gaussian simulation code GCOSIM3D (Gómez-Hernández and Journel, 1993) was run

in order to generate heterogenous absolute permeability field. The resulting real lo-

garithm absolute permeability field is shown in Figure 5.2. The absolute permeability
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(a) Configuration 1 (b) Configuration 2

Figure 5.4: Master point positions for inversion modeling. Red circles correspond
to absolute permeability master points and yellow starts to relative permeability
master points.

distribution is assumed to be log-normal with log-mean equal to -13.0 and variance

equal to 0.3. It is also assumed that absolute permeability field is isotropic and spatial

continuity can be described with a spherical variogram model of range equal to 60 m.

Another relevant reservoir property is the porosity, being φ = 0.2. The parameter set

given by Figures 5.1 and 5.2 are assigned to be the real values for this example and

the next two sections.

Initially, the saturation conditions are considered homogeneous. The reservoir is

almost full with oil (90%), and the rest (10%) is filled with water. Water is injected

through a well situated in the lower left corner of the computational domain (Figure

Figure 5.5: Grid blocks positions at which absolute permeability and production
data are available. They are indicated with orange squares.
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Figure 5.6: In this figure initial (first column), calibrated (second column) and real (third
column) realizations are presented for comparison. First row corresponds to logarithm of
absolute permeability, second row to water saturations after 120 days and third column to
pressures after 120 days. Well layout has the form of a quarter five spot problem. Inversion
with 5 production data points and 4 absolute permeability measurements was run.

5.1). Water and oil are produced through a well in the upper right corner (Figure 5.1).

The absolute and relative permeability realizations, considered as real representations

of the reservoir, are introduced in the forward two-phase solver. The initial conditions

are Sw = 0.1 and P = 6.895× 106 Pa. Water is injected into the porous medium filled
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with oil and water at constant rate of 2.5kg/s. Production rate is also constant and

equal to 2.5kg/s. For the following examples mobility ratio is taken to be equal to

one, k0
rwµo/k

0
roµw = 1, and exponents nw = no = 1. Constant 4.8 hours time steps are

prescribed, an the simulation is run to 120 days. Saturation and pressure fields after

the 120 days are given in Figures 5.3(a) and 5.3(b). They represent the behavior of

the reservoir assumed to be real.

The hypothetical data production measurements are located in 5 selected grid

blocks, indicated in Figure 5.5 with orange squares. Data values are supposed to

be measured for 10 times of the 600 time steps during which the forward simulator was

run. These are the data introduced in the objective function, SMEAS
w and pMEAS, and

the values that are going to be reproducted with the inversion.

Iterations start from an initial set of absolute and relative permeabilities. Initial

absolute field is given in Figure 5.6(a). The initial relative permeability field is taken

to be homogeneous all over the domain. The parameters that define this relative

permeability curve are resumed in Tables 5.1 and 5.2. For the last time step of the

simulation the saturation and pressure fields with these initial parameters are shown

in Figures 5.6(d) and 5.6(g), respectively.

In the inversion, the parameter space is reduced by the definition of a set of points

for the perturbation, called master points. For the calibration the number and lo-

cations of the master points must be selected. Capilla et al. (1997) found that 3

master blocks per correlation range was optimal. Here, 3 master points are taken for

relative permeabilities (yellow starts in Figure 5.4) and 11 master points for absolute

permeability (red circles in Figure 5.4). Hendricks-Franssen (2001) suggests that if the

master blocks configuration changes as the iterations proceed the procedure yields a

faster convergence. Two different master point configurations where selected in this

test problem, which are shown in Figures 5.4(a) and 5.4(b). During the calibration

the configuration of master blocks switches between both of them. In 5 grid blocks

(orange squares in Figure 5.6) absolute permeability measurements are supposed to be

available. The 5 corresponding master points will have a perturbation equal to zero

during all the calibration.

With this configuration, the total parameter space to be calibrated is: (5 parame-

ters k, k0
rw, Srw, k0

ro, Sro) x (11 + 3 master points - 5 k data points). This means that

the forward simulator must be run in each iteration 45 times, for the computation of

the gradient components, plus the runs required in the linear optimization for the cal-

culation of α (perturbation size, equation (4.2)). In order to slow down the simulation

time in each iteration it has been decided to avoid the linear optimization. Instead,

the size of the perturbation is fixed, and gradually decreased while the objective func-
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Zone k0
rw k0

ro

Initial Calibrated Real Initial Calibrated Real

1 0.911 0.991 0.700 0.911 0.896 0.750

2 0.911 0.924 0.800 0.911 0.954 0.850

3 0.911 0.988 0.870 0.911 0.978 0.900

Table 5.1: Initial, calibrated and real values for water and oil end-points of relative
permeability curves. The calibration test case is a quarter five spot problem with 5
production data points in 10 times and 5 absolute permeability measurements.

tion diminishes. This is a compromise solution that results in a quite high number

of iterations necessary to arrive to the minimum objective function. For this example

the calibration process was stopped after 3000 iterations, when the objective function

seemed to be low enough.

Zone Srw Sro

Initial Calibrated Real Initial Calibrated Real

1 0.245 0.034 0.100 0.245 0.196 0.180

2 0.245 0.270 0.200 0.245 0.272 0.230

3 0.245 0.165 0.260 0.245 0.433 0.290

Table 5.2: Initial, calibrated and real values for water and oil residual saturations.
The calibration test case is a quarter five spot problem with 5 production data
points in 10 times and 5 absolute permeability measurements.

In general the output given by the calibration reveals that the inverse technique can

perform the calibration in two dimensions. Some of the results after the calibration are

resumed in Figure 5.6. Absolute permeability fields are represented in Figures 5.6(a)

to 5.6(c) (for initial, calibrated and real cases), and saturation and pressure responses

after 120 days, shown in Figures 5.6(d) to 5.6(f) and Figures 5.6(g) to 5.6(i), also for

initial, calibrated and real cases. A preliminary qualitative evaluation of the calibration

method follows.

Calibrated absolute permeability (Figure 5.6(b)) smooths some of the high and low

initial values (Figure 5.6(a)) which do not match with the true field (Figure 5.6(c)).

Anyway, the areas where no production data is located, neither absolute permeabilities

are available, are not well calibrated. Look for example, the high values (red spot)
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Figure 5.7: Simulated versus observed values are plotted for the results before and after
the inversion is performed. The graphs presented here correspond to the quarter five spot
configuration with 5 data wells and 10 times of measurements. Figures (a) and (b) are the
scatter plots for water saturations and (c) and (d) for pressures.

situated in middle left zone. However, the pressure front (Figure 5.6(h)) matches quite

well the true values (Figure 5.6(i)). The same happens with the saturation field, in

which the different values related with the relative permeability curves are reflected

after the calibration (Figure 5.6(e)). Initial values for relative permeability curves

where taken to be homogenous (Tables 5.1 and 5.2) and this is reflected in the shape

of the initial saturation front (Figure 5.6(d)). After calibration, though the relative

permeability parameter values are not matched, with them a better reproduction of the

saturation front is achieved (compare Figures 5.6(e) and 5.6(f)). It can be said that the
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inversion is well performed and the saturation and pressure data are well reproduced.

When no data are available it is normal to find some disagreements between real and

simulatead fields. This is what it is reflected in the results found in this test case. The

inverse method works and can perform an inversion as the data values are matched.

The calibrated permeability fields shown in Figure 5.6(c) and Tables 5.1 and 5.2

are one possible representation of the reservoir. Indeed, if other input parameters

are considered for the initial values the calibrated permeabilities would be different.

These examples are shown in order to check that the inverse technique works, however

the method must be complemented with an uncertainty study, which is going to be

presented in next chapter.

For a quantitative evaluation of the results two different kind of plots have been

performed. First, scatter plots for saturation and pressure at well data are graphed.

Figure 5.7 compares the production data misfit before (Figures 5.7(a) and (c)) and

after the calibration (Figures 5.7(b) and (d)). Though the results still do not match

exactly the observed saturation and pressures, the calibration reduces the spread of

the scatter plot.

Because this is a synthetic case, true values for saturation and pressure are available

all over the domain for every time step. Another way to measure the misfit between

the true and simulated values is with the definition of the residuals R:

Rt
s,i = (SSIM

i,t − SMEAS
i,t )

Rt
p,i = (pSIM

i,t − pMEAS
i,t )

(5.1)

for saturations, Rs, and pressures, Rp, at grid block i and time step t. The histograms

of the residuals for 6 time steps are plotted in Figures 5.8 and 5.9. All the histograms

are fairly symmetric and do not have long tails. Saturation residuals for first time

steps reflect a tendency towards underestimation (negative mean), while overestimation

appears for last times. Saturation estimations are quite unbiased as both mean and

median error are close to zero. In general pressure values seem to be underestimated.

