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Abstract

Two methods are proposed for the direct generation of block conductivities condi-
tioned upon data measured at a smaller scale. These methods allow Monte-Carlo
analyses of aquifer response variables up to 125 times faster than more traditional
methods that do not directly generate block conductivities. The first method is an-
alytical, and is limited to two dimensional spaces with small, isotropic variability of
the logarithms of hydraulic conductivity and uniform flow in unbounded aquifers.
The second method is numerical, and is not restricted by the previous conditions
although it is limited to a finite-difference formulation of the groundwater flow equa-
tion with blocks of a single size. Both methods call for efficient stochastic conditional
simulation algorithms and for accurate methods to scale-up hydraulic conductivities.
Regarding conditional simulations, the novel sequential simulation algorithm was fully
implemented for the first time for the generation of both Gaussian and non-Gaussian
random fields, with direct conditioning to local data. This algorithm was also applied
for the first time to the co-simulation of several variables with a joint Gaussian multi-
variate distribution. Regarding the scaling-up problem, two approaches are proposed,
an analytical one under the same aforementioned assumptions and a numerical one
not limited by these assumptions. The methodology proposed is applied to a Monte-
Carlo analysis of flows in a synthetic aquifer. The results are compared to a reference
Monte-Carlo analysis implemented at the smallest scale. In addition, these results
are compared with those obtained from the more traditional approach, consisting of
generating conductivity fields at the small scale and then scaling-up each block using

a within-block flow simulation. The reproduction of the results obtained from the



reference analysis at the smallest scale is shown to be good, with the proposed tech-
nique being much faster CPU-wise than either the reference analysis or the traditional

methods.
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Chapter 1

Introduction

1.1 Motivation

The reader may ask: “What is the motivation for stochastic modeling of block con-
ductivities conditioned upon measurements at a smaller scale?”; or more fundamen-
tally: “Why should modeling such conductivities be done in a stochastic framework?”,
“Why block conductivities?”, and “Why distinguish between different scales?” This
section tries to answer such questions. '

An ideal Monte-Carlo analysis of groundwater flow response variables would pro-
ceed as depicted in the first row of Fig. 1.1: la) data are collected and analyzed;
1b) multiple, equiprobable hydraulic conductivity fields are generated at the mea-
surement scale and conditioned to the data, lc) groundwater flow is simulated in
each field and 1d) a frequency distribution of the response variable is built. Because
the discretization of the aquifer at the scale of the measurements generally requires
millions of small blocks, repeated simulation of groundwater flow at that scale is im-
possible at present time. An alternative and feasible Monte-Carlo analysis is depicted
in the second row of Fig. 1.1. This Monte-Carlo analysis uses a scaling-up procedure

to transform the conductivity values generated at the measurement scale (2b) into
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block conductivities at a scale that can be easily handled by current numerical sim-
ulators (2c); groundwater flow is then simulated at that scale (2d) and a frequency
distribution of the response variable is built (2d). Although feasible, this approach
is still too expensive to be used systematically: the generation of multiple hydraulic
conductivity fields at the measurement scale, the scaling-up of each individual block
and the final simulation of groundwater flow are, all three, expensive steps. A third
approach, which is proposed in this dissertation is depicted in the third row of F ig. 1.1.
This approach combines steps 2b) and 2c) into a single step, that is, instead of gener-
ating conductivity fields at the measurement scale that are going to be averaged later,
1t 1s proposed to generate directly the conductivity fields at the numerical simulator
gridblock scale conditioned to the data. Step 3b) is the novelty of this approach and
requires the integration of geostatistical and scaling-up techniques. This dissertation
gradually proceeds towards this integration: it starts with the revision and extension
of geostatistical techniques for the generation of random fields; it continues with the
development of a new technique for scaling-up conductivities; and it concludes with
the merging of geostatistics and the proposed scale-up procedure into a procedure that
allows the direct generation of block conductivities conditioned upon data measured
at a smaller scale.

The reason why Monte-Carlo analyses are needed is because stochastic modeling of
conductivities is necessary. As Freeze (1975) points out, and as was corroborated later
by Smith (1981), Hoeksema and Kitanidis (1985a) and Sudicky (1986) field data in-
dicate that hydraulic conductivity most often varies in space in a non-deterministic,
unpredictable manner. Because hydraulic conductivity cannot be predicted accu-
rately at unsampled locations, each time a value of hydraulic conductivity is assigned
to an element of a numerical model, there is some uncertainty involved. The un-
certainty associated with these conductivity values causes uncertainty of the aquifer
response variables; namely, hydraulic heads and specific discharges.

One way to model the uncertainty of hydraulic conductivities and its consequent
impact on the response variables is by considering hydraulic conductivities as a ran-

dom function. thus adopting a stochastic approach. From a physical point of view,
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Figure 1.1: Three Monte-Carlo approaches. 1) An ideal approach: fields of
hydraulic conductivities are generated at the measurement scale (1b) conditioned
to the data (1a), groundwater flow is simulated at that scale (1c) and a frequency
distribution of the response variables is built (1d). 2) A two-steps approach: fields
of hydraulic conductivities are generated at the measurement scale (2b) conditioned
to the data (2a), hydraulic conductivity values are scaled-up so that the number
of resulting gridblocks can be easily handled by current numerical simulators (2c),
groundwater flow is simulated at the gridblock scale (2d) and a frequency distribution
of the response variable is built (2e). 3) Proposed approach: fields of hydraulic
conductivities are directly generated at the gridblock scale (3b) conditioned to data
measured at a smaller scale (3a), groundwater flow is simulated at the gridblock scale
(3c) and a frequency distribution of the response variable is built (3d)
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the stochastic approach amounts to considering the real aquifer as one of many pos-
sible aquifers, all of them honoring the same available data. From the point of view
of the modeler, all these aquifers are equally plausible and any one of them could
be the real one. However, our inability to discern which one is the real one, forces
us to study the entire set of possible aquifers. The statistical analysis of the set of
solutions generated by this ensemble of aquifers provides a measure of uncertainty on
the response variables. ‘
This statistical analysis can be carried out through a Monte-Carlo approach. Or,
it can be done under restrictive conditions by solving, analytically, the stochastic

partial differential equation describing steady state saturated flow in porous media
V- (KVh) =0,

where both the hydraulic conductivity (K), and the hydraulic head (k) are considered
random functions.

Analytical solutions to the stochastic partial differential equation have been ob-
tained for specific multivariate distributions of K and for a few geometries and bound-
ary conditions (Matheron, 1967; Gelhar, 1974; Gelhar et al., 1977; Bakr et al., 1978;
Gutjahr et al., 1978; Dagan, 1979; Chirlin and Dagan, 1980; Dagan, 1981; Gutjahr
and Gelhar, 1981; Mizell et al., 1982; Dagan, 1982a; Dagan, 1982b; Gelhar and Ax-
ness, 1983; Dagan, 1985; Naff and Vecchia, 1986; King, 1987; Rubin and Dagan,
1987a; Rubin and Dagan, 1987b; Naff and Vecchia, 1987; Ababou et al., 1988; Da-
gan and Rubin, 1988; Rubin and Dagan, 1988; Poley, 1988; Rubin and Dagan, 1989;
Dagan, 1989). These analytical solutions are limited to the expected value and the
two-point covariance (or variogram) of the hydraulic heads; they fall short providing
the actual probability distribution of the response variables. In addition, their practi-
cal applicability is limited for the following reasons: i) they correspond to very specific
geometric configurations; most relate to either unbounded domains, or bounded do-
mains with very simple geometries; ii) most of the analytical solutions are based on
perturbation theory and therefore their applicability is limited to small variability of

K (or of its logarithm); and iii) most of the solutions do not honor local data at their
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locations. For these reasons this dissertation adopts the more flexible Monte-Carlo
approach.

Monte-Carlo methods have been used in the past with the same objective of quan-
tifying uncertainty of aquifer response variables (Warren and Price, 1961; Freeze,
1975; Delhomme, 1979; Smith and Freeze, 1979a; Smith and Freeze, 1979b; Clifton
and Neuman, 1982; El-Kadi and Brutsaert, 1985; Desbarats, 1987a; Desbarats, 1987b;
Deutsch, 1987; White, 1987; White and Horne, 1987; Desbarats, 1988; Gémez-
Herndndez and Gorelick, 1988; Desbarats, 1989; Deutsch, 1989; Gémez-Hernandez
and Gorelick, 1989; Wagner and Gorelick, 1989). However, none of these studies
accounts for the important problem of scales (Lasseter et al., 1986; Haldorsen, 1986;
Dagan, 1986; Dagan, 1989). Field data are available at different scales, but infre-
quently at the scale of the blocks used to discretize the field prior to numerical flow
simulations. Haldorsen (1986) discusses this scale problem in detail. Data from a
core-plug are representative of volumes that are several billion times smaller than-
the volume represented by a pumping test. In between these two extremes there are
whole core measurements, sonic logs and slug tests, all of which are representative of
intermediate volumes. A typical block used in a flow simulator will be much larger
than the volume of any field measurement and the variability observed at the data
scale needs not prevail at another. Therefore, there is a need for an averaging proce-
dure that converts information from one scale to the next. This need, in turn, brings
us to the problem of block conductivities.

Since, in general, there are no measurements of block conductivities as required
by the numerical flow simulators, their spatial variability cannot be characterized
directly from data. This thesis proposes to use the statistics of the spatial variabil-
ity of conductivity at the data scale—say, whole-core samples—to derive that of the
block values. To link both scales a two-steps approach is proposed, first, a com-
puter algorithm is built to generate block values conditioned on, say. the whole-core
measurements taken within and around it, and second, a statistical model is es-
tablished for the relationship between these block conductivities and the whole-core
measurements. Alternatively, a statistical model of block versus point conductivities

is obtained analytically under some restrictive conditions.
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Once such statistical model is obtained, the stochastic generation of block con-

ductivity values conditioned upon data measured at a smaller scale is possible.

1.2 Dissertation Preview

This dissertation is organized as follows. Chapter 2 presents a literature review on rel-
evant work on conditional simulations, block conductivity modeling and the scaling-up
of conductivity values. Chapter 3 recalls the theory of sequential stochastic simula-
tion, proceeding with specific implementation algorithms for univariate multiGaussian
random fields, random fields with a generic bivariate distribution, and multivariate
multiGaussian random fields. Chapter 4 addresses the problem of computing block
hydraulic conductivities for heterogeneous blocks sampled exhaustively at a smaller
scale. Two methods are proposed. The first method is analytical in nature, and
limited to two-dimensional space with small, isotropic variability of the logarithms
of hydraulic conductivity. The second method is numerical; it is developed in two
dimensions, but can be straightforwardly extended to three, and is not limited to
small variability of the hydraulic conductivities. Chapter 5 combines the results of
chapters 3 and 4 and proposes two new methods for the stochastic generation of
block conductivities. The first is based on the analytical derivations of chapter 4
and provides a closed-form expression for the expected value and covariance of block
conductivities under some limiting assumptions. The second method follows the nu-
merical approach adopted in chapter 4 to generate synthetic block conductivity fields
from which expected values and covariances can be inferred. Once statistical models
are available, stochastic generation of synthetic block conductivity fields can be per-
formed using the sequential simulation algorithms developed in chapter 3 (i.e., block
conductivities can be directly generated conditioned upon data at a smaller scale).
Chapter 6 recalls the limitations of the various methods proposed, and concludes with

recommendations for further research.



Chapter 2

Literature Review

This chapter presents a literature review on the three theoretical problems involved in
a Monte-Carlo analysis of aquifer responses as described in Fig. 1.1: (1) the stochas-
tic simulation of random functions conditioned to local data, (2) the scaling-up of
conductivities into equivalent block values, and (3) the stochastic modeling of the

spatial variability of such block values.

2.1 Stochastic Simulation of Random Fields

A random field or random function Z(x), can be seen as a set of random variables,
one for each location x within a domain D of definition. A random function is
characterized by the n-variate joint probability distributions of all possible n-tuples,
{Z(x;),z; € D,i=1...n},withanyn =1...00 (Papoulis, 1986). The realizations of
a random function are spatial functions z(x). The collection of all possible realizations
is called the ensemble.

It is irnportant to distinguish between unconditional and conditional realizations.
Conditional realizations are those functions z(x) that take fixed values at specific
locations. The set of all conditional realizations for a given set of conditioning points

is a subensemble of the larger ensemble of unconditional realizations. We will refer to

|
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any technique that allows one to draw a realization at random from the ensemble
of possible realizations as a stochastic simulation technique. If the drawing is done
from the ensemble of unconditional realizations, we will call it an unconditional sim-
ulation technique. If, on the other hand, the drawing is done from the subensemble
of conditional realizations, we will call it a conditional simulation technique.

From a practical point of view, conditional simulation techniques are more useful
than unconditional ones since there are always data available that we want to honor
in some sense. For this reason, this section of the literature review concentrates only
on conditional simulation techniques.

There are two basic approaches for the generation of conditional realizations: an
indirect approach and a direct one. The indirect approach to conditional simulation
1s a two-steps process. First, an unconditional realization is generated, and second, it
is modified to honor the data at their locations. The procedure described by Journel
(1974) and summarized below takes advantage of the fact that kriging errors are
uncorrelated with kriging estimates.

Let z(x) denote a realization conditional to the set of n data
{z(z1), 2(zq),. .., 2(x,);2; € D,i = 1,...,n}. Let 2%, (x) be the field obtained by
interpolation of the data using simple kriging (Journel and Huijbregts, 1978, p. 561).
Any realization z(x) can be expressed as the sum of the kriging estimate z§x(x) and

the kriging error:

2(x) = 25 (%) + (2(%) — z5x(X))

kriging error

It can be shown that the expected value through all possible realizations of the
product Z%,(x)(Z(x) — Z%x(x)) is zero. This means that the kriging errors and the
kriging estimates are orthogonal (uncorrelated). Taking advantage of this result, a
conditional simulation (z¢) can be generated by replacing the actual unknown kriging
error by a simulated kriging error. This simulated error is obtained by applying the

same kriging and data configuration pattern to any unconditional realization (z):

ze(x) = z5p(x) + (2v(X) — 251 (%))
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where z; sy is the kriging estimate of zy using for data the values of zy at the same
locations as the original data used to obtain zgg.

The steps to obtain a conditional simulation are:
1. Obtain the simple kriging estimate 2§ using the original data.
2. Generate an unconditional realization zy(x)

3. Obtain 2{; s which is the kriging estimate of zy using for data the values of zy

at the same locations as the data used to obtain z5g-.

4. Add the kriging errors zy — zj; s from the unconditional realization to the

kriging estimates zg5x

The last three steps are repeated for the generation of multiple realizations condi-
tioned to the same data values.

There are many methods for the generation of unconditional simulations (Matern,
1960; Shinozuka and Jan, 1972; Matheron, 1973; Journel, 1974; Journel and Hui-
jbregts, 1978; Journel, 1979; Smith and Freeze, 1979a; Smith and Freeze, 1979b;
Mantoglou and Wilson, 1981; Mantoglou and Wilson, 1982; Dagan, 1982a; Clifton
and Neuman, 1982; Borgman et al., 1984; Luster, 1985; Brooker, 1985; Mantoglou,
1987; Thompson et al., 1989; Black and Freyberg, 1990). The most efficient algo-
rithm for the simulation of realizations over a very large number of nodes is the
turning band method (Matheron, 1973; Journel 1974). It reduces the generation of a
two- or three-dimensional realization to the generation of a few one-dimensional re-
alizations that later are combined to provide a 2- or 3-D realization with the correct
statistical description. Unfortunately, as with all other methods, it generates real-
izations from multiGaussian random fields. In addition, the turning band technique
tends to generate artifact banding over the realizations.

The major drawback of indirect techniques is the large expense incurred in the
conditioning step. The conditioning step amounts to solving a simple kriging system
of linear equations for each node in the realization. In most cases, this step is more
time-consuming than the already expensive generation of the unconditional realiza-

tion. Another drawback of indirect methods is that, in the conditioning step, the
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substitution of simulated kriging errors for the unknown, actual kriging errors calls
for multiGaussianity of the random function model (Z(x)); for then, orthogonality
between kriging estimates and kriging errors also implies independence.

The direct approach draws the realization directly from the sub-ensemble of condi-
tional realizations. This approach is almost always faster than the indirect approach,
at least for Gaussian realizations, because it does not require the expensive kriging
step for conditioning. However, and up until the introduction of the sequential sim-
ulation algorithm, which is the subject of chapter 3, the only method available for
direct generation of conditional simulations was limited to grids of only a few hundred
nodes and to realizations from multiGaussian random fields.

A method for the direct generation of Gaussian conditional simulations was sug-
gested by Dagan (1982b) and applied by Neuman and his co-workers to the generation
of hydraulic conductivity fields in the Avra valley (Clifton and Neuman, 1982). This
method is an extension of the well-known Cholesky decomposition of covariance ma-
trices as used for generating realizations of Gaussian fields (Anderson, 1984). Dagan'’s
contribution is the use of both the conditional covariance matrix and the conditional
expectations. This method is referred hereafter as the matricial method. A brief
review of it follows.

The problem is to generate a conditional realization of a Gaussian random function
Z(x) over N nodes. Let C be the conditional covariance matrix of the random
function, with element ¢;; being the covariance between nodes z; and z; conditional
to the data. The Cholesky decomposition of C in the product of upper and lower

triangular matrices is:
C=BB’
It can be shown, that the vector
z=%7Zc+Bu

where Z; 1s the conditional expectation of the random field at the N nodes and u
is a vector of uncorrelated random numbers with zero mean and unit variance. is a

conditional realization of the random field.
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In order to apply the matricial method, knowledge of the conditional mean and
the conditional covariance is required. If the random field is multiGaussian, the
conditional mean and the conditional covariance are given by the solution of a set
of normal equations (Luenberger, 1969). Also, the conditional mean and covariance
obtained from the solution of the normal equations are the simple kriging estimate and
the simple kriging variance commonly used in geostatistics (Journel and Huijbregts,
1978, p.566).

A numerical algorithm that uses the matricial approach was developed by Davis
(1987) and applied by Alabert (1987a) to the simulation of soil lead concentration near
a smelter in Dallas, Texas. This algorithm is very efficient for the generation of large
numbers of small realizations. The conditional mean and the conditional covariance
matrix are obtained implicitly rather than through an explicit simple kriging, then
the covariance matrix is Cholesky-decomposed, and finally, the generation of multiple
realizations is reduced to a series of matrix multiplications, one for each realization.
The method can be applied to the generation of conditional simulations over either a
regular or an irregular grid, but is limited to a few hundred nodes, because it requires
the storage and manipulation of a covariance matrix with as many elements as the
square of the number N of nodes.

The two drawbacks of the matricial method are that it cannot be used for the
generation of very large realizations, and that it can only generate realizations from
multiGaussian random fields.