Mean values are very close to zero while the median expresses some asymmetry in

the errors. Saturation and pressure error distributions present a small spread. These

results show that for the data grid blocks the observed values are well reproduced

(Figure 5.7), while when looking at the whole field some disagreements must exist and

consecuently the histograms indicate residuals different from zero.
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Figure 5.8: Histograms for the saturation residuals defined in equation (5.1). 6 time steps
are chosen: t = 100, t = 200, t = 300, t = 400, t = 500 and t = 600 (graphs (a) to (f)). The
graphs presented here correspond to the quarter five spot configuration with 5 production
data grid blocks, absolute permeability data in 5 grid blocks, and production data available
for 10 times.
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Figure 5.9: Histograms for the pressure residuals defined in equation (5.1). 6 time steps are
chosen: t = 100, t = 200, t = 300, t = 400, t = 500 and t = 600 (graphs (a) to (f)). The
graphs presented here correspond to the quarter five spot configuration with 5 production
data grid blocks, absolute permeability data in 5 grid blocks, and production data available
for 10 times.
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5.2 Relative permeability field given in zones: seis-

mic data case

Important decisions in the petroleum industry are based on information from seismic

data. Seismic data are originated from acoustic pulses generated on the earth’s surface.

They are the record of the reflection from the earth’s interior. During the last years the

geophysics field has developed and refined the 3D and 4D seismic technology. The 3D

seismic data comes from a high resolution seismic survey that allows a more detailed

three dimensional characterization of the subsurface. When two or more successive 3D

surveys are shot over the same area the process is referred to as 4D seismic, to denote

the addition of the time dimension.
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Figure 5.10: Simulated seismic data corresponding to the real water saturation
field. The procedure followed was to add a random noise to the water saturation
field given in 5.3(a), which corresponds to the last simulation time step. The same
procedure has been applied to 10 different time steps.

In general, seismic images are sensitive to the spatial variation of two distinct types

of reservoir properties: static geologic properties, as lithology, porosity, cementation or

shale content, and dynamic fluid flow properties as saturation and pore pressures. By

comparing the data from 3D surveys acquired at different times at the same location,

it is possible to eliminate the effects of unknown static properties to focus on the

dynamic changes in production related properties. So, the sensitivity to saturation

changes allows tracking of the movement of fronts in the reservoir. The outstanding

characteristic of the 4D seismic data is that it provides areally distributed information,

which can therefore provide a higher areal resolution than well data. With this process,

it is possible to estimate the areal distribution of saturation changes in the reservoir

due to the production or injection of fluids.

For inverse modeling in reservoir simulation, it is possible to take advantage of this
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Figure 5.11: In this figure initial (first column), calibrated (second column) and real (third
column) realizations are presented for comparison. First row corresponds to logarithm of
absolute permeability, second row to water saturations after 120 days and third column to
pressures after 120 days. Well layout has the form of a quarter five spot problem. Inversion
with 3 absolute permeability data, 3 pressure well data and seismic information was run.

properties of 4D seismic to improve the resolution of the calibrations. This has been

carried out by Landa (1997), Idrobo et al. (1999) or Wen et al. (2002). Following the

same process, here it is presented a synthetic case in which 4D seismic are supposed

to be available. The inversion is performed by using 4D seismic data and absolute
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permeability data. Let’s see how the inversion technique performs.

Zone k0
rw k0

ro

Initial Calibrated Real Initial Calibrated Real

1 0.629 0.764 0.700 0.629 0.740 0.750

2 0.629 0.499 0.800 0.629 0.741 0.850

3 0.629 0.519 0.870 0.629 0.641 0.900

Table 5.3: Initial, calibrated and real values for water and oil end-points of relative
permeability curves. Calibration was performed for a quarter five spot problem with
seismic data, 3 absolute permeability grid block data nd 3 pressure well measure-
ments.

The true permeability fields are the ones taken in the former section (Figures 5.1

and 5.2), with relative permeabilities taken to be homogeneous within 3 different areas

in which the domain can be divided and absolute permeability heterogenous all over

the domain. The quarter five spot configuration described before is considered. The

same initial conditions (Sw = 0.1, P = 6.895 × 106 Pa) and other parameters like

φ = 0.2, production/injection rate = 2.5kg/s, unit mobility ratio and nw = no = 1.

Instead of having saturation production data, seismic data are assumed to be available.

True water saturation and pressure fields after the 120 days of production are given in

Figures 5.3(a) and 5.3(b). To simulate seismic data water saturation plus a percentage

random noise is taken. Let’s suppose that seismic campaign has been done for 10

times. 10 simulated seismic field images are obtained by adding random noise to

the water saturation realizations corresponding to these 10 times. The seismic image

corresponding to water saturation in Figure 5.3(a) (t = 120 days) is drawn in Figure

5.10.

The objective function can take into account the error that water saturations have

when they are deduced from seismic 4D data. Pressure data are assign to be taken

at 3 grid blocks (injector, productor and an additional situated in the central grid

block) for the same 10 times that seismic data are available. In these 3 wells absolute

permeability measurements are availabe (instead of the 5 assumed in the former test

problem). After 2014 iterations the calibration is good enough. In the inversion process

3 master points were taken for the relative permeabilities (one per zone), while for the

absolute permeability 11 master points were selected, 3 of them corresponding to the

absolute permeability measurements (hence, no perturbation is applied to this 3 master

points). Absolute permeability master point positions are plotted with red circles in

Figure 5.4(a). Yellow starts in Figure 5.4(a) represent relative permeability master
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Zone Srw Sro

Initial Calibrated Real Initial Calibrated Real

1 0.105 0.112 0.100 0.105 0.177 0.180

2 0.105 0.170 0.200 0.105 0.235 0.230

3 0.105 0.152 0.260 0.105 0.264 0.290

Table 5.4: Initial, calibrated and real values for water and oil residual saturations.
Calibration was performed for a quarter five spot problem seismic data, 3 absolute
permeability grid block data nd 3 pressure well measurements.

points. As in the former section, initial, calibrated and real fields are going to be

qualitatively analyzed.
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Figure 5.12: Simulated versus observed values are plotted for pressures before (a) and after
(b) the calibration. The graphs presented here correspond to the quarter five spot configu-
ration with 3 pressure data grid blocks, 3 absolute permeability measurements and seismic
data. The data are available for 10 time steps.

Initial, calibrated an real absolute permeability fields are shown in Figures 5.11(a)

to 5.11(c). The initial logarithmic absolute permeability was generated again with con-

ditional sequential simulation (GCOSIM3D code). The absolute permeability data in

the 3 grid blocks mentioned before where used to generate the conditional simulation.

As it was explained in chapter 4 the absolute permeability at these points does not

change during the inversion. The iterative process was stopped when water saturation

and pressures were well reproduced. Comparing Figures 5.11(b) and 5.11(c) the high
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absolute permeability region (near injector and productor well) and low absolute per-

meability region (the upper left area and the blue spot close to the lower right area) are

well captured in the calibrated realization. However, still some differences appear in

the location and boundaries of these areas. The differences between the calibrated and

true fields are in the normal range, and with the calibration the observed saturation

and pressures have been fitted very well. It can be stated that the method also works

when using seisimic information.

Results for relative permeability curves in the 3 zones are summarized in Tables 5.3

and 5.4, one for the end-points and the other for the residual saturations. The results

obtained in last section have shown that end-points for both water and oil relative

permeability curves seem to be quite unsensible to the changes of water saturation and

pressure. However, in this example, for the first two zones residual saturations after

the calibration turn out to be quite similar to the real values. In comparison with the

first test case, much improvement is obtained in the calibrated results by using extra

seismic information.

Calibration has been performed taking seismic data values all over the domain for

10 times, which obviously gives a better reproduction of the water saturations response

(compare Figures 5.11(e) and 5.11(f)). Just few differences in the shape of the water

saturation front exist between calibrated and real values. In the case of pressures, it

has been shown that after calibration with few data it is possible to match real values

quite well. With seismic data this effect is even improved (compare figure 5.11(h) and

5.11(i)). The method succeeded in applying the inverse two-phase flow technique with

seismic data.

Figure 5.12 shows the differences between observed and simulated pressures at well

data before and after the calibration. It can be seen that the performance of the

calibration is as good as in the former section. A different behavior, when taking into

account seismic data, appears more clear looking at the residual histograms. Saturation

residuals in Figure 5.13 are less spread than the ones in Figure 5.8, when the exact

saturation was measured in 5 points. The same happens with the media and median,

which are much closer to zero. Moreover, even for the pressure histograms the results

are slightly better with less spread, media and median (Figure 5.14).