Another algorithm for the direct generation of conditional realizations is the se-
quential simulation proposed by Journel (1985). This technique is based on the recur-
sive application of Bayes’ theorem and the assumption of some Markovian properties
of the random field. It is described with more detail in chapter 3. The single most
important feature of this technique is that it is not limited to the generation of real-
izations from mulfiGaussian fields. A second important feature is that it is the fastest
teéhnique for conditional simulations of multiGaussian fields over a large number of
nodes. As will be explained in chapter 3, Gaussian sequential simulation calls for

one single simple kriging at each node being simulated, whereas any indirect method,
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as explained earlier, requires one such kriging in addition to a prior unconditional
simulation.

Sequential simulation was first appli§d within the framework of indicator func-
tions by Journel and Alabert to genera,té realizations of a random function with a
generic bivariate distribution (Alabert, 1987b; Journel and Alabert, 1988; Journel
and Alabert, 1989; Journel and Alabert, 1990). It has been applied also to the gen-
eration of realizations from binary random fields not necessarily Gaussian-related
(Journel and Gémez-Herndndez, 1989a; Gémez-Hernadndez, 1989; Gémez-Hernandez,
1990b; Gérn'ez-Hernzindez, 1991), and recently to the generation of realizations from
multiGaussian random fields (Journel and Gémez-Hernandez, 1989b; Isaaks, 1990).

In this dissertation, the sequential simulation technique is applied for the first
time to the joint generation of realizations from several random fields which are

jointly multiGaussian.

2.2 Block Hydraulic Conductivities

To illustrate the problem of block conductivities, consider the groundwater flow equa-

d (,.dh\ _
ZE(AZ{;)"O

where the hydraulic conductivity tensor degenerates into the scalar K.

tion in one-dimension:

Consider a one-dimensional aquifer discretized into elements of length Az, as
shown in Fig. 2.1. A simple finite difference expression for the hydraulic head at node
t is given by

1 hiy1 — hi hi — hi_;
S s Sl L L Bl L) R
Az (\H/? Az Y12TRY

This expression requires values of the hydraulic conductivity between the nodes
(i.e.. at locations K41/, and Ki_y/;). If K is not constant and displays the kind
of variability tvpically encountered in field data (Fig. 2.2), it is unclear which KA

value should be assigned to ;;;/; and which to A;_1,. In one-dimensional flow, the
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Figure 2.1: Discretization of a one-dimensional aquifer.

hydraulic conductivity value that preserves flows for a given hydraulic head gradient is

given by the harmonic mean of the hydraulic conductivities within the nodes (Freeze

and Cherry, 1978):

’ =i dz !
Ki_i2= (./;=.'—1 '17(1‘—)) o

—— —— —O—
i -1 i i +1

Figure 2.2: Spatial variability of hydraulic conductivity. A schematic
cross-section displaying the typical kind of spatial variability in hydraulic conduc-

tivity
The problem of obtaining equivalent block hydraulic conductivity values is more

acute for flow in two and three dimensions because a closed-form expression for the
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block conductivity such as (2.1) has been found only for some very specific spatial
configurations of the K! values and for relatively large blocks.

The problem of obtaining block conductivities is sometimes mistaken for the prob-
lem of obtaining effective conductivities. A block conductivity is an average, in some
sense, of the spatial variability of hydraulic conductivity within the block, whereas
effective conductivity is a characteristic parameter of the random function used to
model K.

After solving for flow within a heterogeneous block V for given boundary condi-

tions, block conductivity can be defined as the conductivity Ky of a homogeneous

block satisfying

1 1
V/quV= —va/v VhdV (2.2)

where q and Vh are the specific discharge and piezometric head gradient, respectively,
solution of the flow problem within the heterogeneous block. The block value Ky is
a tensor relating the spatial average of flow to the spatial average of the hydraulic
head gradient. It is a function of both the conductivity values within the block and
the boundary conditions.

Effective permeability is defined in terms of the random function used to model

the uncertainty of K. The most common definition is:

E{q(x)} = —Kea(x) E{Vh(x)} (2.3)

where the operator E{-} means expected value through the ensemble of realizations
and K.g is the effective hydraulic conductivity tensor. In theory K.g would vary
with x, although, in practice, the random functions chosen for K have statistical
properties that ensure that the expected values of q and VA, and consequently of
K.g. are constant in space.

There is one case in which both Ky and K.g coincide. If the block is of infinite

extent and the values of K within the block can be considered as a realization from a

'In two and three dimensions, K is a tensorial parameter and will be denoted by a capital bold
letter
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stationary and ergodic? random function, then it can be shown that the value of Kz

does not depend on x and is equal to Ky.

Effective Hydraulic Conductivity

Although in this dissertation we are interested in block values Ky and not in effective
values K.g, this subsection reviews some relevant results on effective values since they
represent a limiting value for Ky as V tends towards infinity.

One of the first studies of effective hydraulic conductivities was Matheron (1967)
who solved equation (2.3) for the value of Kg. The basic hypotheses of his analysis
were that K is a stationary random function and that E{Vh} is constant (i.e., the
flow is uniform).

One of the most general results of Matheron’s (1967, 1984) analysis is that, in
two dimensions, the effective permeability is equal to the geometric mean of K under
the following conditions: i) K can be reduced to a scalar K, ii) the multivariate
distribution of K is invariant under rotation, and iii) the distribution of K/E{K} is
the same as the distribution of K~/ E{K ™!}, as is the case if K has a multilognormal
distribution with an isotropic covariance. This result is not limited by the magnitude
of the variability of K.

Matheron (1967) also shows that, in N dimensions, if the flow problem admits the
solution VA(x) = “constant vector” over the entire aquifer, the components of the

effective conductivity tensor are obtained as the expected value of the corresponding

components of K:
Kegij = E{K;}

where the subindex ij is used to indicate a tensor component. This result is a general-
ization of the well-known result that the effective hydraulic conductivity for perfectly
stratified lavers of infinite extent in the direction parallel to layering is the arithmetic

mean of the individual layers.

2Definitions of stationarity and ergodicity are given in chapter 3.
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Similarly, in N dimensions, if the flow problem admits the solution q = “constant
vector” over the entire aquifer, the components of the effective hydraulic conductivity

tensor are given by:

1
E{l/[\’,‘j}

Again, this is a generalization of the results obtained for perfectly stratified layers of

Keﬂ',:'j =

infinite extent and flow orthogonal to layering.

For the more general case in which the flow problem does not admit any of the two
previous solutions, Matheron (1967) carried out a second-order analysis of the flow
equation which closely follows Schwydler’s work (cited in Matheron, 1967). The two
constitutive hypotheses of this analysis are that the expected value of the hydraulic

conductivity tensor reduces to a scalar ko:

where I is the identity matrix and that the hydraulic conductivity K can be expressed

as
K = ko(I + €K')

where the tensor K’ has null expected value E{K'} = 0 and the parameter € is small

enough so that all expansions in terms of ¢ can be stopped at €2 without loss of

accuracy.

Under these hypotheses and after some elaborate manipulations of (2.3), the ef-

fective hydraulic conductivity is:

Keg = ko(I — €2S) (2.4)

where S is the so-called Schwydler tensor. The Schwydler tensor is a weighted spatial
average of the covariance of K. When the covariance is isotropic, the expression for

K.g reduces to:

Kes = ko ( - zfi) I (2.5)
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where 0% is the variance of K and N is the number of space dimensions. This
expression can be further manipulated to give the effective hydraulic conductivity as

a function of the arithmetic mean, the harmonic mean and the dimension N of the

space:

N=1 ]; 1E{K} + % (E{K-l})‘1 (2.6)

Matheron concludes his analysis of effective hydraulic conductivities for uniform

Keff =

flows with the conjecture that a generalization of (2.6) for large values of the parameter

¢, that is, for large variability of K would be given by

K= (BK)'T (B(K})
which identifies the harmonic mean in one dimension and the geometric mean in two
dimensions. An expansion of that last relation retaining terms up to the second order
on ¢ is none other than (2.6).

Expressions equivalent to (2.5) have also been obtained by other authors for the
same range of variability of K, but using different approaches.

Gutjahr et al. (1978) linearize the logarithm of K and use spectral analysis to
show that, for lognormally distributed K with isotropic covariance, the values of Keg

are the harmonic mean in one dimension, the geometric mean in two dimensions and

in three dimensions Keg is given by:
o?
K= K, (1 + —l—ng“ﬁ) 1

where K, is the geometric mean of K. Qualitatively this result can be interpreted as
the effective hydraulic conductivity in three dimensions is larger than the geometric
mean but smaller than the arithmetic mean by an amount equivalent to the one given
by Matheron’s expression (2.5). Gutjahr et al. suggest that their results should not
be applied for of, k) > 0.25.

Dagan (1979, 1981, 1982b) uses an embedding matrix approach to compute effec-
tive hydraulic conductivities. Two advantages of this method are: it is not limited to

small variability of K, or In(K), and it is based in a physical model. However, it is



CHAPTER 2. LITERATURE REVIEW 18

limited to slowly varying average properties and slowly changing flow (quasi-uniform
flow). The solution of equation (2.3) is sought by considering an aquifer formed by
spheres of different radii embedded at random within a matrix of constant hydraulic
conductivity. The hydraulic conductivity varies in space although within each sphere
is constant and isotropic. Its variability is not correlated with the sphere radius. In
the embedding method the perturbation caused by any given sphere is computed by
assuming that all surrounding spheres can be substituted by a matrix of constant
(and isotropic) permeability. Furthermore, a self-consistent approximation is made
assuming that the hydraulic conductivity of this matrix is equal to the effective hy-
draulic conductivity of the medium. Under these conditions, the effective hydraulic
conductivity is a scalar and is given by the following implicit integral expression (see

Dagan, 1979, eq. 45).

©  K,-K i
dK = .
/_oo N-DK, 72k B =0 (2.7)

where the tensor notation has been dropped since all hydraulic conductivities are
isotropic, N is the number of dimensions of the space, and f(K) is the probability
density function of K.

Kirkpatrick (1973, eq. 5.4) obtains the same expression (2.7) in his analysis of
effective conductance of random resistor networks. Numerical evaluation of this ex-
pression provides an effective hydraulic conductivity equal to the geometric mean of
K in two dimensions even for large values of the variance of In(K). In three dimen-
sions, the effective hydraulic conductivity is larger than the geometric mean by an
amount that depends on the magnitude of afn( x)- Dagan (1979) also shows that, by
using a small perturbation approach of the type used by Gutjahr et al. (1978), the
three-dimensional effective hydraulic conductivity obtained with the self-consistent
approach is equal to the value obtained by Gutjahr et al. (1978).

Dagan (1989) extended the embedding method approach to the treatment of for-
mations in which the most important characteristic is the presence of a low conductiv-
ity medium embedded in a medium of much higher conductivity, as is the case in the

sand-shale formations commonly found in petroleum engineering. Both media could
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be heterogeneous but the dominant factor is the large conductivity contrast. The self-
consistent model is a poor approximation because it presumes that the spheres are
distributed in space at random independently of their hydraulic conductivity value,
whereas in the case of sand-shale formations the high conductivity medium surrounds
the low conductivity one. The values for the effective conductivity obtained by Dagan
(1989) with the extended embedding approach compare fairly well with the numerical
results obtained by Desbarats (1987b).

Gelhar and Axness (1983) relax the hypothesis of isotropic covariance of K and,
using a second-order small perturbation approach, obtain the following expression for

the effective hydraulic conductivity tensor:
Keg = KA(I - F)

where K 4 is the arithmetic mean of the point hydraulic conductivity, I is the identity
matrix and F is a matrix whose components are functions of the log-hydraulic con-
ductivity variance and its spectrum. Note the striking similarity with the result (2.4)
obtained by Schwydler (as quoted in Matheron, 1967). Given that both approaches
provide the same values for isotropic covariances, we presume that they should also
provide the same values for anisotropic covariances.

Poley (1988) provides the most general results for effective hydraulic conductiv-
ity tensors to date. He uses the embedding matrix approach with the self-consistent
approximation of Dagan (1979). Ellipsoids with different isotropic hydraulic con-
ductivities are embedded at random within a matrix of constant (but anisotropic)
hydraulic conductivity. Poley’s results reproduce those of Gelhar and Axness (1983)
and generalizes them for large variability of K. The components of the effective hy-
draulic conductivity tensor are given by a complex implicit integral expression of the
same type as (2.7) (see eq. (19) of Poley, 1938).

Freeze (1975) and Smith and Freeze (1979b) used Monte-Carlo analysis to eval-
uate effective hydraulic conductivities. For steady-state flow in one dimension they
corroborate that the harmonic mean is the effective value. For two dimensions they

find that the geometric mean is a good approximation for the case of isotropic K.
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In a study on the impact of spatial variability of hydraulic conductivity Gémez-
Hernandez and Gorelick (1988,1989) use also a Monte-Carlo approach to compute the
effective permeability for a complex aquifer system containing pumping wells, recharge
ponds and rivers. They define the effective permeability as that constant value that
best reproduces (in a least-square sense) the expected value of the hydraulic heads at
all nodes within the aquifer. Their analysis studied two cases: first when the hydraulic
conductivity realizations are unconditional, and second, when the realizations are
conditional to the conductivity values at the well locations. In both cases, it was
found that the effective hydraulic conductivity was below the geometric mean with

the conditional case being close to it.

Block Hydraulic Conductivity

Effective conductivity values can be used to provide a check on the procedures used
to compute block conductivity values for the limiting case when the block size tends
towards infinity. However, in this dissertation we are mainly interested in block values
of finite extent.

The determination of the block conductivity Ky in (2.2) is posed as a deterministic
problem, not as a probabilistic one. We assume that K is perfectly known everywhere
in V so that we can solve for heads and flows within the block for any given boundary
conditions. Then, the spatial integrals in (2.2) are evaluated and Ky is retrieved.
This procedure could be applied to all blocks within the aquifer, but would be a
very expensive task. Most works dealing with block conductivities seek to replace
the detailed flow solution within each block by a simpler solution. Ideally, one would
like to obtain the value of Ky as some simple function of the values of K within the
block (such as their geometric mean). The search for such a simpler solution has been

carried out both analytically and numerically.

Analytical Approaches

Saez et al. (1989) use the multiple scale method to find an analytical solution for

the value of Ky. They consider two distinct observation scales. At the larger scale
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the small scale heterogeneity is assumed non-detectable and hydraulic conductivity
varies smoothly. At the smaller scale the heterogeneity of the medium is apparent
and hydraulic conductivity varies abruptly and erratically. At any particular loca-
tion, hydraulic conductivity is expressed as the sum of a large scale value plus a
perturbation due to the heterogeneity at the smaller scale. Similarly, hydraulic head
is expressed as the sum of the large scale value plus a perturbation. After averaging
out the small heterogeneities, the only remaining term is the hydraulic head at the
large scale. Permeability for a block much larger than the small scale of heterogeneity
is defined as the value of K for which the large scale component of the hydraulic head

satisfies a mass conservation equation,
V. (Ky-h9) =0,

where h(© is the large scale component of the hydraulic head. A set of partial differ-
ential equations is derived by Sdez et al. in order to solve for Kv. This set of partial
differential equations is then solved for the case of a periodic medium with unit period
being the block for which the block conductivity is sought. This block is referred to

as the unit cell. The following expression for the block conductivity is obtained:

Ky=K s+t (2.8)

That is, the block conductivity is the sum of the arithmetic average, K4 plus a
tortuosity tensor t defined by the following spatial average computed within the

block:
1
t= /V K-vgdV,

where the vector function g satisfies the following boundary-value problem,

V- (KVg)=—-(V-K), with g periodic in the unit cell. (2.9)

Siez et al. thus provide an analytical solution to the problem of block conductiv-
ities. However, their solution is limited to blocks larger than the scale of the erratic
variability component of K. Furthermore, it requires the permeable medium to be

periodic with period equal to the block ‘size.
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A different approach is taken by King (1988). He uses a real-space renormalization
technique. The idea is to calculate the block hydraulic conductivities over smaller
areas first. Consider a two dimensional heterogeneous block that is divided into a
large number of smaller blocks within which conductivity could be considered as
constant. Each homogeneous small block has isotropic hydraulic conductivities. The
small blocks are grouped into blocks of four and the average hydraulic conductivity of
each group is computed. This average hydraulic conductivity is defined in the sense
of (2.2), that is, a single value that gives the same flow for the same pressure drop.
After the first renormalization has been carried out over all groups of four blocks, the
procedure is repeated with the new block values. The renormalization procedure is
repeated until the renormalized blocks are of the desired size. Hence, the problem of
spatial averaging of a large number of small blocks has been reduced to the problem
of averaging four contiguous blocks multiple times. This procedure is extremely fast
since simple expressions for the block conductivity of groups of four blocks are easy
to obtain and there is no restriction on the spatial variability of K.

King (1988) proposes an expression for the block conductivity of four smaller
blocks based on a resistor network model. The technique was validated for isotropic
uncorrelated point conductivities against the results obtained with numerical sim-
ulations over very large blocks. The renormalization technique proved to be very
accurate in predicting the value obtained by numerical simulation for isotropic cases,
when the variance of K is outside the range of application of traditional small pertur-
bation analysis. For highly anisotropic media, as is the case in sand-shale formations,
the method did not perform well due to the poor resolution of the resistor network
model around the edges of the shales.

Some criticisms to the renormalization approach are: i) there is no theoretical
proof of convergence towards the actual block conductivity, ii) the choice of the basic
configuration (such as four blocks in two dimensions) is rather arbitrary, iii) it is
not well suited for anisotropic media, and iv) most importantly, the technique has
been developed for uncorrelated media, although it is possible that a similar recursive
algorithm could be applied to correlated media.

Kitanidis (1990) applies the method of moments. first formulated by Aris (1956)
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and later generalized by Brenner (1980), to determine block conductivities for blocks
of size much larger than the integral scale of the point conductivity. In the method
of moments, the definition of block conductivity differs from that in (2.2). Instead of
trying to find the block conductivity that relates average flow to average gradient, the
objective is to find a block value that matches the spatial moments of the hydraulic
head in the heterogeneous medium as explained below. This definition requires the
solution of a transient problem as opposed to the definition in (2.2) which requires the
solution of a steady-state problem. The concept is best understood with an example.
Consider an infinite aquifer with constant hydraulic conductivity and the following

boundary and initial conditions

h(x,t) = 0 for very large x
h(x,0) = 6&(x) (2.10)

where § is the Dirac delta function. That is, the hydraulic head field is initially flat

then a unit pulse is introduced at x = 0 and t = 0. The solution of this problem for

constant K is given by a Gaussian bell:
h(x,t) = (27)~%/?|2Dt| /% exp[-xD ™" x /4]

where D = K/S is called the diffusivity tensor, S is the specific storage coefficient.
The second moment of the function h(x,t) with respect to the origin is the moment

of inertia and is given by

A(t) = /x - x h(x,t) dx = 2Dt | (2.11)

Note that half the rate of change of the second moment is given by (1/2)dA(t)/dt =
D. In the method of moments the idea is to solve the same boundary-value problem
(2.10) for the heterogeneous aquifer for the rate of change of the second moment of the
hydraulic head. This rate is then identified to the diffusivity tensor of a homogeneous
medium.

The rate of change of the second moment of h can be obtained under some hy-

potheses. First. the aquifer is assumed periodic with period much larger than the
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scale of variability of K. Second, the moments are defined at two scales—similarly
to Sdez et al.(1989)—and only the moments at the larger scale are of interest. The
rate of change at the second moment at the larger scale is the one identified to the
diffusivity tensor of an homogeneous rﬁéd'ium. And third, only slowly varying flow is
considered.

Under these hypotheses, the resulting expression for Ky is very similar to the
expression obtained by Sdez et al. (1989) . The block hydraulic conductivity tensor
is equal to its arithmetic spatial average plus an integral term equivalent to the
tortuosity term in (2.8). This integral term is written in terms of a function g that
must satisfy a boundary value problem equivalent to (2.9).

Explicit expressions for Ky have been obtained only for small variance of K and
agreement was found with previous results for effective hydraulic conductivities.

Kitanidis’ (1990) method has the same drawbacks as the one by Sdez et al.: it is
limited to large blocks and it requires the assumption that the medium is periodic

with period equal to the block size.

Numerical Approaches

Besides the analytical approaches to determining block conductivities, there is a
large body of literature that describes numerical approaches to the problem of block
conductivities. The heterogeneous and rectangular block of size V is discretized
into a number of smaller homogeneous blocks. The partial differential equation of
groundwater flow is solved numerically for given boundary conditions and the block
conductivity value is retrieved using equation (2.2).

Except for the works of Kasap and Lake (1939), and White (1987) that will be
discussed later, all numerical attempts to obtain block conductivities have assumed
that the principal directions of the block conductivity tensor are known so that the
block sides can be oriented parallel to them. Consequently, the conductivity tensor is
diagonal and the number of components to be determined is reduced to two (in 2-D)
or three (in 3-D).

The procedure commonly used to obtain the r-component of the block conduc-

tivity tensor of a two-dimensional block is as follows: (1) solve for flows and heads
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within the block for the boundary conditions in Fig. 2.3, (2) evaluate the total flow
Q through any cross-section parallel to the y-axis, and (3) the block conductivity in

the z-direction is obtained:

, Q ) (hl - ho)
Kyg = — . 2.12
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Figure 2.3: A set of typical boundary conditions. They are used to obtain the
component K, of the block conductivity tensor '

The value of Ky, is obtained similarly after solving for flows and heads with the
boundary conditions in Fig. 2.3 rotated 90°.

It is interesting to note that expression (2.12) can be obtained from ( 2.2), which is
the definition used in this dissertation for block conductivity, subject to the boundary

conditions in Fig. 2.3. Indeed, Eq. 2.2 can be rewritten as

{%qurdV}z_ {KV,N 0 }{%fv(ah/ax)dV}
¥ Jv aydv 0 Kuyy J | § Jo(0R/3y)dV

Under the assumption that the principal components of the block conductivity are

parallel to the block sides. both the average flow and the average gradient in the y
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direction are close to zero for the boundary conditions in Fig. 2.3. Therefore, the
estimate of Kv,, deduced from the previous expression would be unreliable. The

estimate for Ky . is given by:

 tgav
7. (0k]0z) dV

Both the average gradient and the average flow in the z direction are extremely simple

(2.13)

K Vizr =

to obtain from the solution of the boundary-value problem in Fig. 2.3. The average
flow in the z direction is equal to the total flow crossing the block divided by its
width. The average gradient is equal to the difference of the constant head values
on both sides of the block divided by the length of the aquifer. Substitution of these
values in (2.13) results in (2.12).

If a set of boundary conditions different from those in Fig. 2.3 were used, expres-
sion (2.2) could still be evaluated but it would result in a value for Ky, different
from that in (2.12). Therefore, the block values provided by this numerical method
are dependent on the boundary conditions used to solve the flow equation. However,
as the block becomes much larger than the scale of variability of K, the effect of
the boundary conditions on the solution for flows and heads within the block be-
comes smaller, thus the block values are less dependent on the boundary conditions
considered.

To check the assumption that the principal directions of Ky are parallel to the
block sides the magnitude of the average flow in the direction orthogonal to the mean
gradient can be computed (1/V [, ¢,dV in the previous case). A value significantly
different from zero indicates that the off-diagonal terms are not zero.

This conceptually simple method has been applied to obtain block hydraulic con-
ductivities since the early 1960s with the objective of finding a simple function relating
K to the values of K within the block.

Both Warren and Price (1961) and Bouwer (1969) find that the geometric mean
of the point conductivities within the block is a good approximation for the block
conductivity. In a 3-D study, Warren and Price (1961) use uncorrelated isotropic
permeability values drawn from four different probability distributions (lognormal,

exponential, uniform and discontinuous). In 2-D, Bouwer (1969). uses an analog
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simulation with uncorrelated isotropic conductivities drawn from either a uniform
distribution or a binary one.

Journel et al. (1986), Desbarats (1987a, 1987b, 1988), and Deutsch (1987, 1989)
have considered the problem of block permeabilities for three dimensional sand-shale
formations using the numerical approach discussed above. The hydraulic conductivity
distribution is characterized by the proportion of shale and the covariance of a shale
indicator. The shale indicator is a binary variable that takes a value of 1 for shale
locations and 0 for sand locations. The covariance of the indicator variable is directly
related to the orientation and width-to-length ratio of the shales. These authors find
the block conductivity to be a function of the shale proportion, the block size relative
to the indicator covariance correlation length, and the conductivity contrast between
sand and shale. They propose a power average law to describe the block conductivity

for shale proportion below the percolation threshold

Kvee = (p K% +(1—p) Kix)!/v
rw, rw 1/wy

I{V,yy = (P Ashy + (l _p) I‘ssy)

Kv.. = (p K% +(1—p) K&)'/

where p is the proportion of shales, K, and K are the conductivities of the shale
and sand respectively, and w,,w, and w, are coefficients to be determined empirically
depending on the indicator covariance. The block sides are assumed to be parallel to
the principal components of Ky.

An application of this method has been carried out by Bachu and Cuthiell (1990)
who analyze the block conductivities of a number of core samples from a Canadian
reservoir. After digitizing the geometry of the shales in the core samples, that geom-
etry is discretized using a very detailed finite element mesh used for the solution of
groundwater flow. Since their study is limited to 2-D, only horizontal and vertical
hydraulic conductivities are computed on several core samples with different propor-
tions of shale and assuming different conductivity contrasts. For each core sample

analyzed, the values of w, and w, were obtained. Bachu and Cuthiell’s paper contains
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a fairly exhaustive analysis of the variation of the power values (w) for different shale
proportions and different conductivity contrasts.

There are several limitations to this power average approach: first, it requires
that the principal directions of the block conductivity tensor be known; second, the
boundary conditions in Fig. 2.3 may not be the most representative of the actual
boundary conditions prevailing around the block within the aquifer.

A slightly different approach was used by Long and co-workers (Long et al., 1982;
Long and Witherspoon, 1985) to analyze flow in fractured media. Their concern is
whether a fractured medium can be analyzed as a continuous porous medium using
an equivalent anisotropic permeability tensor. Their objective is to check whether
the concept of a representative elementary volume (REV; Bear, 1979) can be used in
fractured media. With this objective they developed a procedure that might be used
to determine block conductivities. In two dimensions, the procedure is as follows.
First, select a size for the possible (circular) REV and center it at any given point in
the fractured medium. Second, compute the apparent conductivity in the direction of
the gradient as explained below, for a large number of square blocks inscribed within
the REV. Third, if an equivalent porous medium exists, the inverse of the square root
of the apparent permeability should plot as an ellipse that uniquely determines the
equivalent anisotropic conductivity tensor.

For any square block inscribed in the REV, the apparent permeability in the
direction of the gradient needs to be computed. This is done by solving flow within
the block for constant head boundary conditions along the four sides of the block as
given in Fig. 2.4. If the block acts as an anisotropic homogeneous porous medium,
the flow entering through side 2 should be equal to the flow leaving through side 4.
and similarly with sides 1 and 3. The apparent permeability in the direction of the
gradient is given by the ratio of the inflow through side 2 to the overall gradient (as
given by the uniform heads at sides 2 and 1).

Long’s conclusions were that an REV might be difficult to find. When it exists. its
size is a function of the fracture density and the average fracture length. The fracture
configuration within the block changes as the square block rotates within the REV.

Somietimes these changes could be quite dramatic. resulting in very discontinuous
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changes on the apparent conductivities, as Long recognizes. A better approach is to
solve flow within the entire REV for different flow gradients. In this way the geometry
of the fractures remains constant and any change on apparent conductivity is due to

the anisotropy of the medium.

Constant
Head
Boundaries

Figure 2.4: Another set of boundary conditions. It was used by Long et al.
(1982) to determine the apparent conductivity in the direction of the gradient.

Haldorsen and Lake (1982) and Haldorsen and Chang (1986) propose a different
numerical approach to determining block conductivities in sand-shale formations. The
component of the hydraulic conductivity tensor orthogonal to the orientation of shales
is computed using a stream-tube approach instead of using a numerical simulation of
fluid flow. This component is related to the length of flow paths across the medium.
Flow path lengths are equal to the block height plus the horizontal distance traveled
to bypass the shales. Begg and King (1985). and Begg et al. (1985, 1989) find a
functional relation relating the vertical block permeability to the shale proportion
and the statistics of shale width and shale length. This functional relation makes it

possible to obtain a block vertical conductivity without the need to know the exact
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geometry of the shales within the block.

The implicit assumption of the stream-tube approach is that the shales are spaced
far apart enough so that the perturbation in the flow field caused by one shale does not
affect the flow field around any other neighboring shale. This assumption limits their
results to relatively low proportion of shales (15% according to Desbarats, 1987b).

From numerical analysis of resistor networks, Kirkpatrick (1973) proposes a power
law that is a function of three coefficients to approximate the block conductance of
random resistor networks in which a certain portion of the resistors have been set to
sero conductance. This empirical expression has been evaluated for flow in sand-shale
formations by Deutsch (1989) who always found a set of parameters that provided a
good fit to his numerical results.

In all the previous works concerning block conductivities it is assumed that the
block conductivities are either isotropic or anisotropic but with principal components
oriented parallel to the block sides. The possibility that the blocks may not be oriented
in the same direction as the principal components of the block conductivity tensor
has been considered only recently. Two methods for determining block conductivities
assuming.an arbitrary orientation of the principal components have been proposed in
the past few years.

White (1987) and White and Horne (1987) propose the inversion of equation (2.2)
without assuming that the off-diagonal terms of the block tensor Ky are zero. The
entire aquifer, rather than just just a single block. is discretized at two scales. First,
it is discretized into large heterogeneous blocks which then are discretized in small
homogeneous cells. Using the small scale discretization. flow is solved numerically
over the entire aquifer, not just over an individual block. using the small scale dis-
cretization. To obtain the block hydraulic conductivity tensor of any given block,
both the average flow and the average gradient over the block are computed from
the solution of groundwater flow over the entire aquifer for a given set of boundary

conditions. Equation (2.2) can be rewritten, in two dimensions as:

{ = } o { Kvae Kiazy } { (0h/0x) }
'(E 1\’;"1y [\'\',yy (()h/dy)

where the overbar is used to indicate spatial averages.
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From the previous system of two linear equations the values’ of the three com-
ponents of Ky are undetermined. To resolve this undetermination, White solves
the groundwater flow equation for a different set of boundary conditions. Thus, two
more equations relating average flows and average gradients are written for each block.
The new expanded system becomes overdetermined (four equations, three unknowns).
White suggests solving the flow problem over the entire aquifer for at least two other
sets of boundary conditions to end up with eight linear equations per block that can
be solved for the three unknowns by least-squares.

Computing block hydraulic conductivities using White’s method is very expensive,
if not infeasible, since it requires prior solving the flow problem over the entire aquifer
at the smallest scale. This expense could be justified if block conductivities are to be
used in a numerical simulation of multiphase flow at the block scale. It would not
be justified for single phase flow because, if flow has been solved for at the smallest
scale, there is- no more need for block values.

Kasap and Lake (1989) propose an analytical method to compute the block con-
ductivity tensor for the case of anisotropic point conductivity tensor. Their method
is based on the recurrent use of the block conductivity values obtained for a block
composed of two layers of homogeneous but anisotropic conductivity, under the as-
sumption that flow lines are parallel. Their basic results can be summarized as follows:
the component in the direction parallel to the layers is the arithmetic average of the
components of each layer in that direction minus a term which is a function of the off-
diagonal components of both layers; the component orthogonal to the layers is equal
to the harmonic mean of the components of each layer in that direction; and the
off-diagonal component is a function of all the components of both layer conductivity

tensors; it is equal to zero if the layers are isotropic.

This dissertation explores both the analytical and the numerical approaches to
computing block conductivities. The analytical approach proposed provides block
conductivities for block sizes which could be larger than the integral scale of the point

conductivity (Rubin and Gémez-Hernandez (1990) and Rubin et al. (1991)). However,
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it requires the point conductivity to have an isotropic covariance with small variance.
The numerical approach (Gémez-Hernandez, 1990a; Gémez-Herndndez and Rubin,
1990; Gémez-Hernandez and Journel, 1990) lies between White’s (1987) method and
the more traditional approach of Warren and Price (1961). It does not require the
solution of the flow problem over the entire aquifer. It borrows White’s idea of using
least squares to determine the coefficients required by a finite-difference formulation
of the flow equation. But, instead of solving for flow over the entire aquifer, only a

small area is considered. Which boundary conditions should be used is studied.

2.3 Direct Generation of Block Values

Determining block conductivity values requires the prior assumption that the block
has been exhaustively sampled at a smaller scale. This will rarely be the case. For
this reason, block conductivities are uncertain, with that uncertainty being modeled
by a random function concept. Through stochastic modeling of block values, this
random function model is built and the statistics of the random function determined.
The final objective of such stochastic modeling is the generation of realizations of
block values for their use in the Monte-Carlo analysis of aquifer response variables,
see Fig. 1.1.

While conductivity values obtained from core-plug samples or slug tests are av-
erage values over centimeters or meters of aquifer, the blocks used in the numerical
simulators require average values representative of tens to thousands of meters. Val-
ues of conductivity cannot be measured at the scale of the simulator block (except
possibly for some very long pump tests) and, therefore, statistical inference from
measured values is not possible. One cannot expect that the statistics of the vari-
ability observed in the measurements are going to be the same as the block statistics,
although some kind of relation is warranted.

The general problem of how to deduce block variability from smaller scale mea-
surement variability is known as the change of scale (or change of support). The

change of scale problem has received much attention from mining engineers (Journel
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and Huijbregts, 1978). Mining engineers need to predict the ore grade of the mining
units (scale of meters) from the statistics of blastholes grades (scale of centimeters).
Their problem is simpler because block grades are exactly equal to the arithmetic
average of point grades. Several references provide the expression of the block covari-
ance as a function of the point covariance (Journel and Huijbregts, 1978; Vanmarcke,
1983).

In groundwater flow, however, the problem is much harder for two reasons: first,
the functional relation between point and block values has only been established for
infinite blocks under very specific hypotheses, and second, in the cases in which that
functional relation is known, the function is nonlinear, thus traditional change of scale
formulas cannot be used (except in very specific cases that will be explained later).

Two different approaches have been taken commonly in the Monte-Carlo analysis
of groundwater flow for the generation of fields of block conductivities. The first con-
sists of generating realizations of conductivity fields at the scale of the measurements.
These realizations are then block-averaged, to yield the block value required by the
numerical flow simulator: for each block, a small flow simulation is carried out with
the objective of evaluating expression (2.2) and determining the block conductivities.
The block values are then assembled together, and flow solved over the entire aquifer.
For an application of this approach in the oil industry see Begg et al. (1989).

A second approach was considered for two-dimensional simulations of statistically
isotropic point conductivities. For sufficiently large blocks, the block conductivity is
assumed a scalar equal to the geometric mean of the point values within the block.
Noting that the geometric mean of a variable z is the anti-log of the arithmetic average
of log(z), the traditional change of support formulas can be applied to determine the
covariance of the arithmetic mean of log K. In other words, the change of support
problem is solved in the log space. First, take the logarithms of the point values.
Second, obtain the covariance of log K. And third, apply the change of support
formulas to obtain the covariance of the arithmetic average of log K for the block
size considered. This covariance can then be used to generate realizations of the
logarithm of the block conductivities. Taking the anti-log of such a realization will

result in a realization of block conduct'ivi‘ties, with the same statistics as would have
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obtained by taking geometric averages over a realization of point conductivities. This
approach, which is valid only in two dimensions and for sufficiently large and isotropic
blocks, has been discussed in the hydrology literature by Dagan (1982b,1985), Clifton
and Neuman (1982) and Hoeksema and Kitanidis (1984,1985b).

For the particular case of one-dimensional flow, the block conductivity is exactly
equal to the harmonic mean of the point conductivities within the block. This relation
is not linear and the standard change of support formulas cannot be applied. However,
Desbarats (1989) uses a Taylor series-type for small variance of K to provide formulas
for the expected value and the variance of 1-D block conductivities as a function of
their length.

There appears to be a need for techniques that allow the stochastic characteri-
zation of block conductivities without direct inference. Only when the block value
is a scalar equal to the geometric mean (in 2-D) or the harmonic mean (in 1-D) of
the points within the block, explicit expressions have been obtained for the expected
value and covariances of the block values. In response to this need, both an analytical
and a numerical method are proposed in order to extend the previous, rather lim-
ited results. The analytical method provides the expected value and covariance of an
isotropic two-dimensional block without any restriction on the functional relationship
between point and block conductivities, although it does require the conditions for a
small-perturbation analysis. The numerical method does not require the block to be
isotropic or with small variability, it can be applied to small blocks, and it does not

assume any specific functional relationship between point and block values.



Chapter 3

Sequential Simulation

This chapter describes and implements the algorithm of sequential simulation for the
generation of realizations of random fields. The theory of sequential simulation is
reviewed first. Then, the specifics of its application to multiGaussian random fields,
then to random fields with a generic bivariate distribution, and, finally to multivariate
multiGaussian random fields are discussed. Finally, implementation problems of the
technique are addressed.

As explained in the introduction, the ability to generate realizations from random
fields with given multivariate distributions is key to Monte-Carlo analyses. In this
dissertation realizations of single variable random fields are required for the numerical
approach to the problem of scaling-up. Next, the joint realizations of multiple variable
random fields are required for the direct generation of block conductivities conditioned
upon small scale data. This last step can be accomplished only after determining the
point-point and the point-block conductivity covariances.

The author’s contribution in this chapter consists of the practical implementation

of the different simulation algorithms.

35
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3.1 Theory

This section starts by reviewing some general probabilistic concepts (a good reference
is Papoulis, 1986) then presents the theory of sequential simulation closely following

Journel (1983a, 1983b, 1985, 1987, 1989).

General Concepts

A random field or random function (RF) Z(x) can be defined as a rule that assigns
a function z(x,6) to the outcome 8§ of an experiment S' (Papoulis, 1986). Thus, a
RF is a set of spatial functions, also called realizations, depending on the parameter
6. The set of all possible realizations {z(x, ), for all § € S} is called the ensemble.
Capital letters will be used to refer to the random function and small letters to refer
to the realizations. For convenience of notations, the dependence of the realizations

on the parameter § will be omitted unless necessary.