The very recent availability of new sensors to measure pressure and temperature

downhole in a permanent way has been taken into account for reservoir characterization

by Alpak et al. (2001). These prototypes of permanent sensors have been constructed

to be used behind casing and hence to be in direct contact with the formation. Even in-

situ sensors are not commercially available for the moment, the pressure data acquired

with permanent sensors is an important potential application of the inverse method
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Figure 5.13: Histograms for the saturation residuals (equation (5.1)). 6 time steps are plot-
ted: t = 100, t = 200, t = 300, t = 400, t = 500 and t = 600 (corresponding to graphs (a) to
(f)). The test problem corresponds to the quarter five spot configuration with 3 production
data grid blocks for 10 times, absolute permeability data in 3 grid blocks, plus seismic images
for 10 time steps.
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Figure 5.14: Histograms for the pressure residuals (equation (5.1)). 6 time steps are plotted:
t = 100, t = 200, t = 300, t = 400, t = 500 and t = 600 (corresponding to graphs (a) to (f)).
The test problem corresponds to the five quarter spot configuration with 3 production data
grid blocks for 10 times, absolute permeability data in 3 grid blocks, plus seismic images for
10 time steps.
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presented here, very similar to this seismic 4D data example.

5.3 Relative permeability field given in zones: ver-

tical section case.

Another common configuration in 2D reservoir modeling is a vertical section. It is

assumed that the reservoir is produced by two fully penetrated wells. At one side of

the reservoir water is injected. At the other side a production well is situated. A simple

grid discretization is chosen, as in the quarter five spot problem, of 15 by 15 grid blocks

with size 10mx10m. The absolute and relative permeability realizations for the real

synthetic case are the same as the ones drawn in Figures 5.1 and 5.2.

Figure 5.15: Master point positions for inverse modeling. Red circles correspond to
absolute permeability master points and yellow starts to the relative permeability
master points. This configuration is used in the vertical section test case.

In the same manner that it was done for the former problem, the reservoir is assu-

med to be saturated with oil and water. The reservoir is almost full with oil (90%).

Water is injected through a well that occupies all the left border, with constant in-

jection rate. The production well is situated at the right border with also constant

production rate. The absolute and relative permeability realizations, considered as

real representations of the reservoir, are introduced in the forward two-phase solver.

The initial conditions are Sw = 0.1 and P = 6.895 × 106 Pa. The water is injected

into the porous medium filled with oil and water. Water is injected at constant rate in

each of the boundary grid blocks with a rate at each grid block equal to 0.25kg/s. The

same configuration is assumed for the production boundary with a constant production
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rate at each production grid block equal to 0.25kg/s. Unity mobility ratio is taken,

k0
rwµo/k

0
roµw = 1, porosity φ = 0.2 and nw = no = 1. Similar time discretization as

before is chosen (constant 4.8 hours time step and 120 days for the total time). Satu-

ration and pressure fields after 60 days are given in Figures 5.17(f) and 5.17(i). They

represent the behavior of the reservoir assumed to be real.

Figure 5.16: Absolute permeability and produciton data positions for inversion mo-
deling in the vertical section example. Orange squares correspond to the grid block
measuremets.

Zone k0
rw k0

ro

Initial Calibrated Real Initial Calibrated Real

1 0.629 0.998 0.700 0.629 0.946 0.750

2 0.629 0.662 0.800 0.629 0.619 0.850

3 0.629 0.500 0.870 0.629 0.526 0.900

Table 5.5: Initial, calibrated and real values for water and oil end-points of relative
permeability curves. Calibration was performed for the vertical section problem
set out with 5 production measurement grid blocks in 10 times and 5 absolute
permeability data.

The master points taken are shown in Figure 5.15. Absolute data points are as-

sumed to be measured in the top and bottom of both production wells and in the

center grid block (orange squares in Figure 5.16). The calibration process was stopped

after 2400 iterations, objective function seemed to be good enough. The results before

and after calibration, in comparison with the real and initial fields, can be found in

Figures 5.17(a) to 5.17(c) for absolute permeabilities, in Figures 5.17(d) to 5.17(f) for

saturations and Figures 5.17(g) to 5.17(i) for pressures. These images correspond to

half of the total simulated time, as it is easier to see the situation of the water front.



5.3. VERTICAL SECTION CASE 103

log KABSOLUTE

East

N
or

th

0.0   150.00
0.0

150.00

-13.500

-13.000

-12.500

-12.000

-11.500

(a) Initial logk

log KABSOLUTE

East

N
or

th

0.0   150.00
0.0

150.00

-13.500

-13.000

-12.500

-12.000

-11.500

(b) Calibrated logk

log KABSOLUTE

East

N
or

th

0.0   150.00
0.0

150.00

-13.500

-13.000

-12.500

-12.000

-11.500

(c) Real logk

SATURATIONS

East

N
or

th

0.0   150.00
0.0

150.00

0.0

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.900

1.000

(d) Initial Sw

SATURATIONS

East

N
or

th

0.0   150.00
0.0

150.00

0.0

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.900

1.000

(e) Calibrated Sw

SATURATIONS

East

N
or

th

0.0   150.00
0.0

150.00

0.0

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.900

1.000

(f) Real Sw

PRESSURES

East

N
or

th

0.0   150.00
0.0

150.00

5300000.

5976000.

6652000.

7328000.

8004000.

8680000.

(g) Initial P

PRESSURES

East

N
or

th

0.0   150.00
0.0

150.00

5300000.

5976000.

6652000.

7328000.

8004000.

8680000.

(h) Calibrated P

PRESSURES

East

N
or

th

0.0    150.00
0.0

150.00

5300000.

5976000.

6652000.

7328000.

8004000.

8680000.

(i) Real P

Figure 5.17: In this figure initial (first column), calibrated (second column) and real (third
column) realizations are presented for comparison. First row corresponds to logarithm of
absolute permeability, second row to water saturations after 60 days and third row to pressures
after 60 days. The well layout consists in one fully penetrated injection well at left boundary
and one fully penetrated production well at the right boundary. The figure represents a
vertical section of the reservoir. Inversion with 5 absolute permeability and production data
grid blocks was run.

As it has been commented in the quarter five spot case the relative permeability

parameter values calibrated are not well reproduced after calibration (look at Tables
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Zone Srw Sro

Initial Calibrated Real Initial Calibrated Real

1 0.105 0.124 0.100 0.105 0.174 0.180

2 0.105 0.000 0.200 0.105 0.076 0.230

3 0.105 0.000 0.260 0.105 0.260 0.290

Table 5.6: Initial, calibrated and real values for water and oil residual saturations.
Calibration was performed for the vertical section problem set out with 5 production
measurement grid blocks in 10 times and 5 absolute permeability data.

5.5 and 5.6). This is probably caused by a lack of sensitivity of saturations and pres-

sures to the parameter values that have being calibrated. Comparing the saturation

realization of Figure 5.17(e) with the truth case Figure 5.17(f), it can be seen that the

realization captures most of the major features of the truth case. The calibrated satu-

ration response seems to be worse for zone 2 (where the front have just arrived to the

data point, which is situated at the central grid block). In zones 1 and 3 the resulted

saturations are quite well reproduced by the calibration. The same conclusion taken in

the former cases can be stated for this one, the inversion method calibrates saturation

and pressure responses. In order to better estimate relative permeability parameters

one solution could be to limit the calibrated values with some relative permeability

measures.

The misfit in the grid blocks where production data are available is plotted in

Figure 5.18. These results are quite similar to the ones obtained in the quarter five

spot test case, section 5.1. After the calibration the production values reproduce the

observations.

The three examples shown to this point indicate that it is important to take into

account the relative permeability curves in order to characterize the behavior of the

reservoir. However, these examples suggest that the values of the relative permeability

parameters are quite uncertain. This will be further study in next chapter. The use

of seismic data gives better estimation for the relative permeability parameters. The

integration of seismic data is a good possibility to reduce uncertainty, and to better

characterize the relative permeability parameters.
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Figure 5.18: Simulated versus observed pressure and saturation values are plotted before
((a) and (c)) and after ((b) and (d)) the calibration. The graphs presented here correspond
to the vertical section case with 5 production data grid blocks and 10 times of measurements.

5.4 Heterogeneous permeability field

The last test case was run in order to check other possibilities of the inversion method

developed. It was supposed that relative permeability curves can vary within the whole

domain, having a different value in each grid block. The absolute permeability field

taken as real is the equal to the real absolute permeability field used in last sections.

The real relative permeability parameters are graphed in the third column of Figure

5.20. The well configuration, initial conditions, porosity and production/injection rates

are equivalent to the quarter five spot case in section 5.1. 5 production data grid

blocks are assumed to be available for the calibration and 5 absolute permeability
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Figure 5.19: In this figure initial (first column), calibrated (second column) and real (third
column) realizations are presented for comparison. First row corresponds to logarithm of
absolute permeability, second row to water saturations after 120 days and third row to pres-
sures after 120 days. The well layout is a quarter five spot problem. Inversion with 5 data
grid blocks was run. Relative permeability parameters are taken to vary all over the domain.

measurements. 11 master points are taken to calibrate heterogeneous fields for k, k0
rw,

Srw, k0
ro and Sro. Results are given in Figures 5.19 and 5.20.

The shape of the saturation front at the end of the calibration (Figure 5.19(e))

is more similar to the real saturation front (Figure 5.19(f)) than the one given by
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the initial parameters (Figure 5.19(d)). The same happens with the pressure values

(compare Figures 5.19(h) and (i)), though the saturation lower right zone still does not

match the real values. The calibrated heterogeneous logarithm absolute permeability

field (Figure 5.19(b)) reproduces the left part of the domain but the right area is not

so well fitted (Figure 5.19(c)).

The relative permeability parameters taken as heterogeneous are also calibrated.

The fields resulted from the calibration are resumed in Figure 5.20. It looks like

the end-points of relative permeability curves are better reproduced than the residual

saturations. In general the end-point of oil relative permeability is better calibrated

than the end-point of water relative permeability. The shape of the high and low values

after calibration are quite similar for the fields of calibrated end-points. This does not

happens in the case of water residual saturation. Calibrated oil residual saturation is

the parameters that fits worst the real field.

This example with such a complex heterogeneity for relative permeability curves

shows that even for very complicate heterogeneities it is possible to inverse model

the parameters of relative permeability curves. This case and the rest of the examples

presented in this chapter show the possibilities of the inverse method in 2D fields. It can

be concluded that it is possible to generate a conditional realization in 2D with different

conditions and parameter set. The results obtained after the calibration represent one

possible realization to characterize the reservoir, but the results shown are just one of

the representations of the reservoir. It is necessary to perform an uncertainty analysis

to see if the prediction given by this realization can be close to reality or not. The

uncertainty analysis are going to be computed in next chapter.
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Figure 5.20: In this figure initial (first column), calibrated (second column) and real (third
column) realizations are presented for comparison. First row corresponds to k0

rw, second row
to Srw, third row to k0

ro and fourth column to Sro. The well layout is a quarter five spot
problem. Inversion with 5 data grid blocks was run. Relative permeability parameters are
taken to vary all over the domain.



Chapter 6

Uncertainty study

The examples described in last chapter have shown that it is possible to generate a

conditional realization of effective permeability field to production data. If the spatial

distribution of relative permeability curves is considered, there is an important change

in the production rate and the sweep efficiency within the reservoir. However, the

realizations obtained after the calibrations have pointed out that relative permeability

parameters seem to be quite insensitive to saturation and pressure data, at least for

some of the 2D examples. In addition, it is commonly known that is not possible

to avoid the uncertainties associated with the simple models used in the inverse two-

phase modeling. There are different kind of sources of uncertainty (Smith and Schwartz,

1981): unknown spatial variation, the model chosen or boundary conditions. In chapter

2, section 2.3, the importance of uncertainty studies was emphasized. In general, the

goal of the uncertainty studies is to quantify the reliability of the predictions given by

the numerical simulator. The common approach in this dissertation is to use multiple

equally likely realizations of permeabilities in a Monte Carlo study for two-phase flow.

The Monte Carlo approach is used to construct estimates of the multivariate pro-

bability distribution function of the output model parameters. This technique consists

in the repetitive generation of many different realizations of the reservoir from the

stochastic process describing the heterogeneity. An ensemble of permeability fields,

and the corresponding ensembles of saturation and pressure solutions (in time and

space) are the results of many calibrations. The statistical analysis of these ensembles

of realizations produces models of uncertainty for both permeabilities and production

data that serve to assess the degree of confidence on the predictions made using these

models. A Monte Carlo analysis essentially repeats the entire modeling (in Figure

1.1: process-sampling, input, estimation, and prediction) many times. Each of these

hypothetical modeling studies (or replicates) is based on a different synthetically ge-

nerated parameter description. It might be argued that Monte Carlo methods are too

109
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complex and time-consuming to be practical in reservoir applications. However, for

the objectives of the present research, the Monte Carlo method is the best approach.

This chapter explains different uncertainty studies performed. The first two sections

are uncertainty studies for relative permeability parameters in 1D, the second one with

simultaneous calibration of absolute permeability. Last section shows 2D uncertainty

results.

6.1 1D uncertainty study of relative permeability

parameters.

The inverse method procedure was described in detail in chapter 4. At the end of that

chapter the approach was apply to a 1D calibration case, in which relative and absolute

permeabilities were estimated. This test case investigated the little influence of pressure

data to relative permeability estimations and the changes that the saturation shock

front suffers if the relative permeability curve is considered to be heterogeneous within

the domain. The parameters fitted with the calibration gave a very good agreement

for the true pressure and saturation fields. Nevertheless, still remains to study the

sensibility of these parameters to historical data and to perform the uncertainty analysis

of the predictions.
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Figure 6.1: Uncertainty related with the end-points of water and oil relative per-
meability curves for the 3 areas in which the domain is divided. The objective
function is defined in terms of water saturation. Real values are represented with a
red diamond and median with a light blue square. Probability variables are calcu-
lated from 100 different realizations.
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In this section, and also in the following one, the uncertainty study has been per-

formed for a 1D hypothetical water injection displacement, equivalent to the inversion

example in chapter 4, section 4.4. The uncertainty analysis is done for the four relative

permeability parameters chosen for calibration (k0
rw, Srw, k0

ro and Sro), while in this

case absolute permeabilities are supposed to be known. The real 1D reservoir is taken

from the 1D synthetic case described in chapter 4. The entire domain is divided in three

zones within each of them absolute and relative permeabilities are homogeneous. The

three zones were depicted in Figure 4.2. The domain is discretized with 50 grid blocks,

and the simulation time with 500 time steps. The parameter values corresponding to

the real case were resumed in Table 4.1. The same procedure described for the exercise

in chapter 4 has been adopted to sample the data. Measurements are assumed to be

water saturations taken for 10 different times at 3 different points from the synthetic

forward results. 100 different initial values for each of the four parameters subjected to

calibration were introduced as initial values in 100 different calibration processes. The

result of the 100 different calibrations are 100 representations of the medium that are

going to be used to perform the uncertainty analysis related with the four parameters,

following the Monte Carlo methodology. The 100 realizations are 100 equally likely

representations of the reservoir because they reproduce the measured data. Reflexions

expounded in the chapters 3 and 4 turned out that pressure field is not importantly

affected by spatial variations in relative permeability curves. Absolute permeability is

assumed to be known, hence only water saturation data are included in the objective

function (wp,i = 0 and ws,i = 1 in equation (4.1)).

Figure 6.1 represents with red diamonds the real end-points of water and oil relative

permeability curves, k0
rw and k0

ro, for each of the zones in which the domain is divided.

Light blue squares are the median of the 100 k0
rw and k0

ro realizations, and the upper

and lower part of the rectangles drawn for each of the zones are respectively the Q25

and Q75 probability quartiles. These statistics are obtained from the ensemble of 100

calibrations. The x axis in Figure 6.1 corresponds to the parameter that is calibrated

and the zone that characterizes. Figure 6.2 shows similar results but for water and oil

residual saturations in each of the zones. Upper and lower quantiles form and interval

that can be seen as a measure of uncertainty of the relative permeability parameters

when the saturation shock front is predicted.

These results given in Figures 6.1 and 6.2 show that, in 1D, the inter-quantile

interval is quite wide for the end-points. For the given information and method used,

the inter-quantile interval includes the real data in most of the cases (see Figure 6.1).

In the water and oil residual saturation calibrations the inter-quantile interval is very

narrow, also including in most of the cases the real value, which at the same time is
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Figure 6.2: Uncertainty related with the water and oil residual saturations for the
3 areas in which the domain is divided. The objective function is defined in terms
of water saturation. Real values are represented with a red diamond and median
with a light blue square. Probability variables are calculated from 100 different
calibrations.

reproduced quite well by the median (see Figure 6.2).

These are the main results when only relative permeability parameters are cali-

brated, and absolute permeability is known. Let’s see in next section what are the

differences when absolute and relative permeabilities are calibrated simultaneously.

6.2 1D uncertainty study of absolute permeability

and relative permeability parameters.

Another set of 100 calibrations were carried out, but this time simultaneously to relative

permeability parameters, absolute permeability was also calibrated. Absolute permea-

bility, likewise the examples shown in chapter 4, is homogeneous within the 3 zones in

which the 1D reservoir is divided. 100 different sets of the four relative permeability

parameters and absolute permeability are introduced in 100 different calibrations. The

results are 100 relative permeability curves and 100 absolute permeabilities for each

of the 3 zones. The real parameters are the same as in the section before, taken from

chapter 4. In this case absolute permeability is also calibrated and pressure and wa-

ter saturation data are introduced in the objective function definition (ws,i 6= 0 and

wp,i 6= 0 in equation (4.1)).