For a specific location x, Z(x) is a random variable with distribution

F(z,x) = P{Z(x) < z}

This function depends on x and represents the probability of the event {Z(x) < z}
consisting of all outcomes 6; such that the realizations z(x, 6;) are less than z at the
specific location x. The notation Fz(z,x) may be used to explicitly denote that we
are referring to the random function Z(x). v

The function F(z,x) will be called the first-order cumulative distribution function
(cdf) of the RF Z(x). When referring to a specific x, it may also be called the marginal

distribution of the random variable Z(x). Its derivative with respect to z, when it

exists,

flz,x) = QF_(&:X)

is the first-order probability density function (pdf) of Z(x).

1For an axiomatic definition of an experiment see (Papoulis, 1986). As an example, the simplest
experiment would be tossing a coin, the outcomes of which are heads and tails.
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Similarly, the second-order cdf of Z(x) is given by the joint distribution

F(z1,22;%1,%2) = P{Z(x1) £ z1,7(X3) < 23}

of any two random variables Z(x;) and Z (x3). The corresponding pdf is

82F(21-22;X1,X2)
21, 29;X1,X9) = -
f( 1y <2y 1y 2) 82'1 622

The nth-order cdf also referred as the multivariate cdf of Z(x) is the joint distribu-
tion F(z1,22,-- -, 2n; X1, X2, ..., Xp) of any n random variables Z(x1), Z(x2), .-, Z(Xx).

It can be shown that a RF is fully characterized by the multivariate cdfs
F(z1,22,- -+ 2n; X1,Xa,. .., Xy ) for all choices of z;, x; and n.

Ideally, we would like to know the multivariate cdf of Z(x). For practical limita-
tions, we content ourselves with the first and second-order distributions of Z(x); or
simply with a few moments, generally, the expected value, variogram or covariance

of Z(x) as defined next.

Expected Value. The mean or expected value m(x) of Z (x) is given by, when the

integral is defined,
m(x) = E{Z(x)} = / 2f(z,x)dz
Variogram. The variogram 2y(x1,X;) of Z(x) is defined as the expected value of
the square difference (Z(x;) — Z(x2))?
2y(x1, %) = /_ /_ (z1 — 22)* f(=1, 22; %1, X2 ) dz1 d 22
Covariance. The covariance C(x;,X2) of Z(x) is the expected value of {Z(x;) —
m(x1)][Z(x2) — m(x2)]

C(Xl,XQ) = ‘/—o:o [Z[Zl — m(xl )][22 - m(xz)]f(zl, 292, XI,XZ)dZI d22
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Practical considerations again limit our analyses to RF models which are station-

ary in some sense (Myers, 1989).
Strict-sense stationarity means that the distributions of the RF remain invariant

under translation, that is, Z(x) has the same distributions as Z(x + c) for any vector

c. Similarly, the nth-order pdf of a strict-sense stationary RF is such that,
f(21322a" < 92%n; X1, X2, ... »xn) = f(217223'-'azn;x1 + C, X3 +C"",xn +C)

for any vector c.

Second-order stationarity is less restrictive than strict-sense stationarity. A RF

Z(x) is second-order stationary if its second-order pdf is invariant under translation,

f(z1,223%1,%2) = f(21,295%1 + €, X3 +¢) = f(z1, z951)

where r = x; — x,.
An even less restrictive definition of stationarity is that of wide-sense stationarity,

also known as weak second-order stationarity. A RF is wide-sense stationary if its

mean is constant,
E{Z(x)} = m,
and its covariance depends only on the separation vector r = x; — x,
C(x1,x2) = C(r)

Under wide-sense stationarity, the variogram also depends only on the separation

vector and the following relationship is true,
C(r) = C(0) — ¥(r).

Furthermore, we will restrict our analysis to mean-ergodic and covariance-ergodic

RFs and in some cases to distribution-ergodic RFs. A RF Z(x) is mean-ergodic if its

mean 1s constant

E{Z(x)} =m
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and the spatial average of any particular realization
> [ 2(x)d
my = — [ z(x)dx
VTV
satisfies,
Jim my = m

where V' is some volume of integration.

Similarly, Z(x) is covariance-ergodic if its covariance is only a function of the

separation vector
C(r) = E{(Z(x) = m)(Z(x +r) — m)}
and the spatial integral over any particular realization
1
Cy(r) = V/v /V(z(x) — m)(2(x + r) — m) dx dx
satisfies
Vlirn Cy(r) =C(r)

Finally, prior to giving the conditions for Z(x) to be distribution-ergodic we have

to define the indicator RF I(z;x) for threshold z

S if Z(x) > z
1 i Z(x) < 2

Note that the expected value of the indicator RF is the first-order cdf of Z (x)

(3.1)

E{I(z;x)} = 0x P{Z(x) >z} +1x P{Z(x) < z}
- P{Z(x)<2)
= Fz(z;x)

The RF Z(x) is first order distribution-ergodic if all indicator RFs for all possible

thresholds = within the range of variability of Z(x) are mean-ergodic.
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The decisions of stationarity and ergodicity are critical if one wishes to represent
the experimental statistics of a unique data set with a RF model. There is no choice
but to consider a RF model which is both stationary and ergodlc at least with regard
to those moments that one wishes to reproduce.

Stationarity and ergodicity are, thus, model decisions rather than hypotheses or
assumptions that are susceptible of a later refutal. This confusion between “decision”
and “assumption” has misled many practitioners to believe that there is an actual

RF behind what they observe.

Simulation

We shall consider two different types of simulations: unconditional and conditional.
Unconditional simulation of Z(x) refers to a technique that allows drawing
equiprobable realizations from the ensemble © = {2(x,6),6 € S} of all possible
realizations.
To understand the meaning of conditional simulation, we first define the subensem-
ble of conditional realizations given some conditioning values as follows. Let {z;z; :
¢ € (No)} represent a set of Ny conditioning data and their locations®. The subensem-

ble of conditional realizations is defined as the subset of ®
O[(No) = {z(x,0),6 such that 2(x;.0) = z;,i € (Ny)}

It can be shown that this subensemble defines a new RF, denoted Z(x)|(N,), the
statistics of which are defined by the conditional cdfs of Z(x). For instance, its

second-order cdf is given by

F(z1, 295 %1, % Z(x;) = 21,1 € (Ng)) =
F(Z],yz,Z,,T € (A ) X1, x2axnl € (]\7 ))
F(zi,1 € (No);xi,0 € (No))

?Hereafter, the notation (n) will be used to refer to a set of n integers. This set will be general]v
but not necessarily, the set of integers {1,...,n}. To unburden notation and without ambiguity, (n)
may be used as a subindex to refer to the entire set of conditioning data
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Conditional simulation of Z(x) given {z;, z; : i € (No)} refers to any technique that
allows drawing realizations at random from the ensemble of conditional realizations
O|(No). We will say that conditional realizations honor the conditioning values.

Since a stochastic process is completely characterized by its statistics, more pre-
cisely, by its multivariate cdf or pdf, we can conceive simulation as a technique which is
equivalent to directly drawing at random from the multivariate pdf of Z (x), in which
case the statistics of Z(x) are reproduced by construction. The sequential simulation
technique that is described next, takes this direct approach. Hence, the statistics of
the random field, whether it is unconditional Z(x) or conditional Z (x)|(Ng), will be

reproduced by construction.

Sequential Unconditional Simulation

We shall first consider the problem of drawing realizations at random from the ensem-
ble of unconditional realizations ©. In general, the realizations z(x) € © cannot be
given as an explicit functional expression of x, so a non-parametric approach is used.
Any realization is specified by its values at a finite number of locations. Instead of
drawing a function z(x) we shall talk about drawing a set of N values {z(x;),i € (N)}
whose Nth-order pdf is given by the RF Z(x). The locations represented by (N) need
not be on a regular grid or be ordered in a special manner.

The joint pdf of two random variables Z(x;) and Z(x2) can be written (Papoulis,
1986) as the product of the conditional pdf of Z(x;) given Z(x,) times the pdf of
Z(x3)

f(21, 22; Xl,X2) = f(21; X1|22;X2) f(Z2;X2)

This expression is obtained by using the definition of random variable plus the axiom
of conditional probability (Papoulis, 1986). The axiom of conditional probability can
be recursively used to write the Nth-order pdf of {Z(x;): i € (N)} as

fivy(z5%xi,1 € (N)) = (3.2)
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= fniv-n(zn; Xnlzisxi 1 € (N — 1)) fin-1y(2i5 %551 € (N — 1))
= fyiv-n(ansxnlzixi i € (N = 1)) fn-ayv-2)(an-1 2 %01 € (N = 2))
fin=ay(zisxi,1 € (N — 2))
= fyv-n(enixnlzs %1 € (N = 1)) fn-a(v-2)(2n-1]zis %1 € (N — 2))
f2|1(22;$2|21;1‘1)f(21;$1)
where the subscript to f is used to indicate whether conditional or unconditional
pdfs are used and, in the case of conditional pdfs, to indicate also the conditioning
variables; for instance, f(,) represents an nth-order unconditional pdf and fujn-1)
is the conditional probability of Z(x,) given the set of (n — 1) values. The joint
statistics of {Z(x;),7 € (N)}, which are fully determined in terms of the joint pdf
finy(zi3%; 1 1 € (N)), are also determined by the pdf of Z(z,) and the N—1 conditional
pdfs introduced in the previous expression. Consequently, and at least in theory, a
realization of Z(x;),7 € (N) can be generated by sequentially drawing from the

density of Z(x;) and the N — 1 univariate conditional pdfs in Eq. (3.2).

Sequential Simulation Algorithm. A sequential simulation proceeds as follows:

1. Draw at random z; from the marginal density of Z(x;)

2. Determine the conditional density of Z(x;) given Z(x;) = z;. Then draw from

it Z9

3. Determine the conditional density of Z(x3) given Z(x;) = z; and Z(x3) = z,.

Then draw z3 from it

N. Determine the conditional density of Z(xy) given Z(z;) = 2;,¢ € (N—1). Then
draw zpn from it
This procedure is completely general and can be used for the simulation of any

RF.

For the generation of a second realization simply repeat steps 1 through N.
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Conditional Simulation

The extension of the previous discussion to drawing generations from the subensemble
O|(No) conditioned to the data {z;;z; : j € (Np)} is straightforward. The statistics
of the conditional RF Z(x)|(Np) are fully determined in terms of the conditional pdf
fivyiwo)- This pdf can be expressed as a product of univariate conditional pdfs as

follows

Fonimey (zis x4, ¢ € (N))
= fnN-1ue) (285 Xn2i, 255 X5, X, € (N — 1), 7 € (No))
Iy (v-2puvo) (2N 15 XN_1 2, 255 X6, X5,0 € (N = 2), 7 € (No))

Japuvoy (225 2221, 255 X1, X5, 7 € (Vo))

Frvo) (215 21|25, x5, 7 € (No))

The sequential simulation algorithm remains the same, but instead of drawing the
first value z; from the marginal pdf of Z(x;) it is drawn from the conditional pdf of
z(z;) given the original Ny data. One proceeds from there by including the original
Ny data in the computation of all conditional probabilities, e.g., the second step of
the algorithm will be: determine the conditional pdf of Z(x;) given Z(x;) = z; and
Z(x;) = zj,3 € (No).

Exactitude Property. The sets (V) and (/Np) may have a non-null intersection in
which case at some particular step k, the random variable to be simulated Z(zx) may

coincide with the location of one datum, i.e., zx,xs,k € (Ng). In such a case the

conditional pdf

Srik-vue) (23 Xkl 20, 253 %0, %5 1 1 € (k= 1),5 € (Vo)) = 8(z — 2)

is equal to a Dirac delta function at z, that is, the simulated value is necessarily

equal to the datum value z.

It is said that the conditional realization {z;,z;,7 € (\V)} honors the data values.



CHAPTER 3. SEQUENTIAL SIMULATION 44

3.2 Conditional Probabilities

This section will discuss how the conditional probabilities in Eq. (3.2) can be obtained
for three cases. The first case corresponds to a RF Z(x) stationary in the strict-
sense with a Gaussian nth-order pdf. The second case corresponds to a second-order
stationary RF Z(x), with any generic second-order pdf. The third case is an extension
of the first one to the joint simulation of two random functions Y(x) and Z(x), both
of them strict-sense stationary and with a joint Gaussian nth-order density pdf.

We will further consider ergodic models Z(x) and Y(x) so that their respective
means and covariances can be inferred from the data of a single realization. However,
ergodicity is not required for the determination of the conditional probabilities, since

they are not inferred from data.

MultiGaussian Random Functions

If Z(x) is strict-sense stationary and its nth-order pdf is Gaussian, then Z(x) is fully
characterized by its mean m and its covariance C(r) (Anderson, 1984). The mathe-
matical congeniality of the multivariate Gaussian density function makes multiGauss-
ian-related RFs the preferred choice among stochastic models, in particular, for mod-
eling uncertainty due to spatial variability of hydraulic conductivity.

It can be shown (Anderson, 1984) that the conditional density function of Z(x)

given any set of data {z;;x; : ¢ € (n)} is a Gaussian distribution with expected value
given by
E{Z(X)IZ(Xl) =2;: z € (n)} = (1 - Z /\,(X)) m + Z )},-(x)z,-
i€m) i(n)
and variance given by
Var{Z(x)|Z(x;) = zi : 1 € (n)} = C(0) — Y M(x)C(x — x;)
1€(n)

where the coefficients A;(x) are the solution of the following system of normal equa-
tions (Luenberger, 1969) also known as simple kriging equations (Journel and Huij-

bregts, 1978).
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3 ANx)C(x; — x;) = C(x —x;) Vj € (n)
t€(n)
Note that the coefficients A;(x) are functions of the location x of the point being

estimated.

Non-Gaussian Random Functions

If the RF Z(x) is second-order stationary with a non-Gaussian second-order density
function the conditional pdfs in (3.2) are not any more Gaussian. In such a case, we
can use a non-parametric approach to estimate the conditional probabilities in (3.2).
Instead of estimating the parameters of the conditional distribution, we will estimate

its value for a selected number of thresholds {2,k =1,...,K}.
The definition (3.1) of the indicator RF for threshold zj is repeated here:

0 if Z(x)> 2
1 if Z(X) S 2k

I(zx;x) ={

Note. For inference reasons we will consider Z(x) as distribution-ergodic, we will also
consider all indicator RFs for all possible values of z; within the range of variability

Z(x) as covariance-ergodic.

The conditional expected value of I(zx;x) given the set of values {z;x; : ¢ € (n)}

is

E{I(zx;x)|zi;%; : 1 € (n)}
= 0x P{Z(x) > zjzi;x; 1 € (n)} + 1 x P{Z(x) < zx|z55%; 14 € (n)}
= P{Z(x) < z|zi;x;:1 € (n)}
Therefore, we can estimate the value of the conditional probabilities P{Z(x) <

zglzisx; i € (n)},k = 1,..., K by estimating the corresponding indicator conditional

expectation E{I(zx;X)|z;;x;:1€ ()} 6 =1,..., K.
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The exact derivation of these conditional expectation is usually very demand-
ing. An approximation that is easier to compute (Journel and Alabert, 1989) is the
expected value of the indicator RF at location x for threshold z; given the indica-
tor transforms of the nearby data for the same threshold: E{I(zy;x)|i(zk;%;) : 7 €
(n)},k = 1,...,K where i(z;x;) is the indicator transform of the datum z;;x; for
threshold z;. The estimation of these conditional expected values is obtained by the

following linear combination (Journel, 1986)

Q

E{I(Zk;X)Ii(Zk;X;) (1€ (n)}
~ (1= 30 Mz x)Fz(ze) + > Nilzr; x)i(ze;x1),

1€(n) i€(n)

k=1,... . K

F21ny(ze5 %26, %5 1 1 € (n))

where the superscript asterisk indicates an estimated value, Fz(z;) is the marginal
cdf of Z(x), i(zk;%;) is the indicator transform of the sample value z; at location
x; for threshold z; and Xi(zx;x) is the corresponding simple kriging weight. Note
that the weights are function of both the threshold z; and the location x at which
the conditional distribution function is to be estimated. The weights are obtained
by solving an indicator kriging system using the corresponding stationary indicator

covariance function Cy(z;r):

Z Ailzi; X)Cr(zr; xi — x;) = Cr(zk; X — X;) Vi € (n)
1€(n)

Once an estimate of the conditional cdf at a few carefully chosen thresholds
{zr,k = 1..., K} has been obtained, the (K + 1) within-class distributions can be
interpolated by some within-class distribution, e.g.. uniform for all classes and Pareto
for the last one (Journel, 1987). Fig. 3.1 shows an example of such an interpolated
cdf. The estimated values are represented by stars. a uniform distribution is assumed

between estimated values for the first A classes
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F*(z|(N))
F(ZK) ———————————
Fg )F——— -~ - . | Pareto long tail
!
: |
Flzy)t - | :
F(z4) | Uniform interpolation
o V! l ! >
0% %2 i “K

Figure 3.1: Within-class cdf models. After estimating a cdf at a selected number
of thresholds {zx,k = 1,..., K}, the cdf is interpolated within the K +1 classes de-
termined using a uniform distribution for the first K classes and a Pareto distribution

for the last one
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F(Zk) bt F(Zk_l)

2k T k-1

Vz €]zk_1, 2k
Vk=1,... K

F(z) = (2 = 2-1)

with 20 = zmin

and a Pareto distribution for the last class

ZK[I —_ F(ZK)]

z

F(z)=1- Vz 2 zk

The choice of the uniform and Pareto distributions is merely a convenient example.
When the total number of thresholds is small, the choice of these within-class models
may have a large impact on the final results and a sensitivity analysis is recommended

to find how the final results vary with the choice of within-class distributions.

Jointly MultiGaussian Random Functions

Finally, we will extend the results on the simulation of a multiGaussian random
function to the co-simulation of two (or more) random functions, Y(x) and Z(x)
which are strict-sense stationary and jointly multiGaussian.

By jointly multiGaussian, we mean that any nth-order joint cdf of Y (x) and Z(x)

F(Y1y e yUny 21y« > Zn; X1y -« 3 Xn)

= P{Y(x) Sy, Y(%a) € 9oy Z(%1) € 21,00y Z(Xa) o 20)

is Gaussian.