The results of the uncertainty analysis when both absolute and relative permeabi-
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Figure 6.3: Uncertainty related with the end-points of water and oil relative per-
meability curves for the 3 areas in which the domain is divided. The objective
function is defined in terms of water saturation and pressure data. The calibration
is performed simultaneously with absolute permeabilities. Real values are represen-
ted with a red diamond and median with a light blue square. Probability variables
are calculated from 100 different calibrations.

lities are calibrated are resumed in a set of graphics similar to the ones used in the

former section. For the end-points of water and oil relative permeability curves, the

median and quantiles Q25 and Q75 are drawn in Figure 6.3. In the Figure 6.4 the

statiscal analysis for the 100 calibrations of residual saturations can be seen. Lastly,

the uncertainty study for absolute permeability can be found in Figure 6.5.

Inter-quantile intervals, seen as a measure of the uncertainty in the prediction of the

parameter values, do not change significantly for any of the four relative permeability

parameters (k0
rw, k0

ro, Srw and Sro), in comparison with the results in former section.

Anyhow, the inter-quantile interval corresponding to the end-points (Figure 6.3) seems

to narrow when the pressures are included in the objective function. The inter-quantile

intervals for residual saturations (Figure 6.4) and for absolute permeability (Figure 6.5)

are very constrict. Figure 6.3 shows that the prediction of the end-points, given by the

median, is slightly improved when pressure data are included in the objective function

(in all the zones k0
rw and k0

ro median and true values are included in the interquantile

interval). The predictions given by the median of absolute permeability values in the

3 zones are quite satisfactory (Figure 6.5).

In the 2D examples shown in chapter 5 calibrated relative permeability parameters

appear to indicate an important uncertainty as they were quite insensitive to production

data. The 1D uncertainty analysis reflects these results for the end-points, but not for
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Figure 6.4: Uncertainty related with the water and oil residual saturations for the
3 areas in which the domain is divided. The objective function is defined in terms
of water saturation and pressure data. The calibration is performed simultaneously
with absolute permeabilities. Real values are represented with a red diamond and
median with a light blue square. Probability variables are calculated from 100
different calibrations.
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Figure 6.5: Uncertainty related with the absolute permeability for the 3 areas in
which the domain is divided. The objective function is defined in terms of water
saturation and pressure data. The calibration is performed simultaneously with
relative permeability parameters. Real values are represented with a red diamond
and median with light blue square. Probability variables are calculated from 100
different calibrations.
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the residual saturations. It could have happened that the initial fields taken for residual

saturations in the 1D uncertainty analysis were much closer to the real values than the

initial residual saturations taken in the 2D examples. Next section explains a 2D

uncertainty analysis and further analyze these results.

6.3 2D uncertainty study of absolute permeability

and relative permeability parameters.

Zone 1

Zone 2

Zone 3

Figure 6.6: Configuration of zones 1, 2 and 3 for relative permeability parameters.
Within each zone the relative permeability parameters are considered homogeneous.
This configuration is taken for the 2D uncertainty analysis.
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Figure 6.7: 2D heterogeneous absolute permeability field that is taken as the real
absolute permeability field for the uncertainty study.

In the calibrations performed in last chapter the production data were reproduced

after perturbating absolute and relative permeabilities. Some examples have shown

that calibrated values of relative permeability parameters resulted to be insensitive to
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saturations and pressures. On the other hand, the uncertainty analysis performed in

1D (last two sections) concludes that the uncertainty related with the end-points is

quite wide, while for residual saturations the inter-quantile range is very narrow. The

2D calibrations performed in chapter 5 suggest that also for residual saturations the

uncertainty range should be rather wide. In this section a 2D uncertainty analysis is

performed. The high computational cost required for each 2D calibration has limited

the number of realizations for the uncertainty analysis to 10 runs.
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(d) Sro

Figure 6.8: 2D values for k0
rw, Srw, k0

ro and Sro given in three zones. They are the true values
for the 2D uncertainty study.

The problem configuration is similar to the examples shown in chapter 5. Different

geometry has been chosen for the zones that define the heterogeneity of relative per-

meability in order to reproduce a geology that would be closer to a real realization.

As in other cases, 3 zones of the domain are considered to have homogeneous relative

permeability parameters. These zones are numbered from 1 to 3 and their contour

limits are plotted in Figure 6.6. The true case is represented with absolute and relative
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Figure 6.9: When introducing real parameters in the forward two-phase flow simulator this
is the saturation (a) and pressure (b) field obtained at the end of the simulation. These are
saturation and pressure fields corresponding to the true fields for the 2D uncertainty study.

permeability fields, graphed in Figures 6.7 and 6.8. The absolute permeability field, as

explained in former chapters, is constructed with GCOSIM3D simulation code. The

log-mean is equal to -13.0 and the variance is equal to 0.3. The field is isotropic and

spatial continuity can be described with a spherical variogram model of range equal to

60m. The porosity is equal to φ = 0.2. True absolute permeability values are assumed

to be known, and only relative permeability parameters are subjected to calibration.

The well configuration is the already used quarter five spot case. The same spatial

discretization used in former 2D simulations of 15x15 grid blocks (of 10x10m) is taken.

600 time steps of 4.8 hours are used for the time discretization. In this example the

injection well is situated in the upper right grid block of the domain and the production

well in the lower left grid block. The injection and production rates are equal to 2.5kg/s.

At the end of the forward simulation, for the last time step, the saturation and pressure

fields are given in Figure 6.9.

After 10 calibrations, statistical analysis has been applied to the ensemble of end-

points and residual saturations estimated. Likewise in the 1D uncertainty analysis,

these statistics were median, Q25 and Q75 interquantiles. The results, in comparison

with the real values, are graphed in Figures 6.10 and 6.11.

These graphs show a very narrow uncertainty range for the four parameters, which

do not envelope the real corresponding values. This result suggest that more calibra-

tions should be performed in order to get a wider range of different possible values, 10

calibrations is not enough to infer the probabilities corresponding to the output ensem-

ble. The results obtained in 1D, and the calibrated values given by the 2D examples
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Figure 6.10: Uncertainty related with the end-points of water and oil relative per-
meability curves for the 3 areas in which the domain is divided. Real values are
represented with a red diamond and median with a light blue square. Probability
values are calculated from 10 different calibrations in 2D.
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Figure 6.11: Uncertainty related with the water and oil residual saturations for the
3 areas in which the domain is divided. Real values are represented with a red
diamond and median with a light blue square. Probability values are calculated
from 10 different 2D calibrations.

have point out the large uncertainty related with the end-point of relative permeabili-

ties. Even this uncertainty analysis performed in 2D gives smaller inter-quantile range

for the end-points, it is probably due to the few number of calibrations performed. To

solve this necessity the method should be improved in order to perform a higher number
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of calibrations much faster than in the computations run during this dissertation.
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Figure 6.12: Evolution of fractional flow with time. The fw values are plotted for
the true parameters and the statics calculated from 10 different 2D calibrations.

The set of relative permeability values would correspond to 10 different water

breakthrough responses. This set of water saturations can also be used to study the

uncertainty in the production forecasts. Statistics can also be computed on the set of

10 saturation fields. The results, given in fractional flow terms, are plotted in Figure

6.12. The true curve (plotted in dark blue) in the production well (lower left corner)

corresponds to the fractional flow values in function of time. Statistical values are

computed from the 10 equivalent curves of the 10 calibrations, plotted in the same

Figure 6.12. It has been pointed out that more realizations should be run to obtain

a better uncertainty study, but these values give an idea of the behavior of the pro-

duction forecast. At the initial stages of the production upper and lower quantiles

envelope both median an real values. However, when the water production increases

its rate, the uncertainty range gives worse prediction. In any case, all the curves are

very close to each other indicating the good predictions that could be obtained by using

the inversion method described here.

All these results indicate that uncertainties related with the end-points of relative

permeability curves are higher than the uncertainties related with residual saturations.

However, the calibrated values for the 2D examples presented an important lack of

sensitivity of these parameters to saturation and pressure production data. Further

research is needed in order to improve the computational time to be able to perform

more simulations and more uncertainty analysis in different situations. The importance

of the heterogeneity in relative permeability functions has been marked during the
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tests shown in former chapters. The values and spatial distribution of these parameters

influence so much on the saturation shock front distribution that more attention should

be paid to the role of these parameters in multiphase flow simulations.