Since they are strict-sense stationary their joint distribution is fully characterized
by their means my and my. their covariances Cy (r) and Cz(r) and their stationary

cross-covariances Cyz(r) and Czy(r), with

Cyz(r)=Cgzy(r) = E{(Y(x) —my}(Z(x+ 1) —mz)}
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By using the definition of conditional probability we can decompose the joint

multivariate pdf in the product of conditional univariate pdfs in a manner similar to

(3.2):

Sy, zi3%i,1 € (N))
= frnv-1.m) (N XN Y0, 253 %01 € (N —1),%5,5 € (N))
fzaiv-1),(v-1)(2n; XN Y3, 265 %:,1 € (N — 1))
T fzz|1,1(22; Xa|y1, 213 Xl)f}’ll-—,l(yl; X1|21; x1) f(215%1) (3.3)

where fy,|(n—1),(n) Tepresents the conditional pdf of the random variable Y(x,) given
the y data at locations (n — 1) and the z data at locations (n); and similarly for
fzal(n=1),(n-1)-

For the joint multiGaussian case, all conditional probabilities appearing in the
previous decomposition are Gaussian; the mean and variance of each is given by the
solution of a multivariate version of the normal equations also known as simple co-
kriging system. For instance, the mean and variance of the conditional probability of

Y (x) given the sets of data {y;;x; : ¢ € (n,)} and {z;;%; : j € (n.)} are

E{Y(X)|Y (%) = yi, Z(x;) = 2;,% € (ny),] € (n:)} .
= my+ Y, M)y —my)+ D vi(x)(z; —mz)

i€(ny) j€(n2)

Va'r{Y(X)|Y(xi) = Yi, Z(xj) = Zj’i € (ny)’j € (nz)}
= Cy(0)— 3 MN(X)Cy(x—xi)

ie("y)

— 2 vi(x)Cyz(x —x;)

J€(n;) .

where the coefficients \; and v; are given by the following set of simple co-kriging

equations
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Y AX)ICr(xi —xk) + Y. vi(x)Cyvz(xj —x) = Cy(x—x¢) Vk € (n,)

i€(ny) J€(nz)
z A CYZ X — Xk + Z I/J(X)Cz(XJ - Xk) = CYZ(X - Xk) Vk € (nz)
i€(ny) J€(n2)

Extension to More Than Two Random Functions Jointly MultiGaussian.
The extension to three or more RFs jointly multiGaussian is straightforward. The
joint conditional pdf of all the RFs is decomposed in a manner similar to (3.3) as a
product of conditional probabilities of each random variable given the other ones. All
conditional probabilities are Gaussian with mean and variance derived from a set of
simple co-kriging equations. To set up these equations requires that all covariances
and cross-covariances between any two of the RFs be known, in addition to their

expected values.

3.3 Implementation

This section contains the author’s contribution. It discusses the major problems

encountered during the implementation of the sequential simulation technique.

Markov Paradigm

The sequential simulation algorithm as described in section 3.1 is completely general
and has no exception. Expressions for the conditional probabilities have been pro-
vided for three possible random function models. However, the number of equations
that must be solved to obtain the estimates of the conditional pdfs increases with
the number of previously simulated points and quickly becomes unwieldy. In the
limit, at the Nth step, the conditional probability of Z(xx) given the (N — 1) other

points has to be estimated. If N is larger than a few hundred, to compute exactly
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the conditional distribution functions is an extremely costly if not impossible task.
Therefore, approximations are required.

A good approximation of the conditional probabilities in (3.2) can be obtained by
retaining only those conditioning values which are most consequential.

For example, approximate

fviv—n (ans x|z xi 1 1 € (N — 1))

favimy(ensxnlzisx; 1 € (n) C(N = 1))

with n < N — 1. Of all possible subsets {z;;x; : j € (n)} of size n, we should retain
the one that allows a best approximation of the conditional pdf fN|(N_1)(zN; XN |z X
i€ (N-1)).

In most cases, that subset of size n is constituted by the conditioning values
“closest” to Z(xn); “closest” being defined in terms of some correlation function. For
instance, if the N random functions represent hydraulic conductivities at N locations,
and the variogram (r) is monotonic increasing, the (n) most consequential values will
generally be the closest values using the variogram value y(x; — x2) as the distance
between locations x; and x;. The exception being when the conditioning data are
clustered, and therefore redundant, in which case it would be better to retain one
datum per cluster and fetch more data in an unclustered zone even though their
distance to the point being estimated could be larger than the distance from the
cluster.

Retaining the “closest” values amounts to assume that the RF features some
Markovian behavior: for a one-dimensional Markov process A(t), the conditional
probability P{A(t)|A(t — 1), A(t — 2),..., A(to)} is equal to P{A(t)|A(t — 1)}, ie,
the closest random variable “screens” the information provided by all other random
variables.

In practice, an ellipsoidal search neighborhood homothetic to the variogram aniso-
tropy ellipsoid centered at x is defined and only the closest no conditioning locations

in each of the eight octants with apex xy are retained. “Closeness” is defined in terms
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of the variogram distance v(r) instead of the Euclidean distance |r|. An example of
this procedure is illustrated in Fig 3.2 for a two-dimensional case. In this figure, four
quadrants are defined by the principal axes of the search ellipse. A maximum of two
points is retained per quadrant. In quadrant I, datum a is preferred to the closer (in
an Euclidean sense) datum b because the variogram value for the vector joining zn
and a is smaller than the variogram value for the vector joining zn and b; in quad-
rant II, there is only one datum; in quadrant III, the two closest values are retained;
and in quadrant IV, there is a cluster of data from which the two closest values are
retained; note that because of the redundancy of the remaining data in quadrant IV,

it is preferable to select the only datum in quadrant II than any of the closer values

in quadrant IV.

' ' X o

IR AR - Conditioning

. B o )

: \3\ vam(]) ° Retained
Anisotropy [+ | f- || AoxN Z1-1 D Quadrant
ellipse Ml (V) :
IRV 4ANE
. - . R

Figure 3.2: Search neighborhood. Example of how to select the most consequential
points to approximate the conditional density of Z(xx ) given a large number of points
using the concepts of search neighborhood, octant search and variogram distance

The use of a search neighborhood implies that only the covariances for lags up
to the dimensions of the search neighborhood can be reproduced in the final set of
realizations. For this reason, we recommend that the search neighborhood should be

at least as large as the correlation ranges of the variogram in every direction.
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Visiting Sequence

The sequence employed to visit the ¥ locations used to define the realizations does
not influence their statistics since in the expansion of the nth-order density function
as a product of univariate conditional simulations (Eq. 3.2) there is no implicit order-
ing of the sequence X;,Xz,.--,XN- However, because of the simplifications required
for the computation of these conditional probabilities, namely, the use of the Markov
paradigm and the use of an octant search within the search neighborhood, we rec-
ommend a visiting sequence following a random path through the N nodes. Such a

random path also minimizes the artifacts that may appear on a spatially sequential

path.

Order Relation Violations

In the non-parametric evaluation of the conditional probabilities in Eq. (3.2), esti-
mates for different thresholds are obtained. These estimates may violate some of the
order relations that any cdf should fulfill: F}l(n)(zk;xl(n)) >0, F}l(n)(zk;xl(n)) <1
or Fyy i (zk:x|(n)) < F3yny (2 xI(n)) for zx > z,. When any of these inequalities are
violated, the estimates Fgl(n)(zk;xl(n)) and F}I(n)(z;;xl(n)) must be corrected. (For

more details on how to carry out this correction see Sullivan, 1984, p. 36-24.)

Programming

The writing of efficient code to implement the sequential simulation algorithm re-
quired the solution of a number of problems that are discussed below.

The programs have been designed to generate a realization over a rectangular grid
with a total of N nodes. In this way the coordinates of the points to be simulated
can be determined by the number of nodes in each coordinate direction, the size of
the unit cell, and the coordinates of the first node. The programs could be modified
easily to handle an irregular grid; in such a case. the coordinates of each node must

be provided explicitly.
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Random Path. As discussed earlier, the visiting sequence for the simulation of
values at the N nodes must be given by a random path. An integer index is assigned
to each node and a random sequence of these indices is generated using a congruential

generator of the form (Bratley et al., 1983):
index; = (5 X index;—; + 1)mod 2"

This generator produces once and only once each integer value between 1 and 2". By
selecting the smallest power of 2 that is larger than N we are assured that all indices

are generated. Index values that are larger than the total number of nodes are simply

discarded.

Searching. When simulating a value, only the data within the search neighborhood
are considered and, furthermore, only the closest ng such data per octant are used—
where ng is a value preset by the user. A procedure for the fast retrieval of the closest
no conditioning values per octant within the search neighborhood is required.

The conditioning values could be close to the point being simulated or they could
be widely scattered within the search neighborhood. At the beginning of the sim-
ulation when only few nodes have been simulated and the conditioning data set is
small, the points retained for kriging can be located as far as the limits of the search
neighborhood. Conversely, towards the end of the random path, the conditioning
data set will have grown large—it may include almost all nodes within the search
neighborhood—and the closest points retained will be located close to the node being
simulated. ‘

The procedure implemented for efficient search for the closest data is based on a
lookup table containing distances from, and relative coordinates to, the centerpoint.
Since the simulation grid is regular, we can build a template, independent of the
point being simulated, that contains the relative coordinates to the centerpoint of
all nodes within the search neighborhood ordered from closest to the centerpoint to
farthest. This template should also contain the octant to which each point belongs.

(Remember that “closeness” is defined using the variogram distance instead of the
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Euclidean distance.) When simulating a value, the template is searched to find which
values have already been simulated. The search stops when ng values per octant are
found. Thus, there is only one prior search to establish the search template, then the
selection of points to be used for the simulation of any node is done by looking in a

template of ordered distances.

Covariance Lookup Table. Once the conditioning data have been selected, the
normal systems of linear equations must be built. These systems of equations con-
tain all possible covariance values between: i) any two conditioning values, il) any
conditioning value and the value being simulated. The conditioning data are limited
to those within the search neighborhood, the covariance is stationary, and the nodes
are over a regular grid. Therefore, the number of possible different covariance values
used to simulate any point is finite; these covariances can be computed a priori and
stored in central memory. In this way, building the kriging systems reduces to looking

up the covariance values in a table.
Note 1. In the non-parametric approach to the estimation of conditional cdfs, the

number of covariance tables will equal the number K of thresholds used to discretize
the range of variability of Z(x) since the indicator covariances may be different from
one another. Similarly, in the joint simulation of several variables, tables for the co-
variances of each variable and for the cross-covariances between every pair of variables
are needed.

Note 2. The covariance look-up table as well as the search template assume that the
initial conditioning data have been relocated to the nearest grid nodes, so that both

conditioning data and simulated nodes fall in a regular grid.

Two-steps Simulation. The covariance tables may contain an extremely large
number of entries if the search neighborhood contains a large number of points. This
will be the case if the node spacing is small with respect to the ranges of the variogram.
To reduce the central memory requirements in these cases a two-steps approach is

used.
In the two-steps approach the random path is divided into two paths. The first
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path visits all nodes located over a coarse grid, the spacing of which is a multiple
integer of the spacing in the final fine grid. The second path visits the remaining
nodes located on the fine grid. During the simulation of the nodes on the first path,
the search neighborhood will be large in size, yet the number of points on the coarse
grid contained within the search neighborhood will be small. During the simulation of
the nodes on the second path, the size of the search neighborhood is reduced to twice
the spacing of the nodes on the coarse grid. In this way, both search neighborhoods
will contain a small number of points and the size of the covariance lookup tables
will be small. The lookup tables will be different for each path. In the first path, the
lookup tables will contain covariance values for large distances. In the second path,
the lookup tables will contain covariance values for small distances. The objective
of the two-steps simulation is to reproduce the covariances for both large and short
distances without having to resort to the use of a large neighborhood on a fine grid.
The simulation over the coarse grid using a large search neighborhood will allow the
reproduction of the large scale correlation; whereas the simulation over the small grid

using a smaller search neighborhood will reproduce the small scale correlation.

Simple Kriging or Ordinary Kriging? Theory indicates that simple kriging equa-
tions be used for the evaluation of the conditional density functions in section 3.2,
whereas experience indicates that ordinary kriging is more appropriate. Indeed, ordi-
nary kriging provides better robustness with regard to the assumption of stationarity.
The use of a search neighborhood along with ordinary kriging—amounts to an im-
plicit re-estimation of the mean value of the random function at each location using
the conditioning data within the search neighborhood. Thus, the assumption of sta-
tionarity of the random function is relaxed allowing its mean to vary, smoothly, from
one location to another. It is said that “ordinary kriging corrects for local departures
from stationarity” (Journel and Rossi, 1989).

Thus, sometimes we may wish to use ordinary kriging to estimate the conditional
density functions particularly if the number of conditioning data is large and we
observe spatial trends in the data values that may be interpreted as local departures

from the stationarity decision. In such cases, the ordinary kriging estimation of the
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conditional density functions is not anymore theoretically correct, but from a practical

point of view, it may yield better results than using the sunple kriging equations.

The ordinary kriging equations for the three cases discussed in section 3.2 follow.

The first case corresponds to multiGaussian random functions.

E{Z(x)|Z(x;) =z :1 € (n)} =~ 3 Ai(x)z

ie(n)

Var{Z(x)|Z(x;) =z :1 € (n)} = - 3 ME)C(x —x;) — p(x)

i€(n)

where the coefficients of A;(x) and pu(x) are given by the following set of ordinary

kriging equations

Y AXCH —x;) +p(x) = Clx—x;), Vj€(n)
i€(n)

> di(x) =1

1€(n)

The second case corresponds to random functions with a second-order density
not necessarily Gaussian. The use of ordinary kriging to estimate the conditional
probabilities is equivalent to assuming that the expected value of the indicator func-
tions, i.e., the marginal distribution function of Z(x), varies smoothly with x while
the indicator covariance functions remain stationary. The estimate of the conditional

probabilities for the set of thresholds {zx,k=1,...,K} is given by

F}I(n)(zk;xlz,-,Xg ) € (n)) =~ Z /\,-(zk;x)i(zk;x,-), Vk = 1,.. . ,I{
t€(n) .

where the weights are obtained by solving the indicator ordinary kriging systems

3 Xz %) Cr(zrs xi — %) + plasx) = Cr(zk;x —x;) Vj € (n)

1€(n)
3 Aizx) = 1

1€(n)
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Finally, the third case corresponds to jointly multiGaussian random functions. Its
extension allows local departure from stationarity of the means of both RFs Y(x)
and Z(x)

E{Y)Y (%) = yi, Z(x;) = 2;,1 € (ny), ] € (n2)}

~ E/\ )y + Y vi(x)z;
)

1€(ny J€(nz)
Var{Y (x)|Y (x:) = yi, Z(x;) = z;,i € (ny),] € (r:)}
~ Cy(0) = X MX)Cr(x—x) = D v(x)Cyz(x — %;) — pa(x)
t€(ny) 1€(nz)
where the parameters A;(x), v;(x) and p1(x) are given by the following set of ordinary

co-kriging equations

2 ANX)Cy(xi—xi) + D vi(x)Cyz(xj — xk) + pa(x)
1€(ny) J€E(n:)
= Cy(x - Xk) Vk € (ny)

Z /\(X CYZ —Xk + E UJ CZX "xk)+”2( )
t€(ny) J€(nz)
= Cyz(x — Xk) Vk € (nz)

Z )\,‘(X) = 1

i€(ny)

Z I/J'(X) =0

7€(nz)

The use of the ordinary kriging equations introduces the problem of what to do if
no data points are found within the search neighborhood. In such a case, a reasonable
approach is to revert to the simple kriging equations and use a default value, preset
by the user, for the expected values of Z(x), I(z;.x) or Y(x).

Building on these ideas, the sequential simulation programs used in this disserta-
tion allow the user to specify a minimum number of conditioning points within the
search neighborhood below which the program switches to simple kriging. If this
number is zero, ordinary kriging always will be used except when no points are found

within the search neighborhood. If this number is very large, simple kriging always
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will be used since the search neighborhood will never contain as many points as speci-
fied. From our experience, we recommend to setting this minimum number to a value
larger than 1 to avoid artifacts that may appear if the number of conditioning data

points is small or the search neighborhood is very large.

3.4 Advantages of Sequential Simulation

Sequential simulation has several advantages over other simulation techniques of
which the two most important are: (1) it is completely general, and (2) it is faster
than any indirect method for the generation of Gaussian conditional simulations.

The technique of sequential simulation is not limited to the simulation of Gaussian
random fields. It can be used for the generation of any random function provided
that the conditional probabilities in (3.2) can be estimated. Ways to compute those
conditional probabilities have been provided, and, to the best of our knowledge, se-
quential simulation is presently the only technique that can generate realizations from
a random function with a generic bivariate distribution.

Sequential simulation is faster than any indirect technique for the generation of
conditional realizations of Gaussian random fields. The cost involved in the genera-
tion of a conditional simulation using sequential simulation is that required for the
estimation of the conditional pdf at each node being simulated. For the Gaussian
case, this reduces to the solution of a simple kriging system of linear equations; the
number of equations is limited by the maximum number of points retained within
the search neighborhood. On the other hand, the cost involved in the generation
of a conditional simulation using an indirect method can be decomposed in the cost
required for the generation of an unconditional realization plus the cost required in
transforming the unconditional realization into a conditional one. The cost involved
in the first step depends on the technique used; but, the conditioning step alone
reqﬁires the solution of a simple kriging system of linear equations for each node
being simulated (see section 2.1). The number of equations cannot be larger than

the number of conditioning data or, if this number is too large, than a maximum
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number preset by the user. Therefore, unless the number of conditioning data is very
small, the cost involved simply in the conditioning step of any indirect method will

be comparable to the cost required for the entire conditional sequential simulation.

3.5 Programs

Three sequential simulation codes have been written corresponding to the three possi-
ble random function models described in section 3.2. The skeleton of these three pro-
grams is the same. Differences are related to the specifics of computing the conditional

density functions. These three programs called GSIM3D, ISIM3D, and GCOSIM3D are
described in Appendix A.



Chapter 4

Block Hydraulic Conductivity

The simulation algorithms presented in the previous chapter allows for the fast gen-
eration of conditional simulations with possibly hundreds of thousands of nodes. Re-
alizations can be generated at the scale of the measurements allowing reproduction
of the spatial variability observed in the field. However, such detailed representations
cannot be used because the available numerical codes for flow and transport cannot
handle more than a few thousands nodes due to time and/or memory limitations.

This chapter proposes an answer to the previous problem. The detailed realiza-
tions still can be used in a Monte-Carlo analysis of flow and transport if the small
scale conductivities can be averaged into a larger scale that can be handled efficiently
by currently available numerical codes.

Two methods for computing block hydraulic conductivities will be discussed. The
first, analytical method is limited to two-dimensions with small, isotropic variability
of the logarithm of hydraulic conductivity. The development of this method closely
follows the paper by Rubin and Gémez-Hernandez (1990). The second is numerical
and it is not subject to any limit statistics; although developed in two dimensions it
can be straightforwardly extended to three.

The starting point is a hydraulic conductivity field, generated at the data scale by

one of the simulation algorithms described in the previous chapter. Such realizations

61
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are assumed completely known at the scale of the simulation grid. The objective 1s
to find a procedure to derive from it block hydraulic conductivities. This procedure
could be as simple as taking the geometric mean of the point values within each
block or as complex as a function of the values within and around the block, of their
variability, of spatial correlation, of the block size and of the flow patterns resulting

from different boundary conditions.

4.1 Statement of the Problem

Given a block of volume V exhaustively sampled for hydraulic conductivity, we define
block hydraulic conductivity as a tensor Ky that satisfies relation (2.2). This relation,

reproduced below, can be interpreted as Darcy’s law at the block level,

q=-Ky Vh, for given boundary conditions (4.1)

where the overbar is used to denote a spatial average over the block, that is,

Q|
I

%/qux
Vh = }V/Vw'dx

and where q and Vh are related through Darcy’s law at the smallest scale:

q=—-KVh. (4.2)

where K is the point hydraulic conductivity tensor, q is the specific discharge and h
is the hydraulic head equal to z + p/‘pg (z being elevation with respéct some datum,
p the fluid density and p the pressure and g is the acceleration of gravity).

Note that the values of q and Vh can only be obtained after boundary conditions
have been specified around the block; therefore, the definition of Ky also depends on
these boundary conditions. _

This definition has two properties that justify its choice. First, if Ky is seen as a

realization from an ergodic random function allowing an exchange of spatial integrals
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over one realization with expected values through the ensemble of realizations, the
limit of relation (4.1) as V tends towards infinity coincides with the definition of
effective conductivity, Keg, as given in (2.3). Second, when the boundary conditions
used are those in Fig. 2.3, the resulting Ky identifies the traditional value obtained
using Eq. (2.12) (see p. 25 and following).

In the analytical approach we will consider that the point hydraulic conductivity
is isotropic to flow; therefore, it can be represented by the scalar function K (x). This
assumption is not required for the numerical approach. Even though all examples use
isotropic point conductivities in two dimensions, the numerical approach proposed
can handle anisotropic hydraulic conductivities.

The following conventions are used throughout this chapter. Upper case boldface
letters denote tensorial quantities, such as Ky; lower case boldface letters denote
vectors, such as q, and plain letters denote scalars, such as h. Unless necessary, no
explicit reference will be made to the space dimensionality (whether two or three).
We refer to the “volume” V; however, V can represent an area in two dimensions, or a
volume in three. Furthermore, if explicit reference to the components of a coordinate
vector x is needed we will use Cartesian coordinates (z,y) or (z,, z). There should
be no confusion between the vector x and its first component z. Similarly, Ky is a
two by two symmetric, positive-definite, tensor in two-dimensions, and three by three

in three dimensions.

4.2 Analytical approach

Necessary Assumptions

The following assumptions are made:
1. Point hydraulic conductivity is isotropic to flow; therefore, it can be described

by a scalar function K(x).

2. The spatial variability of K(x) is isotropic: that is, there is no preferential

direction of continuity.
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3. The spatial variability of K(x) is small. More precisely, we require that the
fluctuations of the log-conductivity Y (x) = In K(x) about its spatial average

be small, so that fluctuations raised to a power larger than two are negligible.

4. The block is embedded in an infinite domain with boundary conditions given

by a constant flow at infinity.

5. The flow regime is at steady-state.

In the most common case, as a result of assumptions 1 and 2, the block conduc-
tivity is also isotropic to flow; therefore, it can be represented by a scalar Ky. Thus,
we can assume that average flow and average gradient are co-linear.

From these assumptions, the flow pattern can be described by a set of quasi-
parallel flow lines. The flow vector q at any given location can be decomposed as a
constant vector equal to the arithmetic average over the entire aquifer plus a fluctu-
ation vector, the components of which are small. Similarly, the gradient vector VA
is decomposed as a constant vector equal to its arithmetic average over the entire

aquifer plus a small fluctuation.

Development

At any location x we can write,

Y(x) = lnK(x)
Y(x) = Y, +Y'(x)
K(x) = Kjexp(Y'(x)); K, =exp(Ya)

j(x) = Vh(x)
i) = jeti) (43)

q(x) = qu+4q(x) (4.4)
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where the subindex a indicates the arithmetic average computed over the entire
aquifer, and g the geometric average; the primed quantities are the fluctuations about

the arithmetic means. As stated in the assumptions, fluctuations raised to a power

larger than 2 can be neglected.

If the r-axis is aligned with the average gradient vector (ja) (also the direction
of the average flow vector), the only non-zero components of j, and q, will be their
z-components. Taking the arithmetic average of (4.3) and (4.4), substituting in (4.1)

and rewriting in' terms of the vector components in two dimensions results in

Ga +EI; = —KV (ja +;:,:)
¢, = -K viy
The second equation is discarded because it only involves spatial averages of small

perturbations (the limits of which, as the block tends towards infinity, are zero). From

the first linear equation we obtain the value for Kv

Ky=-%t%& (4.5)
Ja +Jz
The value in the numerator (g, + ¢~.) can be obtained from Darcy’s law (4.2): the
z-component of q is

ga + €,(x) = —K(x)(Ja + 72(x))-

Averaging over the block and dropping the explicit dependence of the various quan-

tities on x yields
ga + ¢z = —K(ja+J2)-

Substituting in (4.5) leads to

Ky = ‘(,J +_—]I)
Jat 7L

Substituting K by its expression in (4.3) gives
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exp(Y')(Ja + 1)

Ky = K, 70
Jat7;

Expanding exp(Y’) and 1/(j, + j.) in Taylor series and retaining only the terms up

to second order we arrive at

-2
YI2 . . 1 ! y !
Ky = Kg[ (1+Y’+7+"')(]a+14)}7‘(1—%+J; +)

Further expansion ignoring terms of order larger than two leads to

== = - =2
— Yyn2 5 Y'3! ] 7
Kv = Kg(1+Y'+—2—+j.—’”+j—’)-(1—].—”+]—’F—)

K, [1+77+_’;ﬁ+%(77j2_y7 32)} (4.6)

Equation (4.6) is a closed-form approximation for the value of Ky. From this
expression we observe that the block value is a function of the geometric mean of the
point values over the entire aquifer, of the variation of the point values within the
block (Y’ and Y*2), and of the flow pattern within the block through the term L.
The dependence on j’ implies dependence on the boundary conditions existing at the
sides of the block.

It is interesting to analyze Eq. (4.6) for the limiting case of V tending towards
infinity. In this case, and under ergodic assumptions, the block conductivity should
be equal to the effective conductivities discussed in the literature review (see chapter
2). To exchange spatial integrals over the entire aquifer with expected values through
the ensemble, we will assume that the underlying conductivity random function is
mean- and covariance-ergodic, and that it is also cross-covariance ergodic with the

random function model j,. Then, the limiting value for Ky is

2 Cy,,(0
lim Ky = K, (1 + 5+ -—Z;(—)) (4.7)
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where o} is the stationary variance of the RF Y (x) and Cy; is the stationary cross-
covariance between Y and j;.

The value of the term Cy;,(0)/js in (4.7) has been evaluated by Gutjahr et al.
(1978) for one, two and three dimensions using a small fluctuation approach. The
result is independent of the form of the covariance of the RF Y (x) (as long as the
assumptions made at the beginning of the section are met). It is equal to —af /N,
where N is the number of dimensions of the space. Substituting this value in (4.7)

the limiting values of Ky are,

K,(1—0%/2) inl-D
Jim Kv =1 K, in 2-D
K,(1+02/6) in3-D

which identify the effective conductivities reported in the literature for the small
perturbation approach.

Expression (4.6) has limited practical use for the derivation of Ky because it re-
quires prior solution of the flow probiem within the block in order to evaluate the
terms Y'j and 7. With such solution, Eq. (4.1), which is completely general and
does not require any limiting assumptions, can be used directly. However, Eq. (4.6)
is important for the understanding of the factors that determine Ky and, as dis-

cussed in chapter 5, it plays an important role for the stochastic modeling of block

conductivities.

4.3 Numerical Approach

The numerical approach presented in this section has been designed from a practical
point of view. The finite difference method for the solution of the partial differential
equation of groundwater flow is selected, and a specific scale-up procedure is proposed.

All figures, examples and formulations will be for a two-dimensional aquifer with

square blocks. The extension to three dimensions and /or rectangular blocks is straight-

forward.
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Starting Point

Following Haldorsen’s hierarchy of scales (Haldorsen, 1986), two scales of definition
for the hydraulic conductivities are considered: the macroscale, which is the smallest
scale at which data (core and well logs) are available, and the megascale, which is the
scale of the blocks used in the numerical flow model. The term cell will be used to refer
to the discretization unit at the macroscale, and the term block will be reserved for the
discretization unit at the megascale. Each cell represents the volume of one possible
measurement. Hydraulic conductivity is considered constant within each such cell,
which actually amounts to a first averaging. The inter-cell flows will be referred to
as macroflows, and the hydraulic heads at the center of each cell as macroheads (see
Fig. 4.1). Similarly, the interblock flows will be referred to as megaflows and the block
heads as megaheads (see Fig. 4.2). The subscript V will be used with the megascale

variables.

= Cell
b

Macrohead

* Macrofiow

N
*
N

N
»

Figure 4.1: Macroscale discretization. The cells are at the scale of the measure-
ments. Hydraulic conductivity can be considered constant within each cell

Since measurements of hydraulic conductivity at the megascale are not available
(or at least they are too expensive), the objective of this chapter is to find the megas-
cale hydraulic conductivity values that should be used in the numerical flow simulator,

so that the following two conditions are met. First. the megahead hy (I, J) associated
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) Block

A/ ) ) / / . Megahead
_/

Figure 4.2: Megascale discretization. The megascale blocks overlay the macroscale
cells

e Megaflow

with block (I, J) should equal the arithmetic average of the macroheads within the
block.

h(LJ) = — 3 hG,d) (4.8)

"V (ig)ev .
where ny is the number of cells in the block, the lower case indices (i,7) relate to
cells, while the upper case indices (I,J) relate to blocks. Secondly, the megaflow
qv(I,J) crossing the interface between blocks (I,J) and (I 4+ 1,J) should be equal
to the average of the macroflows crossing the cell interfaces that are aligned with the

block interface (Fig. 4.4)".

wl+1/20) =~ % CG+1/20) (4.9)

Ns (i41/2,7)€interface
where ns is the number of cell interfaces, and ¢(i + 1/2,J) is the flow through the

block interface.
Were the flow equation solved for the entire aquifer with the detailed discretization,

1Recall that the flows used in Darcy’s equation are in fact specific discharges defined as total flow
divided by cross-section
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hy (1J)

Figure 4.3: Megahead. Defined as the average of the macroheads within the block
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Figure 4.4: Megaflow. Defined as the average of the macroflows
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then relations (4.8) and (4.9) could be used to obtain the set of megaheads and
megaflows that would provide a correct solution to the flow problem at the megascale.
Once the megaheads and megaflows are obtained. an inverse problem can be stated
as: find the megascale parameter va.luesn"r'équired by a finite difference formulation to

reproduce these megaflows and megaheads.

Finite Difference Parameters. At this point in our presentation it is important to
discuss which parameter values are required for a finite difference model of ground-
water flow. |

One way to establish the finite difference formulation is to apply mass conservation
to a specific block (I, J) such as that of Fig. 4.5. Under steady state conditions and
assuming that there are no external sinks or sources, the sum of the flows entering
through the four sides of the block should equal zero. The flow entering through each

side can be obtained using the multidimensional expression of Darcy’s law.

{ qz }: __{ K., l‘,:cy }{ Oh/0z } (4.10)
qy K.y, Ky Oh /08y

In particular, the megaflow gy (I + 1/2, J) crossing the interface between blocks

(1,J) and block (I + 1,J) would be given by

Ohy

Ohy
— Ky =Y
V,xy ay

QV,z(I + 1/2, J) - KV,xra—
T lr+1/2.0)

The finite-difference equation associated to block (1,J) is

(4.11)

(I+1/2,J)

qve(I+1/2,J)+ qu (I = 1/2,J) 4+ quy(1.J +1/2) + qv,(I,J — 1/2) = 0, (4.12)

where the flow crossing the other three block interfaces are given by a similar ex-
pression. The megahead gradients at the block interfaces, are estimated by central

differences from the megaheads at the nine blocks surrounding (I, J). That is,

Ohy _ hv(I+1,J) = by (1.J)
Ox = l

(I+1/2.9)
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-1,J-1 ] 1,J-1 I+1,d

I-1,J l,J 1+1,J 1

-1,J+1 ] 1LJ+1 | 1+1,d+1

Figure 4.5: Finite differences discretization. Nine-point scheme

dhy 1 (hV(I,J-H) —hy(I,J 1)
oz (1+1/2.0) 2 21
hv(I+1,J+1)—hv(I+1,J—1))
+ o

Substitution of the estimates of the megahead gradients in (4.12) leads to a linear
equation relating the megaheads at the nine blocks surrounding (I,J). As shown in

Appendix B this equation is, for a square block,

Kyee(I +1/2,J) (hryr,g — h1,1)

+Ky (I +1/2, J)i (hryrg41 — hi1gs + A — hi-1,7)
4Ky (I —1/2.J) (=h1s + h1-13)

(=hperg + hro1g — hryrg-1 + hro10-1)
+Kvy(I,J +1/2) (hra41 — hrJ)

el Mo

+Ky (I —1/2,J)

. 1
+Ky (I, J + 1/2)1 (hig1,0 — hrcvg + R4 — hi-1,7+1)
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+Kvyy(I,J = 1/2) (=h1 g+ h1y-1)
1 .
+Kvz(I,J — I/Q)Z (k1410 + b,y —hip1ig-1+hi1-1) = 0

Writing this equation for all blocks yields a system of linear equations with the
megaheads as unknowns. The coefficients in this system of linear equations are func-
tions of the estimated block hydraulic conductivities at the block interfaces. More
precisely, for any given block (I, J) we need estimates of Ky .., (vizy at (1 +1/2,J)
and (I —1/2,J), and of Kv,,, Ky at (I,J +1/2) and (1,J —1/2).

The common practice in finite-difference modeling is to assume that the principal
directions of the hydraulic conductivity tensor is the same for all blocks, allowing
an alignment of the block sides and principal directions. This limits the interface
block conductivities to their principal components, that is, only Ky., and Ky,
are considered. Their values are typically obtained by a harmonic average of the
corresponding components of the neighboring block conductivity tensors, for example,
Kvze(I+1/2,J) is equal to the harmonic mean of Kv,..(1,J) and Ky.(I + 1,J).
This approach has two shortcomings: first, it cannot handle conductivity tensors
with principal components not parallel to the block sides (it is not clear how the
off-diagonal terms of the block conductivity tensors should be averaged); and second,
the harmonic mean of adjacent heterogeneous block values does not necessarily yield
the interface conductivities that reproduce flows observed at the macroscale.

For these two reasons, we will attempt a direct estimation of the interface con-
ductivity values; since these are the parameter values required by the finite-difference
model. The approach proposed in this dissertation is then compared to the results
obtained by two other approaches. These other approaches do not determine directly
the interface conductivities, instead, they determine block conductivities which are
later averaged to give the interface conductivities. To avoid artifacts that may be
introduced by this averaging, the interface conductivities will be also directly com-
puted by assimilating them to the conductivities of the block that stretches between
adjacent block centerpoints (Fig. 4.6). This block will be referred to, hereafter, as
the interblock. '

Returning to the inverse problem stated earlier, the estimation of the two con-

ductivity values associated with each interface is undetermined unless some other
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Figure 4.6: Interblock. Defined as the are

interface.

(1.J)

5

(I+1,J)

a of the aquifer attached to the block
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constraint is introduced. Indeed, after having solved for flow at the macroscale over
the entire aquifer and calculated the megaheads and megaflows, Eq. (4.11) can be es-
tablished for each interface yielding one single linear equation with two parameters to

be determined. For example, at the interface (I +1/2,J), we can write (see Fig. 4.5),

hv(I+1,J)—hy(1,J
(I +1/2,J) = —AyuuquzJ)V(+' 3 v, J)

1 [hy(,J +1) = hy(I,J — 1
—KV,,y(z+1/z,J)§[V( )= (1,7 =1)

hv(I+1,J41)=hy(I+1,J-1)
+ 51

(4.13)

where [ is the block side length, the gradient Ohy/0z at (I+1/2,J) has been obtained
by central differences using the megaheads at (/,J) and (I + 1,J) and the gradient
Ohy /0y at (I + 1/2,J) has been evaluated by averaging the central difference ap-
proximations of the gradients at (/,J) and (I +1,J). This equation is not enough to
determine both Ky ., and Ky,,?

At least, one more relation involving the two interface parameters is required.
White (White, 1987; White and Horne, 1987) suggests that solutions to groundwater
flow over the entire aquifer should be obtained for a set of four different boundary
conditions, none of which needs to correspond exactly to the field boundary condi-
tions. The four boundary conditions proposed by White are a combination of no flow
and prescribed head that forces overall flow patterns at 0, 45, 90 and 135° with respect
to the block sides. Each solution produces a single equation with two unknowns for
each interface; the set of all four solutions thus result in an overdetermined system
of linear equations that is solved by standard least squares. In the case proposed
by White there will be four linear equations for each pair of interface conductivities.
The use of least squares to obtain the two interface block conductivities provides an

approximation of the megaflows for different flow patterns.

2Note that (4.13) can be interpreted as an ad-hoc version of (4.1) for the case in which a finite-
difference formulation is used. The average of the flows across the interface substitutes for the
average of the flows over the block, and the gradient of the average heads (megaheads) substitutes
for the average of the gradients in (4.1).
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However, simulating flow at the macroscale over the entire aquifer as proposed by
White is only feasible for discretizations with a few hundred nodes. Such a detailed
flow simulations may only be justified if the resulting block conductivities are going
to be used in a more complex, consequently more demanding, numerical code, such
as for multiphase flow simulation:

The most common approach to numerically compute block conductivities, here-
after referred to as the traditional approach, was described in the literature review
starting on page 36. That approach provides block conductivities that are later aver-
aged (through harmonic average) to give the interface conductivities. For comparison
purposes, and to eliminate artifacts that may result from such an averaging of al-
ready scaled-up values, we identify the interface conductivity between nodes (I,J )
and (I+1,J) to the block conductivity of the block straddling the interface between
block centerpoints (Fig. 4.6).

In the traditional method, the cells within the block are isolated, then groundwater
flow is solved within the block for the specific boundary conditions shown in Fig. 2.3;
then, a value for Ky, is obtained using (2.12). The procedure is repeated after a
90° rotation of the boundary conditions in Fig. 2.3 and a value for Ky, is similarly
obtained.

The traditional approach, has two problems. First, it cannot account for the
principal directions of Ky not aligned with the block sides. Second, the previous
specific boundary conditions may not be relevant.

This traditional approach has been favored by many researchers (Warren and
Price, 1961; Bouwer, 1969; Journel et al., 1986; Desbarats, 1987a; Desbarats, 1987b;
Desbarats, 1988; Deutsch, 1987; Deutsch, 1989; Begg et al., 1989; Bachu and Cuthiell,
1990) mostly on the basis that it retrieves the correct analytical results for effective
conductivities of infinite aquifers formed by perfectly stratified layers; more precisely,
the arithmetic mean for flow parallel to layering and the harmonic mean in the or-
thogonal direction. However, what may be regarded as a proof that the traditional
approach retrieves the “exact” block conductivities is nothing but a consequence of
the very specific boundary conditions used.

Consider the two aquifers in Fig. 4.7. Both aquifers are much larger than the
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block outlined in the center. On the left, the block is embedded in a uniform aquifer
with constant isotropic conductivities everywhere (except for the block itself). On
the right, the block is part of five layers in a perfectly stratified aquifer. If these
blocks are isolated to obtain their block conductivities, they cannot be distinguished
one from another. However, if block conductivity is defined such that it perturbs the
least the flow patterns within the aquifer, then the same block conductivity cannot

be used in both cases.