Chapter 7

Conclusions and further research

7.1 Conclusions

The main objective of this dissertation is to take into account relative permeability

heterogeneities in inverse two-phase flow modeling for reservoir characterization pur-

poses. After performing a literature review (chapter 2) it was found out that, to the

best of our knowledge, there is an important gap in inverse two-phase flow techniques

in what refers to the role of relative permeabilities. Then, the different possibilities

to implement the heterogeneities of relative permeability curves in forward two-phase

flow simulators were analyzed (chapter 3). A new tool to carry out inverse modeling of

relative permeability parameters was developed (chapter 4). Once the tool was ready

to use, different examples in 2D have shown the applicability of the method (chapter

5) and uncertainty analysis were performed (chapter 6). It is the aim of this disserta-

tion to investigate the influence of relative permeabilities on the behavior of dynamic

variables in the reservoir. From the research done, the principal conclusions that can

be extracted are:

1. A literature research showed that it is very common to perform stochastic inverse

modeling in order to characterize the heterogeneity of absolute permeability. The

majority of the references checked assume homogeneous relative permeability

curves when multiphase flow is subjected to inverse modeling. However, some

approaches consider heterogeneous relative permeability. The few works that es-

timate relative permeability parameters with inverse modeling, considering these

functions to be heterogeneous, are applied to core sample scale cases and not to

reservoir scale. In these studies some of the parameters that define the relative

permeability functions are chosen to be estimated by history matching processes.

Furthermore, the conclusions given by these research works reveal the impor-
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tance of the estimation of relative permeability functions. In general, there is

not a technique to inverse model relative permeability functions considering their

heterogeneity within the reservoir, at reservoir scale.

2. It has been possible to develop and implement a code that calibrates simulta-

neously relative and absolute permeability functions to historical data. In this

code relative permeabilities are assumed to be function of saturation, and are

expressed as power functions. Four parameters were chosen to characterize the

relative permeability curves: the two end-points of the curves and the residual

saturations. These parameters are subjected to calibration to dynamic varia-

bles such as saturations and pressures. The method not only allows to estimate

relative permeability functions, another important contribution is that the cali-

bration of relative permeability parameters is performed simultaneously with the

calibration of absolute permeability when absolute and relative permeabilities are

considered to be spatially variable.

3. Inverse calibration has been computed following the ideas given by the Sequential

Self-Calibrated method. This methodology allows to reduce the parameter space

for the calculation of perturbations, making the process faster. The concept of

master point perturbations has been successfully implement in the two-phase flow

simulation showing the advantages of this method not only in single phase flow

simulations, but also when the concept of relative permeability is necessary to

define the flow equations.

4. It has been shown that the code can be successfully applied to different kind of

1D and 2D cases. Different type of data are integrated with the inversion met-

hod developed. Static variable measurements such as absolute permeabilities are

considered in the examples shown. Dynamic variables as saturations and pres-

sures are integrated through the iterative inversion method, keeping the static

variable measurements. The possibilities given by the integration of soft data,

as the seismic information, are shown in one of the examples run. 4D seismic

information can enormously improve the estimation of the absolute and rela-

tive permeabilities at the same time that the uncertainty related with calibrated

relative permeability parameters seems to be reduced.

5. All the inverse modeling examples, and even the forward simulations, reveal that

the heterogeneity of the relative permeability functions can dramatically change

the dynamic behavior of the reservoir. When oil is displaced by injected water,

this influence of relative permeabilities spatial variation is very important for
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the saturation shock front. This means that if the relative permeabilities (or

fractional flow, which is a variable dependent on relative permeabilities) are going

to be estimated it is not sufficient to calibrate them to pressure data, saturations

must also be considered to get a real estimation.

6. The uncertainty analysis studied in 1D has shown that uncertainties related with

the end-points of water and oil relative permeability curves are quite wide. These

uncertainties are reduced if instead of just consider saturation measurements,

pressures are also included in the objective function. The uncertainties related

with residual saturations in this 1D analysis resulted very narrow, as well as for

the estimated absolute permeabilities.

7. In 2D, the uncertainty analysis gives results similar with the 1D uncertainty

analysis. The number of realizations performed in 2D was limited by the compu-

tational cost, and more runs would be necessary to perform a complete analysis

as it has been done in 1D. The ensemble of water breakthrough values allows to

perform an uncertainty study in the production predictions. Better production

forecasts are obtained in the first stages of the exploitation.

All these points resume the principal conclusions of the research done in this dis-

sertation, and give an answer to the objectives that were proposed at the beginning of

the research work (explained in chapter 1). However, there were parts of the work that

did not result as it was expected, and new options have appeared during the research.

Thus, further research must be continued to investigate in this direction and to facili-

tate the creation of a more practical tool to inverse estimate relative permeabilities at

reservoir scale.

7.2 Suggestions for further research

The following issues deserving further research have been identified:

• The difficulty of the method is the high computational cost that the method re-

quires at each iteration. The forward 2D problem requires a considerable time to

be run, and this is one of the main reasons why at each iteration so much time

was needed. Thus more research has to be conducted in what refers to forward

modeling, especially in the area of numerical solvers for non linear differential

system of equations. One of the possible solutions would be to apply streamline

simulators and fractional flow formulation. Making the forward method compu-

tationally faster, each iteration could be speed up, and the inverse method could

be applied to higher domains and discretizations.
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• Altough the use of the concept of master points reduces the number of para-

meters in which the perturbations must be computed, there is still another area

which needs further research to obtain less computational time: the optimization

algorithm used in the iterative inversion. Presently, the inverse method uses a

numerical approach of the gradient of the objective function. It also uses gra-

dient approaches to solve the optimization process. These approximations are

valid, but it would be desirable to implement other approximations in order to

make the process faster. One possible solution for further research it would be

the implementation of the sensitivity equations to use a second order method to

perform the optimization during the inversion. As the forward two-phase flow

simulator, the optimization algorithm needs an improvement in order to make

possible the study of higher dimensional fields with more discretization.

• Other possibility to increase the performance of the method it would be the

study of parallel computing advantages to speed up the CPU cost. These new

techniques offer the possibility to get good computational times in complex non

linear problems as the one study here.

• The information used in the examples shown in this dissertation has consisted

in absolute permeability data, saturations and pressures. The use of relative

permeability measurements was not explored in this work, and further research

to include relative permeability available data should be considered.

• The use of seismic information has shown the improvements that can be obtained

in the model. The very recent availability of new sensors to measure pressure

and temperature downhole in a permanent way is still on research and develop in

order to build a new pressure sensor. The pressure data acquired with this kind

of new techniques is an important potential application of the inverse method

presented here, very similar to the seismic 4D data application.

• As it is available an inverse code for the numerical solver used during this disser-

tation (TOUGH code) called ITOUGH, it would be very interesting to compare

the proceduce presented here with the inverse code ITOUGH. A modification

of the code to take into account heterogeneities of the relative permeabilities

parameters for the inversion would have to be done.

• If the improvement in the computational cost of the process is reached, the next

step that should be considered is the application of the method to a real case.

The examples and studies shown in this dissertation are created synthetically

and still remains to show how the estimation of relative permeability curves by
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inverse two-phase flow can improve the characterization of the reservoir in a real

case.
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Appendix A

Buckley-Leverett solution

The formulation of the 1D two-phase immiscible flow with the fractional flow is descri-

bed in chapters 2 and 3. The equation that must be solved is (equation (3.12)):

φ
∂Sw

∂t
+ uT

∂fw

∂Sw

∇Sw = fwqT − qw

To solve this equation Bukley y Leverett assumed the following initial and boundary

conditions:

Sw(x, 0) = SwI , x ≥ 0

Sw(0, t) = SwJ , t ≥ 0
(A.1)

Initially the medium has a saturation equal to SwI . At the origin position x = 0

water is injected with constant rate qw, keeping constant the saturation at the injection

well, equal to SwJ . At origin and initial time, t = x = 0, all the values for Sw are

possible ranging between SwI and SwJ .

Assuming that there are not injection nor production terms, the equation (3.12)

and (A.1) can be rewritten in a simpler way (adimensional):

(
∂Sw

∂tD

)
+

(
∂fw

∂Sw

) (
∂Sw

∂xD

)
= 0 (A.2)

Sw(xD, 0) = SwJ , xD ≥ 0 (A.3)

Sw(0, tD) = SwJ , tD ≥ 0 (A.4)

where xD and tD are adimensional variables equal to:
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xD = x
L

tD =
∫ t

0
uT dt
φL

xD is the adimensional space variable and tD is the adimensional time variable. L is

the total length of the porous medium in the direction of x. In these equations uT

can be function of time but it cannot be function of position because incompressibility

has been assumed. Moreover, dfw

dSw
is the total derivative because fw is function of Sw

(unique dependent variable).