D74 24

7/

N/

X
>

Figure 4.7: One block from two aquifers. The blocks outlined in the center of both
aquifers cannot be distinguished one from another in the basis of the conductivities
within the block. However, when the aquifers are subject to flow in the z-direction,
the boundary conditions around the center blocks are very different.

Consider the flow solution for both aquifers using prescribed heads on the bound-
aries parallel to the y-axis. These prescribed heads are uniform along each boundary
but different from each other. The blocks at the center will have very different flow
patterns, depending on which aquifer is considered. The boundary conditions as

given in Fig. 4.8 are only an approximation of those prevailing around the blocks in
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Fig. 4.7; however, the only objective of this discussion is to show that a given block
subject to different boundary conditions should have different block hydraulic con-
ductivities. Consider that the hydraulic conductivities of the five layers within the
block have values of 1, 10, 100, 1000 and 10000. Flow is solved for the two blocks
in Fig. 4.8, and block conductivity is defined as the ratio of the average flow to the
average gradient in the z-direction within the block; this results in a value of 350 for
the block on the left and of 3.6 for the block on the right of Fig. 4.8. A difference of
two orders of magnitude! Such a discrepancy is explained by the fact that for the left
case, flow gets into the block through the upper and lower faces resulting in a larger
average flow than for the right case with no flow boundaries. The point being made
is that reproduction of the effective parameters corresponding to perfectly stratified
aquifers cannot be used as the only validation tool for the traditional or any other
approach when determining block conductivities for blocks of finite size. A better
validation technique consists of checking whether the flow pattern within the entire
aquifer obtained with the block values reproduce the reference flow pattern obtained
by simulation at the smallest scale.

In conclusion, computation of block conductivities should account for the conduc-
tivities surrounding the block. In other words, the boundary conditions chosen to
compute block conductivities are of paramount importance and should be carefully
chosen depending on the expected distribution of conductivities around that block.
For blocks larger than the correlation scale, the effect of such boundary conditions
on the flow pattern within the block quickly vanishes beyond a short distance of the
block boundaries (Rubin and Dagan, 1988; Dagan and Rubin, 1988; Rubin and Da-
gan, 1989). In which case, the flow pattern within the block is mostly determined by
the conductivities within the block and not so much by the conductivities outside;
the traditional method does provide good results.

In this dissertation an approach lying between White’s approach and the tradi-
tional one is proposed. As in White’s approach the block conductivity is calculated
from the solutions of flow for several alternative boundary conditions. However, these
boundary conditions are applied not on the field boundaries but on the boundaries of

a “skin” surrounding that block, see Fig. 4.9. The use of a “skin” allows accounting
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Figure 4.8: Approximate boundary conditions. for the blocks in Fig. 4.7
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for some of the influence of the neighboring cells, without having to solve flow over the
entire aquifer as requested by White’s approach. Note that if the “skin” is extended
to be the entire aquifer, our approach identifies that of White.

We focus on the computation of estimates of the conductivities at the interface,
instead of block conductivities. Therefore, the objective is to obtain the coefficients
relating megaflows to megaheads in Eq. (4.13). The procedure proposed in this dis-

sertation follows:

(a) Define an area surrounding the interface for which estimates of the coefficients
in (4.13) are to be calculated. Ideally, this area should be the entire aquifer but,
in practice, it is limited to a smaller area. In this dissertation the area chosen
is the interblock straddling between block centers plus a “skin” arbitrarily set

to half the block size in each direction, see Fig. 4.9.

(b) Solve for flow at the macroscale within the previous area for a series of boundary

conditions that may include combinations of prescribed head and/or imposed

flux.
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Figure 4.9: Computing the interface conductivity. The interface coefficients will
be retrieved after solving for heads within an area formed by the block determined
by points 1, 2, 5 and 6 plus a “skin” surrounding it of width equal to half the block

size in each direction
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(c) For each boundary condition evaluate the megaflow across the block interface
(Eq. 4.9) and the megaheads at the locations numbered 1 through 6 (Eq. 4.8)
in Fig. 4.9.

(d) Approximate the megahead gradients as follows
Ohv(I+1/2,J) hv(4) — hv(3)

Oz l
Ohy(I+1/2,0) _ hv(5) = hv(1) + hv(6) — hv(2)
Jdy = 21

(d) Finally, develop relation (4.11) for each boundary condition leaving the block
conductivities as unknowns, and solve the resulting overdetermined system of

linear equations by a standard least squares procedure (see Appendix C).

The critical point in this approach is the selection of the set of alternative boundary
conditions. These should be chosen so that they produce flow patterns approximating
the expected major flow direction around the block involved. The exact flow direction
within that block cannot be known unless flow is solved for the entire aquifer; however,

an approximation, with a direction tolerance of +45°, should be accesible.

Demonstration Using Synthetic Aquifers

The proposed approach will be demonstrated using four synthetic aquifers. The
hydraulic conductivity of the first aquifer has a multilognormal distribution with
isotropic covariance. The second aquifer has a bimodal distribution representing, for
example, sand and shale, with an anisotropic indicator covariance. Finally, the third
and fourth aquifers have multilognormal distributions for K with anisotropic covari-
ance and major anisotropy axes oriented, respectively, at 45° and 135° with regard

to the z-axis. For each of the four aquifers the following procedure was followed:

1. Generate the synthetic aquifer at the macroscale using one of the algorithms
developed in chapter 3, by drawing a realization from a random function with
specified statistical properties. Hydraulic conductivities are generated over a

200 by 200 square grid
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9. Solve for heads at the 200 x 200 resolution with prescribed head boundaries
that impose an overall diagonal flow pattern (Fig. 4.10). This solution will be

used as the reference macroscale solution.

3. Scale-up the aquifer to a 20 by 20 square grid, and obtain each of the inter-
face conductivities. Each block thus contains 10 by 10 cells. For each interface
(or for the associated interblock in Fig 4.6) three interface conductivities are
computed: first, the geometric mean of the conductivities within the 1nterblock
second, using the traditional approach on the interblock; and third, using the
proposed approach that provides estimates of the two interface conductivities
required by the finite difference formulation. In the proposed method the in-
terblock conductivities are computed by least-squares after numerically solving
for heads within the area indicated in Fig. 4.9 for four sets of boundary con-
ditions. The four sets of boundary conditions correspond to prescribed head
boundaries values given by tilting planes with gradients parallel to the block

sides and to the block diagonals as shown in Fig. 4.11.

4. Solve the flow problem at the megascale for the three sets of scaled-up inter-
face conductivities using the same field boundary conditions as in the reference

macroscale solution. The megaflows obtained from these solutions are referred

to as the scaled-up values.

5. From the reference solution at the macroscale, compute the megaflows using

equation (4.9). These megaflows are referred to as the reference values.

6. Compare the reference megaflows obtained in step 5 with the three sets of scaled-
up megaflows obtained in step 4. Two comparisons are made with the objective
of determining how well the different scale-up techniques perform. Locally, a
one-to-one comparison is made between the reference values and the scaled-up
ones. Globally, the comparison relates to the total flows through cross-sections

aligned with the block edges (see Fig 4.12)
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20 by 20 blocks
prescribed head
boundaries

Figure 4.10: Field boundary conditions. To check the scale-up technique, flow
is solved for numerically within the aquifer for prescribed head boundary conditions
imposing an overall diagonal flow pattern.
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Figure 4.11: Boundary conditions used in the proposed method. The hy-
draulic conductivity coefficients required by the formulation of finite differences are
estimated by least-square estimation, after solving for heads within the skin surround-
ing the interface as shown in Fig. 4.9
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Figure 4.12: Cross-sections for the global comparison. The flow crossing all
possible horizontal and vertical cross-sections will be used to assess how the scaling-up
methods perform. The arrow indicates the overall flow gradient
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Statistically Isotropic Hydraulic Conductivities

A realization of log-hydraulic conductivities is drawn from a stationary and ergodic
multiGaussian random function model. The random function has zero mean and unit

variance and its variogram is exponential with practical range a equal to 3 /20 of the

aquifer length L:

7(r) =1—exp (—3—Lr—|) (4.14)

The realization extends over a square area discretized in 200 by 200 square cells;
thus the cell size is 1/30 the practical range a. Hydraulic conductivities are obtained
for each cell by straight exponentiation (no linear transform) of the Gaussian values.
These hydraulic conductivities are considered isotropic to flow and constant within
each cell.

The multilognormal realization was generated using the program GSIM3D de-
scribed in Appendix A. It is displayed in Fig. 4.13. The statistics given in this
figure confirm that the cell log-hydraulic conductivities are Gaussian and that the
exponential variogram model (4.14) is reasonably well reproduced.

These conductivities are scaled-up into 20 by 20 square blocks. Each block of
side I = (1/3)a contains 10 by 10 cells. The objective of the exercise is to check
how well the flow patterns featured by the reference simulation at the macroscale are
reproduced after scaling-up.

Flow was solved over the reference 200 by 200 cell aquifer using prescribed head
boundaries displayed in Fig 4.10 and given by the equation:

h(i,j) = (i + j)dz  V(i,7) along the aquifer boundary (4.15)

where dr is the cell size and 7,j are the integer indices used to specify each cell.
These boundary conditions create an overall gradient at a 45° angle with respect to
the aquifer boundaries {see Fig. 4.10). The numerical solution of the groundwater flow
equation was carried out using a finite-differences formulation. A specific program,

custom-made for the cases studied in this dissertation, was written using the strongly
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GAUSSIAN SIMULATION (200 by 200 cells)
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Figure 4.13: A realization of log-hydraulic conductivities (isotropic covari-
ance). Top: Grey-scale map of log-hydraulic conductivities. Center: Q-Q plot of
generated values versus normal quantiles, and statistics of the realization. Bottom:
Model variogram and experimental variogram as inferred from the realization for two
orthogonal directions



CHAPTER 4. BLOCK HYDRAULIC CONDUCTIVITY 89

implicit procedure (SIP) as the iterative linear system solver. The SIP subroutine
was taken from MODFLOW (McDonald and Harbaugh, 1984).

The traditional method, the geometric mean and the proposed method for scaling-
up were each used to obtain interface hydraulic conductivities. A program especially
designed to solve the finite-difference approximation of the groundwater flow equation
without assuming that the principal directions of hydraulic conductivity are aligned
to the cartesian axes was written. The details of its code are given in Appendix B.

Two comparisons were made. The first one looks at flows at a local scale. The
scaled-up megaflows, that is, those obtained after solving the flow equations using
the scaled-up conductivity values, are compared to the reference values, that is, those
obtained from the solution at the macroscale. Ideally, the scaled-up megaflows should
be equal to the reference values. Since, this will never be exactly the case, two
performance indices are used to assess the magnitude of the errors. One is the relative
bias .(RB) defined as the percent ratio of the average difference to the average reference
megaflow, and the other is the relative sum of squared differences (RSSE) equal to

the percent ratio of the average of the squared differences to the reference megaflow

variance:

Yqv —aqv
x > qv

Gy —gqv)?
Y(gv — E{qv})?’

where Gy is the scaled-up megaflow and gy is the reference value; E{-} refers to

RB = 100

RSSE = 100 x

arithmetic average and the summations extend to all block interfaces.

The second comparison is made at the global scale; it consists of checking how
overall flows are reproduced. The total flows across each horizontal and vertical
cross-section are computed. The values obtained after scaling-up are compared to
the values obtained from the macroscale reference simulation.

Figures 4.14 and 4.15 show the comparison of megaflows at the local and global
scales, respectively. The line that corresponds to the exact reproduction of the ref-

erence values is shown. All three scale-up methods are seen to perform equally well.
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The isotropic covariance and relatively small variability of In K makes the geometric
mean of the points within the interblock as good an estimate as the values retrieved
by the other more elaborate procedures involving numerical simulation of flow within

the individual interblocks.

Bimodal Aquifer Hydraulic Conductivities

The second case studied is a sand/shale aquifer. The conductivity values from the
previous case are used as the sand conductivities. Overlaying this realization, a
realization from a binary random function was generated using the program ISIM3D

described in Appendix A. The binary random function is defined as

I(x) = { 1 if z in shale

0 if z in sand

with a mean value p = 0.15, (15% of the aquifer is shale); variance p(1 —p) = 0.0225,
and an exponential variogram with practical range in the z-direction a, = 0.04L =

0.8! and negligible range in the y-direction®,

{ 0.0225 (1 — exp(—3|rz|/az)) if ry =0

v(r) = i

0 ifr, #0

This variogram model corresponds to a distribution of shale with average length
smaller than the block side .

The realization of the binary random function is shown at the top of Fig 4.16.
This realization was superimposed on the realization of Fig 4.13 to obtain the final
aquifer hydraulic conductivity distribution. On the bottom, the reproduction of the
indicator variogram model is shown to be excellent. .

All shales are assigned a constant log-conductivity of -9, which results in an overall
mean log-conductivity of the sand/shale aquifer of —1.35; the overall log-conductivity
variance 1s 17.6.

Figures 4.17 and 4.18 show, respectively, the comparison of local and global scale-

up megaflows to the reference flows. The field boundary conditions are the same as in

3The shales are assigned the width of one cell.
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Figure 4.14: Isotropic lognormal aquifer: Local flow comparison. Scaled-up
megaflows are displayed versus the reference megaflows as obtained by integrating

the reference macroflows
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Figure 4.15: Isotropic lognormal aquifer: Total flow comparison. Total flows
crossing the entire width (or length) of the aquifer have been obtained from the
megascale simulations for the three upscaling techniques. They are displayed ver-
sus the reference megaflows as obtained by integrating the flows from the reference

macroscale simulation
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INDICATOR SIMULATION (200 by 200 cells)
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Figure 4.16: Sand/shale aquifer. Top: Grey-scale map of log-hydraulic conductiv-
ities (shales in black). Bottom: Model indicator variogram and experimental vari-

ogram as inferred from the realization for two orthogonal directions
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the previous case (4.15). The geometric mean does not perform well, the reason being
that a small proportion of very low conductivities suffices to drive such geometric
mean very close to the low shale conductivity. The proposed method performs better
than the traditional one, with a neglegible relative bias and a smaller RSSE.

From Fig. 4.18 we note that the total flows orthogonal to the shale orientations
are systematically underestimated when using the traditional approach. Notice also
in Fig. 4.17 the set of non-zero reference megaflows estimated as zero through the
traditional method. The reason for these two biases stems from the inappropriate
boundary conditions used in the traditional scaling-up method.

As mentioned earlier, the indicator covariance used to generate the geometry of
the shales produce shales with an average length of about 0.8 times the block size
. Thus, a certain number of those shales is larger than the block, i.e., some of the
shales stretch the entire width of an interblock. When flow is simulated within one
interblock completely intercepted by a shale using the the boundary conditions of the
traditional method (see Fig. 4.19), the resulting block value is close to the harmonic
mean of sand and shale weighted by their volume proportions. With 15% shale,
averaging E{ln K} = —9 and 85% sand of E{ln K} = 0, the natural logarithm of
the harmonic average of K is approximately equal to -7, which for flow simulation
purposes is impermeable relative to the sand. As a result, a fraction of the interface
conductivities in the N-S direction are estimated as zero by the traditional approach.
This problem associated with the traditional method was already noticed by Begg et
al. (1989) who gives the example of an hypothetical oil reservoir for which all block
conductivities would be estimated as zero, yet the overall flow crossing the reservoir

1s not zero, see Fig 4.20.

Statistically Anisotropic Aquifer Hydraulic Conductivities

In this third example, a realization of log-conductivities has been drawn from a sta-
tionary and ergodic multiGaussian random function with zero mean, unit variance
and anisotropic exponential variogram with principal directions of anisotropy at 45°

from the cartesian axes. The direction of greatest continuity (z') is 45° from the
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Figure 4.17: Sand/shale aquifer: Local flow comparison. Scaled-up megaflows
are displayed versus the reference megaflows as obtained by integrating the reference

macroflows
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Figure 4.18: Sand/shale aquifer: Total flow comparison. Total flows crossing
the entire width (or length) of the aquifer have been obtained from the megascale
simulations for the three upscaling techniques. They are displayed versus the refer-
ence megaflows as obtained by integrating the flows from the reference macroscale

simulation
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Figure 4.19: Measuring the impact that one shale may have in determining
the block conductivity. In the traditional approach, a shale that intercepts a block
from side to side will reduce the block conductivity next to that of the shale

r-axis, with the practical range axr = 0.075L = 1.51. The direction of least continu-
ity (y') is 45° from the y-axis with practical range ay = 0.015L = 0.31. Thus, the

anisotropy ratio is, 1.5/.3=5. The variogram is

v(r) =1—exp (—\K?%)Z + (%)2)
AR AR
{y'}_{—l/\/ﬁ 1V2 y

The realization of hydraulic log-conductivities was generated using GSIM3D and

with

is shown in Fig 4.21. The mean, variance and variogram are all well reproduced by
the realization.

In the two previous case-studies the axes of anisotropy (z',y’) were aligned with the
cartesian axes (z,y); as a result, the estimates of Ky, obtained using the proposed
method were negligible. In this third,gxa’mple the estimates of Ky, are of the same

order of magnitude as the estimates of Ky .z or Kvyy-
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Prescribed head
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shale
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Figure 4.20: An aquifer in which the traditional approach cannot be used.
This aquifer is clearly artificial but it serves to present a case in which the traditional
method fails. Assuming that the shales are impermeable, the traditional method
assigns zero vertical conductivity to all blocks in the aquifer; however, it is evident
that the total flow crossing vertically the aquifer is non-zero.
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Anisotropic lognormal aquifer.  Top: Grey-scale map of

onductivities. Center: Q-Q plot of generated values versus normal
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Figures 4.22 and 4.23 show the bias introduced in the reproduction of the
megaflows by neglecting the coefficients Kv,,. The performance of the proposed
method is remarkably good; whereas the geometric mean and the traditional scale-up

technique both present a severe bias.

Statistically Anisotropic Aquifer (2nd ex.)

The only difference with the previous case lies in the variogram of the Gaussian
random function. The major axis (') of anisotropy is now 135° from the z-axis.
The practical ranges are now a,r = 0.15L = 3! and ay = 0.03L = 0.6, leaving the

anisotropy ratio unchanged.

o1 () (2))

()10 2
y ]l -1yve -1ve ) Ly

The realization and its statistics are shown in Fig. 4.24. The results of the local

with

and global flow comparisons are displayed in Fig. 4.25 and 4.26 respectively. The
same comments as in the previous example apply except that the bias is reversed,
now both the geometric mean and the traditional approach overestimate the reference

values.