Equation (A.2) is a differential equation of first order partial derivatives, the unique

dependent variable is Sw = Sw(x, t) because ∂fw

∂Sw
is function of Sw. This equation can

be solved with numerical methods or with the method of characteristics (Marle, 1981).

Multiplying and dividing by the transversal section A, the adimensional time can

also be expressed as:

tD =

∫ t

0

Audt

AφL
=

∫ t

0

QT dt

Vp

(A.5)

where QT is the volumetric flux rate and Vp is the porous volume. tD is the total

volume injected until time t divided by the total porous volume.

Starting from equation (A.2), saturation Sw can be written in a differential form:

dSw =

(
∂Sw

∂xD

)
tD

dxD +

(
∂Sw

∂tD

)
xD

dtD (A.6)

The velocity vsw can be deduced from this equation (A.6). For a point at constant

saturation Sw in the space xD − tD the velocity is equal to:(
dxD

dtD

)
Sw

= −
(∂Sw/∂td)xD

(∂Sw/∂xD)tD

≡ vSw (A.7)

This is the specific velocity of saturation Sw because it has been normalized with u/φ.

Applying the equation (A.7) to equation (A.2) the result is:

vSw =
dfw

dSw

(A.8)

The meaning of the equation (A.8) is that the specific velocity of constant saturation

Sw is equal to the derivative of the fractional flow curve at this point Sw of the curve

fw −Sw. This equation is the solution of the one dimensional problem of displacement

of petroleum with water, and can be used to predict the rate of displacement of the

shock front. Selecting different Sw between SwI and SwJ , the curve Sw(xD, tD) can be

built. Fractional flow, fw, is a function of relative permeabilities, thus a function of
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saturation. Once fw in known in function of Sw it is possible to compute the derivative
dfw

dSw
. With this derivative, with the equation (A.8) and with initial and boundary

conditions, it is possible to calculate the spatial distribution of saturation in function

of the space and time variables. For the initial time t = 0 the resistance to the flux is

exclusively motivated by the presence of oil, as at this point no water has been injected

yet.

The Buckley and Leverett equation can be readily solved graphically. Relative

permeability functions, krl = krl(S), and fractional flow fw = fw(Sw) are normally

given in form of curves, in which dfw

dSw
is calculated graphically (Morel-Seytoux, 1973;

Lake, 1989; Dake, 1978; Marle, 1981). The steps in the graphical solution are:

1. Evaluate krw(Sw) and kro(Sw) for values of Sw.

2. Find fw(Sw).

3. Plot fw versus Sw.

4. Measure dfw/dSw from the curve.

Sw

x

1

2

Sw

dfw
dSw

Figure A.1: Left graph: saturation derivative of a typical fractional flow curve.
Right graph: resulting water saturation distribution in the displacement graph.

From the form Buckley and Leverett equation it is expected the position of the front

to be continuosuly increasing function of time, as well as a single value for Sw at each

time for every position. In practice, the curves fw = fw(Sw) present in some cases a

maximum. This means that for a single position, x, the Buckley and Leverett equation

predicts two values of saturation Sw. These values do not have any physical meaning,

though they are mathematically correct. This problem is solved with the concept of

shock front. A graphical correction to the empirical dfw/Sw leads to an acceptable
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solution. A value of dfw/dSw is chosen such that the areas 1 y 2 (look Figure A.1)

are equal. The derivative curve is truncated so the value of x is the same for all

Sw below the threshold. This implies an abrupt jump in Sw at a specific x-position.

This is observed in practice and is called the shock front. This implies that there are

discontinuous changes of saturation. Strictly speaking the discontinuities do not exist

in nature because there is always a diffusive effect that spreads the discontinuity effect.

Although this phenomenon exists, the role that discontinuity has in the displacement

is fundamental for the theory of the fractional flow, where the diffusive mechanisms are

ignored. The solution given by Buckley and Leverett is a good approximation when

capillary effects are neglected and the flow rates are high (Bear, 1972).



Appendix B

Sensitivity equations for the

fractional flow formulation

In chapter 4 it was described how the perturbation of the master points can be calcula-

ted numerically. The gradient vector containing the partial derivatives of the objective

function with respect to perturbations at the master point locations must be calcu-

lated. In this appendix the fractional flow formulation given in chapter 3 is taken to

describe another way to compute the perturbations, with adjoint states. The following

steps are similar to the explanation given in Hendricks-Frassen (2001).

B.1 Adjoint states

The fracional flow formulation has the water saturations Sw as the state variables.

There are N × T state variables, where N is the total number of discretization nodes

and T is the number of times in which the simulation time is discretized. Let’s define

the vector {p}, with dimension M containing all the parameters to be calibrated. The

water saturations and the parameters are related through N × T state equations:

Ψ({Sw}, {p}) = 0 (B.1)

State equations can be expressed with the fractional flow formulation, or with other

approaches mentioned in the literative review as the two pressures method. Let’s take

for this case the fractional flow approach. The matix form of the two-phase flow

equation is (equation (??)):

[A]
(
{St+1} − {St}

)
= {Qt+1} (B.2)
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where [A] is N ×N matrix and {Q} and {S} are vectors of dimension N . Ai elements

are equal to:

Ai =
Vi

∆t
(B.3)

and Qt
i:

Qt
i = QT f t+1

w,i−1 −Qt+1
w,i (B.4)

The state equations for two sucessive time steps can be written as:

{Ψt} = [A]
(
{St} − {St−1}

)
− {Qt} = 0 (B.5)

{Ψt+1} = [A]
(
{St+1} − {St}

)
− {Qt+1} = 0 (B.6)

The Lagrangian of the objetive function to be minimized buject to the constrains

B.5 and B.6 is:

= = J + {λ}′{Ψ} (B.7)

where λ is a vector of length N × T , which elements are the Lagrange multipliers,

also called adjoint states. {λ}′ represents the transpose of the vector {λ}′. For each

of the times in shcih teh adjoint state equation is solved a vector {λ} of dimensions

N is estimated. The Lagrange multipliers obtained for the state {Ψt} are {λt}, the

Lagrange multiplier for state {Ψt+1} are {λt+1}, and similarlty for the following time

steps.

The derivatives of the Lagrangian with respect the perturbation parameters, {p},
are given by the equation:

d=
d{p}

=
dJ

d{p}
=

∂J

∂{p}
+

∂J

∂{Sw}
∂{Sw}
∂{p}

+ {λ}′
(

∂{Ψ}
∂{p}

+
∂{Ψ}
∂{Sw}

∂{Sw}
∂{p}

)
(B.8)

This derivatives are similar to the derivatives of the objective function with respect the

perturbation parameters. Equation (B.8) can be rearrange as:

dJ

d{p}
=

∂J

∂{p}
+

(
∂J

∂{Sw}
+ {λ}T ∂{Ψ}

∂{Sw}

)
∂{Sw}
∂{p}

+ {λ}T ∂{Ψ}
∂{p}

(B.9)

The adjoing state is taken as the solution of the expression:

∂J

∂{Sw}
+ {λ}T ∂{Ψ}

∂{Sw}
= 0 (B.10)

which makes that equation (B.9) can be simplified resulting:
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dJ

d{p}
=

∂J

∂{p}
+ {λ}T ∂{Ψ}

∂{p}
(B.11)

The adjoint states vector is estimated by solving equation (B.8). The result can be

used to compute the gradient of the objective function given by equation (B.11).

B.2 Calculation of the adjoint states for the frac-

tional flow formulation

The objective function has been defined in chapter 4. For the fractional flow formula-

tion let’s consider that only water saturation measurements are available, and that the

weighting terms are equal to 1. Then, the objective function is:

J =
Ts∑
t=1

Ns∑
i=1

(
St,SIM

w,i − St,MEAS
w,i

)2

(B.12)

Ns is the number of water saturation measurements and Ts the number of times in

which the water saturation data are taken. Exponents SIM and MEAS refer to

simulated and measured values.

With this definition of the objective function, the derivatives with respect the state

variables, that appear in equation (B.10), can be expressed as:

∂J

∂{St
w}

= 2
Ts∑
t=1

Ns∑
i=1

(
St,SIM

wi − St,MEAS
wi

)
(B.13)

The derivatives of the state equation with respect the water saturation in the time

step t (second term in equation (B.10)) are not equal to zero only for the times t and

t + 1:

∂{Ψt}
∂{St

w}
=

(
[A]− ∂{Qt}

∂{St
w}

)
(B.14)

∂{Ψt+1}
∂{St

w}
=

(
−[A]− ∂{Qt+1}

∂{St
w}

)
(B.15)

Combining the equations (B.13) and (B.15) with equation (B.10) the adjoint state

equation is:

2
Ts∑
t=1

Ns∑
i=1

(
St,SIM

wi − St,MEAS
wi

)
+ {λt}′

(
[A]− ∂{Qt}

∂{St
w}

)
+{λt+1}′

(
−[A]− ∂{Qt+1}

∂{St
w}

)
= 0

(B.16)
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Remember that Qt
i = QT f t+1

w,i−1 − Qt+1
w,i , hence the partial derivatives ∂{Qt}

∂{St
w} and

∂{Qt+1}
∂{St

w} are equal to zero. The adjoint state equation simplies to the following form:

2
Ts∑
t=1

Ns∑
i=1

(
St,SIM

wi − St,MEAS
wi

)
+ {λt}′ ([A]) + {λt+1}′ (−[A]) = 0 (B.17)

which rearranging terms is:

[A]
(
{λt+1}′ − {λt}′

)
= 2

Ts∑
t=1

Ns∑
i=1

(
St,SIM

wi − St,MEAS
wi

)
(B.18)

This is the adjoing state equation, which has a similar form to the flow equation

expressed with the fractional flow formulation. In this equation (B.18) the unknowns

are the adjoint states and the independent term is not function of fractional flow. This

similarity is normally used in order to reduce the time of calcuation for the coefficients

of the system of equations.

B.3 Calculation of the gradient of J using the ad-

joint states

Once the adjoint states are computed following the steps given in former sectioin, it is

possible to used them to calculate the gradient of the objective function with equation

(B.11). The derivatives that appear in that equation can be expressed as follows:

∂J

∂{p}
= 0 (B.19)

∂{Ψt}
∂{p}

=
∂[A]

∂{p}
(
{St

w} − {St−1
w }

)
− ∂{Qt}

∂{p}
(B.20)

As all the element of [A] are constants, its derivative with respect the parameters

is zero. Then, it is possible to solve the equation (B.11) calculating:

∂{Ψt}
∂{p}

= −∂{Qt}
∂{p}

(B.21)

With the definition of Qt
i:

∂Qt
i

∂pk

= QT

∂f t+1
w,i−1

∂pk

(B.22)

where f t+1
w,i is function of pi. Those pi are the paremeter values in all the nodes, that

are expressed as a linear combination of the parameters in a few points (master points)

pk:
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pi =
∑

k

ek
i pk (B.23)

ek
i could be, for exmple, the ordinary kriging coefficients when pi is estimated with

the values at the master points, pk. If the parameters are expressed in this way, the

derivatives of the fractional flow with respect the parameters are:

∂Qt
i

∂pk

= QT

∂f t+1
w,i−1

∂pi

∂pi

∂pk

= QT

∂f t+1
w,i−1

∂pi

∂pi

∂pk

(B.24)

where:

∂pi

∂pk

= ek
i (B.25)

∂f t+1
w,i−1

∂pi
can be deduced from the expression of fw in potential form:

fw =
1

1 + µwk0
ro

µok0
rw

(1−S)no

Snw

where S is the water reduced saturation:

S =
Sw − Srw

1− Srw − Sro

If the perturbation parameter is k0
rw the derivative is:

∂fw

∂k0
rw

=
1

k0
rw

µwk0
ro

µok0
rw

(1−S)no

Snw(
1 + µwk0

ro

µok0
rw

(1−S)no

Snw

)2 =
µwk0

ro

µok02
rw

(1− S)no

Snw
f 2

w

This derivatives for all the perturbation parameters have to be introduced in equa-

tion (B.24), in order to get the derivatives of the state equation (B.21). This derivatives

are sustituted in equation (B.11) to finally get the derivatives of the objective function

with respect the perturbation parameters.
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[129] A. Sahuquillo, J. E. Capilla, J. J. Gómez-Hernández, and J. Andreu. Conditional

simulation of transmissivity fields honouring piezometric head data. In W. R.

Blair and E. Cabrera, editors, Hydraulic Engineering Software IV, Fluid Flow

Modeling, volume II, pages 201–214, London, UK, 1992. Elsevier Applied Science.

[130] L. E. Scales. Introduction to Non-Linear Optimization. MacMillan Publishers,

Hong Kong, 1985.

[131] B. A. Schrefler and Z. Xiayong. A fully coupled model for water flow and airflow

in deformable porous media. Water Resources Research, 29(1):155–167, 1993.

[132] B. E. Sleep and J. F. Sykes. Modeling the transport of volatile organics in variably

saturated media. Water Resources Research, 25(1):81–92, 1989.

[133] E. H. Smith. The influence of small-scale heterogeneity on average relative per-

meability. In L.W. Lake, H.B. Carroll Jr., and T.C. Wesson, editors, Reservoir

Characterization II, pages 52–76, New York, 1991. Academic Press.

[134] L. Smith. Spatial variability of flow parameters in a stratified sand. Math.

Geology, 13(1):1–21, 1981.

[135] L. Smith and F. W. Schwartz. Mass transport 2. analysis of uncertainty in

prediction. Water Resources Research, 17(2), 1981. 351–369.

[136] E. A. Sudicky. A natural gradient experiment on solute transport in a sand

aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion

process. Water Resources Research, 22(13):2069–2082, 1986.



BIBLIOGRAPHY 149

[137] Ne-Zheng Sun. Inverse Problems in Groundwater Modeling. Kluwer Academic

Publishers, 1994.

[138] M. R. Thiele. Streamline simulation. In 6th International Forum on Reservoir

Simulation, 3-7 September, 2001, Schloss Fuschl, Austria, 2001.

[139] H. Tjelmeland and H. Omre. A complex sand-shale facies model conditioned on

observations from wells, seismics, and production. In E. Baafi and N. Schofield,

editors, Fifth International Geostatistics, Wollongong. Kluwer, 1997.

[140] R. Valestrand, A. A. Grimstad, K. Kollveit, G. Naevdal, and J. E. Nordtvedt.

Simultaneous determination of absolute and relative permeabilities. International

Journal of Thermal Sciences, 41(6):546–556, 2002.

[141] R. Valestrand, A. A. Grimstad, K. Kollveit, J. E. Nordtvedt, and G. Naevdal.

Simultaneous determination of absolute and relative permeabilities. Inverse pro-

blems and experimental design and thermal and mech. eng. Seminar no 68, 5-7

March, ENSMA FUTUROSCOPE, France, 2001.

[142] M. T. van Genuchten. A closed form equation for predicting the hydraulic con-

ductivity of unsaturated soils. Soil Sic. Soc. Am. J., 44:892–898, 1980.

[143] D. W. Vasco, S. Yoon, and A. Datta-Gupta. Integrating dynamic data into

high-resolution reservoir models using streamline-based analytic sensitivity coef-

ficients. SPE Journal, 4(4):389–399, 1999.

[144] Y. Wang and A. R. Kovscek. A streamline approach for history-matching pro-

duction data. SPE/DOE Improved Oil Recovery Symposium held in Tulsa,

Oklahoma, 3-5 April, 2000.

[145] M. Wangen. Vertical migration of hydrocarbons modelled with fractional flow

theory. Geophysical Journal International, 115:109–131, 1993.

[146] A.T. Watson, J.G.Wade, and R.E. Ewing. Parameter and system identification

for fluid flow in underground reservoirs. In H.W. Engl and J. JcLaughlin, editors,

Proceeding of the Conference: Inverse Problmes and Optimal Design in Industry,

July 8-10, 1993, Philadelphia, Pa. B.G.Teubner, Stuttgart, Germany, 1994.

[147] X.-H. Wen. Stochastic Simulation of Groundwater Flow and Mass Transport in

Heterogeneous Aquifers: Conditioning and the problem of scales. PhD thesis,
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data integration in sand/shale reservoirs using sequential self-calibration and

geomorphing: A comparison. SPE Reservoir Evaluation and Engineering, pages

255–265, June 2002.

[152] Yu-Shu Wu and P. A. Forsyth. On the selection of primary variables in nu-

merical formultaion for modeling multiphase flow in porous media. Journal of

Contaminant Hydrology, 48:277–304, 2001.

[153] Yu-Shu Wu, K. Zhang, C. Ding, K. Pruess, E. Elmroth, and G. S. Bodvarsson.

An efficient parallel-computing method for modeling nonisothermal multiphase

flow and multicomponent transport in porous and fractured media. Advances in

Water Resources, 25:243–261, 2002.

[154] Zhan Wu, A. C. Reynolds, and D. S. Oliver. Conditioning geostatistical models

to two-phase production data. SPE Journal, 4(2):142–155, 1999.

[155] W. W-G. Yeh. Review of parameter identification procedures in groundwater

hydrology: The inverse problem. Water Resources Research, 22(2):95–108, 1986.

[156] W. W-G. Yeh, M. Jin, and S. Hanna. An iterative stochastic inverse method:

Conditional effective transmissivity and hydraulic head fields. Water Resources

Research, 32(1):85–92, 1996.
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