Discussion

The four case-studies presented indicate that the proposed method will perform well
for a variety of hydraulic conductivity spatial distributions. They also show that the
geometric mean has limited use and is restricted to statistically isotropic hydraulic
conductivities with small variability. The two weaknesses of the traditional method

mentioned at the beginning of this section have been demonstrated. First, it should



CHAPTER 4. BLOCK HYDRAULIC CONDUCTIVITY 101

Proposed Method
Relative Bias < 1%
030  RSSE 1%
Scaled-up=Reference
025
Q
2
2 om | o oF
3 o
015 Py
i ;
) 010 - °
o
006 |
o
000 1 1 1 4 1 —
000 005 0.10 AL 020 025 030
Reference

Geometric mean
Relative Bias 7%
-~ RSSE 34%

Scaled-up=Reference ~—

g

&

8

I A
Q

e
-
o
T

Geometric mean Scaling-up
(-3 o
S ]
T T
@

n

000 005 10 015 020 025 030
Reference

g

Traditional Method

Relative Bias  15%
44%

03 r RSSE
Scaled-up=Reference

025

a

3

2 020

S

@

& a1s © ‘{2

] o

c = °

2 ot0

8

=005 |

g

000 005 010 0.15 020 025 030
Reterence

Figure 4.22: Anisotropic lognormal aquifer: Local flow comparison. Scaled-up
megaflows are displayed versus the reference megaflows as obtained by integrating the

reference macroflows
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Figure 4.23: Anisotropic lognormal aquifer: Total flow comparison. Total
flows crossing the entire width (or length) of the aquifer have been obtained from
the megascale simulations for the three upscaling techniques. They are displayed
versus the reference megaflows as obtained by integrating the flows from the reference

macroscale simulation
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GAUSSIAN SIMULATION (200 by 200 cells)
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Figure 4.24: Anisotropic lognormal aquifer (2nd ex.). Top: Grey-scale map
of log-hydraulic conductivities. Center: Q-Q plot of generated values versus normal
quantiles, and statistics of the realization. Bottom: Model variogram and experimen-
tal variogram as inferred from the realization for two orthogonal directions
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Figure 4.25: Anisotropic lognormal aquifer (2nd ex.): Local flow compari-
son. Scaled-up megaflows are displayed versus the reference megaflows as obtained

by integrating the reference macroflows
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Figure 4.26: Anisotropic covariance (2nd ex.): Total flow comparison. Total
flows crossing the entire width (or length) of the aquifer have been obtained from
the megascale simulations for the three upscaling techniques. They are displayed
versus the reference megaflows as obtained by integrating the flows from the reference

macroscale simulation
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not be used if one expects that the head gradient parallel to the block interfaces
contributes to the flow through these interfaces. Second, it should be used only
when the boundary conditions used to retrieve the block conductivity are close to the
boundary conditions that the block actually has when ernbecided in the aquifer.

The ability of the proposed method to obtain estimates of Ky, at the block
interfaces has been demonstrated in the two last examples, in which failing to estimate
these coefficients results in systematic bias.

The delicate point in the proposed method is the selection of the various alter-
native boundary conditions for computing the interface conductivities. In all four
examples presented, the proposed method used prescribed head boundaries applied
to the “skin” boundaries; these boundaries are given by different tilted planes so that
the overall flow across the interblock is forced in different directions (Fig 4.11). The
choice of no-flow boundaries—favored by the traditional approach—would be justified
only for extreme statistical anisotropy of the hydraulic conductivity such as shown

by the aquifer on the right of Fig. 4.7.



Chapter 5

Direct Generation of Block

Conductivities

The motivation for this dissertation is the Monte-Carlo analysis of aquifer response
variables with for final objective the probabilistic assessment of aquifer performance.
Such analysis requires first, the generation of multiple, equally likely, realizations
of the flow parameters conditioned to the data, and second, simulating flow within
the aquifer for each realization. In chapter 3 new algorithms for the generation of
hydraulic conductivity realizations at the scale of the measurements were presented.
These realizations may comprise millions of nodes; however, flow cannot be simu-
lated in such a fine detail. Chapter 4 proposed a new approach for the averaging
of conductivity values, so that the final flow model has a tractable number of block
values. With these elements a Monte-Carlo analysis of aquifer performance can now
be carried out according to the flow chart in Fig. 5.1.

The experience gained from the numerical analyses of the previous chapter indi-
cates that steps @and @ of Fig. 5.1 (in this order) are the most time-consuming.
This experience is based on the analysis of aquifers initially discretized at tens of
thousands of cells, then scaled-up to a few hundred blocks. It is apparent that steps
@and @will always be the most costly even though the order may change for larger

107
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Figure 5.1: Typical Monte-Carlo analysis of aquifer responses. @ Collection
of data and statistical analysis; @ N realizations of hydraulic conductivities at the
macroscale are generated, each with possibly millions of nodes; @ the macroscale
conductivities are scaled-up into interface conductivities; @ the solution of the flow
problem is obtained on each scaled-up realization, and the response variable(s) is
retrieved; (®a statistical analysis is performed on the response variable(s) resulting
in a probability distribution for each response variable.
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discretizations and/or different scale-up ratios. Step @) that is, the flow simulation
could be the most expensive depending on the type of flow modeling, particularly if
complex multiphase flow simulation is required.

This chapter presents two new techniques for reducing the time involved in the
first two steps in Fig 5.1. By combining them, conditional realizations of scaled-up
values are generated directly. Both techniques are extensions of the analytical and
numerical scaling-up techniques presented in the previous chapter and are, therefore,

limited by the same constitutive assumptions.

5.1 The Principle

The basic principle of these two new techniques is depicted by the flow chart in
Fig. 5.2. The idea is to go from the conditioning macroscale data to the megascale
interface conductivities in a single step instead of the two steps required in Fig. 5.1.

The same stochastic approach used to generate macroscale conductivity fields is
used to generate megascale conductivity fields. Unfortunately, unltke macroscale con-
ductivities, there are no megascale conductivity data; therefore, the random function
model associated with the interface conductivities cannot be inferred directly from
data.

If inference of a statistical model for interface conductivities were possible, to-
gether with the inference of the joint distribution of interface conductivities and
macroscale conductivities, a simulation algorithm such as described in section 3.2
(joint simulation of multiGaussian variables) could be employed for the direct gen-
eration of interface conductivities. This direct generation would require knowledge
of the expected values of each variable, the covariances (or variograms) of both, the
variable being simulated, and of the conditioning data; and the cross-covariances (or
cross-variograms) between these variables. The objective of this chapter is to discuss

ways to obtain these covariances and cross-covariances.
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Figure 5.2: Proposed Monte-Carlo analysis of aquifer responses. @© Prior to
the Monte-Carlo analysis itself, the data is collected and analyzed and some realiza-
tions of hydraulic conductivities at the macroscale are generated over a few thousand
nodes, these realizations are scaled-up and the interface conductivities then serve as a
training image to obtain the variograms and cross-variograms required for the direct
simulation of interface conductivities conditioned to the measured values; +Q@ N
realizations of the components of the interface conductivities are generated directly
at the megascale conditioned upon the macroscale data; @ the solution of the flow
problem is obtained on each scaled-up realization, and the response variable(s) is re-
trieved; ®a statistical analysis is performed on the response variable(s) resulting in
a probability distribution for each response variable.
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5.2 Analytical Approach

This section expands the analytical development presented in section 4.2; therefore,
all constitutive assumptions used in that section apply here. This section follows
closely the paper by Rubin and Gémez-Hernandez (1990).

In section 4.2 a closed-form expression for the value of block conductivities was de-
rived. The block conductivity was assumed isotropic to flow and therefore represented

by a scalar (Ky). The expression of Ky is repeated here

, 5. Y2 Lo o
IXVZKg 1+Y’+_Q—+Z(Y];—Y ]x)] (51)

where K, is the geometric average of K over the block, the overbar indicates spatial
average over the block, Y’ is the fluctuation of log-conductivity about its arithmetic
average, j, is the modulus of the arithmetic average of the gradient vector, and j is
the z-component of the fluctuation of the gradient vector about its arithmetic average
(jo) when the z cartesian axis is aligned with j,.

Derivation of expression (5.1) was based on the exhaustive knowledge of the hy-
draulic conductivities over the entire aquifer, without any probabilistic interpretation.
In this section we will model the log-conductivities in (5.1) as a realization of an er-
godic and multiGaussian random function. Then, the block value (Kv) becomes a
random function denoted :f‘;v- (A tilde will be used to distinguish the random vari-
ables from their realizations or their deterministic counterparts.) The objective of
this section is to derive the statistics of this new random function.

The stochastic version of (5.1) relating the random functions gv(x), 17()() and

}x(x) is written

—3
— YI ——— = =
Ky =K, [1+Y + -+ — ; (Y' _y ]'x) (5.2)

Thanks to ergodicity, the average values in the previous expression can be exchanged
by expected values. In this way, K, and j, represent geometric and arithmetic av-
erages computed through the ensemble. Likewise, the fluctuations Y’ and j are

redefined about the expected values of Y and ;



CHAPTER 5. DIRECT GENERATION OF Ky 112

Taking the expected value on both sides of (5.2) results in

B(F,) = K, |1+ B+ S5+ £ (BT - B BGL)

2

oy 1 —
= K, (1+ 5 +j—(a§,,jx—cy,jz)> (5.3)

where o2 is the stationary variance of the log-conductivity random function (}7), oy,
is the stationary cross-variance between the random functions Y and ;'x, and Eyij
is the average of the cross-covariance between Y and 7, when both end points of the

separation vector r = x — x’ sweep the block V

2l 1 ! !
Cy,. = W/V/Vcy,j,(x—x)dmzx

Relation (5.3) shows that E{Rtv} is a function of (1) the log-conductivity mean; (2)
the log-conductivity variance; (3) the size of the block V; and (4) the flow conditions
as expressed through the cross-covariance between Y and ;;

The value of the cross-covariance Cy j, can be obtained as the partial derivative
of the cross-covariance between log-conductivity and hydraulic heads Cy,(r), with
respect to the z-component of the vector r
ICyn

ory

Integral expressions for Cy,, as well as closed-form expressions for specific log-

Cy,.(r) =

conductivity covariances have been derived by Dagan and his co-workers. A thorough
description of how these expressions are obtained is found in (Dagan, 1989, sec. 3.7).
For the sake of completeness, the integral expression for Cy, for statistically isotropic

log-conductivities and steady, uniform flow in unbounded formations, is reproduced

here

Cuatr) = =25 (s [ty (5.4)

Ir|
where the dot indicates inner product, | - | denotes modulus, N is the space number

of dimensions, and Cy(r') is the isotropic log-conductivity covariance as a function
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only of the modulus of the separation vector (r' = |r'|). Substituting the expression
of Cy in (5.4) and taking the derivative of Cy, with respect to . after aligning the
r-axis with the vector j, yields a closed-form expression for Cy,j,-

The covariance of EV is equal to the expected value of I?’V(X)E'V(x + r), with
IA("V = Rv - E{EV} An expansion of f{”v can be obtained from (5.2) and (5.3).
All of the terms but one in this expansion yield terms of order larger than two when
computing the covariance. Thus, we limit the expansion of %% ', to the first-order

terms,

K = K,Y". (5.5)

Due to the resulting linear relationship between Y’ and K’ v, the block conduc-

tivity covariance is straightforwardly written as

CKV(r) = I{gz—C'-Y(V7 V+1')a (56)

where V,r is the translation of block V by a vector r, and -5Y(V, V,r) is the average
log-conductivity covariance when one end point of the separation vector sweeps block

V and the other sweeps block Vir.

Vel 1 ’ ’
Cy(ViVir) = -ﬁ/‘,/V“C'y(x,x)dxdx

Values for Cy(V, Vir) for r = 0 have been tabulated, for example, by Journel and
Huijbregts (1978). Values for Cy(V, Vy,) for any arbitrary vector r can be computed
using the Gauss-Cauchy algorithm (see Journel and Huijbregts, 1978).

From (5.6), Ck, is found to be linearly proportional to the square of K, and
inversely proportional to the square of the volume V. '

Similarly, the cross-covariance between Rv and Y is obtained as E{IA{"V?’}, a

second-order expansion of which is

Cxyy(V,r) = K,Cy(V,r) (5.7)

where Cr, y(V,r) represents the cross-covariance between point log-conductivity and

block conductivity when the point is separated from the center of the block V by a
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vector r. The value C(V,r) is the average of the log-conductivity covariance when
one end point of the vector sweeps volume V and the other remains fixed at a distance

r from the block center (x).

— 1
Cy(V,r) = V/V Cy(x',x +r)dx’

Validation. The previous analytical values for the expected value of ;{{V and its
variance were validated by a Monte-Carlo technique in two dimensions. Since ex-
pressions (5.3) and (5.6) were obtained by a second-order perturbation approach, the
objective of that validation was to determine the corresponding level of error.
Monte-Carlo realizations of multi-lognormal hydraulic conductivities with an ex-

pected value of In K equal to —4.0, different variances, and exponential isotropic

variogram!

w(F) = o} (1 — exp(~22))

were generated for an area 2.2a by 2.2a divided into cells 0.03a by 0.03a. The bound-
ary conditions imposed were those shown in Fig. 2.3, that is, no flow along the bound-
aries parallel to the z (horizontal) axis, and prescribed head in each of the boundaries
parallel to the y (vertical) axis. A sensitivity analysis was carried out to verify that
the final results for Ky were independent of both the magnitude of the head gradient
and the aquifer size. The flow simulator used in this case is the USGS two-dimensional
code by Trescott et al. (1976).

Since the process is isotropic, the traditional method for scaling-up described in
the previous chapter could be used instead of the more expensive method proposed
in this dissertation. Blocks of different sizes were delineated around the center of the
aquifer and their block conductivities computed. The mean and variance of the block
conductivities were obtained by averaging over 200 realizations.

Figures 5.3 and 5.4 compare the theoretical values and numerical results of the

ratio E{E‘,}/I\'g (see Eq. (5.3)) for various block side lengths and variances of point

1of practical range a
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conductivity o%. Note that although the approach is formally limited to o2 < Vl, it
appears robust for much higher 0% as long as the averaging volume V' is sufficiently
large, because then one gets closer to ergodicity. For small blocks, the numerical

results indicate that the expected value of EV could be almost three times as large

as the geometric average.

E{K\} 2.0
K, 16713 -
1.2 \M Oy .
o numerical results
0.8 == theoretical results
0.4
0.0 +——————t+1T1
0 1 2

Block sidelength / practical range

— 2.0
E{Kv} g
Kg 1.6 2
(e} Y= 2
1.2 g numerical results
0.8 == theoretical results
0.4
0.0 v r r r v v v
0 1 2

Block sidelength / practical range

Figure 5.3: Expected value of the block conductivity for different variances
of point conductivity. The theoretical values were computed using Eq. (5.3);the
numerical ones correspond to the ensemble average of 200 numerical simulations

The theoretical variance -C-'-KV(V,V) (see Eq. 5.6) for various block side lengths
and o} are compared with numerical results in Fig. 3.5 and 5.6. For o = 1 and

0% = 2, good agreement is obtained between the simulated and theoretical variances
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E{Ry} 3.0
K, 261 >
2 2 - o] (0] Y= 3
B o numerical results
1.8 \\m = theoretical results
1.4 1 \\9
1.0 FH—————————t——i—

0 1 2
Block sidelength / practical range

E(Ky} 3017
Kg 2.6 2
F Ov= 4
2.2 ] \ uYnumen'caI resufts
1.8 == theoretical results
a \\\q
1.0
0 1 2

Block sidelength / practical range

Figure 5.4: Expected value of the block conduc‘tivity for different variances
of point conductivity. The theoretical values were computed using Eq. (5.3);the
numerical ones correspond to the ensemble average of 200 numerical simulations
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for practically all block sizes. For 0% larger than 2, a good agreement between

theoretical and numerical results is obtained for blocks with side lengths larger than

0.6a, again because of ergodicity.

var(Ky) 1.0

2 ]
Kon 0.8 J \ 5
1 4] o< - 1
0.6 \ Y )
| \ o numerical results
0.4 U ~ theoretical results
0.2 \"*q\?_j
0.0 +—+—+——trrt—t+r1
0] 1 2

Block sidelength / practical range

Var(r(;) 1.0

2 ]
KZOY 0-8 j - 2
p [s+] o =2
0-6 . nYnumerical results
0.4 4 x =~ theoretical resuits
0.2
0.0- —
0 1 2

Block sidelength / practical range

Figure 5.5: Variance of the block conductivity for different variances of
point conductivity. The theoretical variances were computed using Eq. (5.6);the
numerical ones correspond to the ensemble average of 200 numerical simulations

The sequential simulation algorithm for the generation of two jointly multiGaussian

random functions can now be used, since the necessary stochastic models are fully

specified:
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Figure 5.6: Variance of the block conductivity for different variances of
point conductivity. The theoretical variances were computed using Eq. (5.6);the
numerical ones correspond to the ensemble average of 200 numerical simulations
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e The random function Y is multiGaussian with known mean and covariance

e Because of the small variability of }7, K v can be seen as a quasi-linear com-

bination of Y (see (5.2)). This quasi-linearity makes ‘IEV multiGaussian as

well.
e The expected value of RV is given by (5.3)
e The covariance of EV is given by (5.6)

e The cross-covariance between ¥ and K v is given by (5.7)

Given these statistics, the normal system of linear equations (3.4) can be solved, and
all required conditional pdfs can be derived. The sequential simulation algorithm can
then be applied for the generation of realizations of EV conditioned on the Y data.
Note that although the previous numerical validation was carried out with square
blocks, the derivation only required the z-axis to be aligned with the average gradient

vector without any implicit assumption on the block shape (as long as it remains

constant).

Discussion

A Gaussian-related analytical approach for the joint stochastic characterization of
Ky and Y has been presented. This technique is limited to statistically isotropic
media yielding block conductivities which are isotropic to flow. If the assumptions
underlying the development of that approach are met, the results are very power-
ful in the sense that they provide closed-form expressions for the expected values,
covariances and cross-covariances of block conductivities for blocks of any constant
shape. Once expected values, covariances and cross-covariances are known, a multi-
variate conditional sequential simulation could be used for the direct generation of

block conductivities as input to a numerical simulator.
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5.3 Numerical Approach

A numerical technique for the inference of the statistics of the interface conductivities
is now proposed in order to relax the assumptions required by the previous analytical
development. The numerical scaling-up technique presented in the previous chapter
is used as the basis for the following development.

The basic idea is to create a small synthetic training image of interface conductivi-
ties by scaling-up a simulated map of macroscale conductivities. The expected values,
covariances and cross-covariances of interface conductivities are inferred directly from
that training image.

The only requirement for the synthetic training image is that it should be large
enough (in size and number of nodes) so that interface conductivity covariances can
be inferred accurately. According to Journel and Huijbregts (1978) the size of this
training image should be at least twice as large as the practical range of the interface
conductivity covariance in the direction considered. A good estimate of the practical
range is given by a+ [, where a is the practical range of the macroscale conductivities
and [ is the size of the megascale blocks. Note that the training image size is usually
much smaller than the aquifer size.

The numerical approach, as presented in this section, is limited to the stochastic
characterization of interface conductivities for square blocks of a single size. The
extension of this approach to rectangular blocks of a single size is straightforward.
However, the extension of this technique to a mixture of rectangular blocks of different
size would be tedious, if not unwieldy.

The stochastic characterization of interface conductivities consists of the following
steps. First, generate a conditional simulation of macroscale conductivities over an
area at least as large as twice the practical range of the macroscale conductivities plus
the block side in each direction and containing at least a few hundred cells (Fig. 5.7a).
Second. use the method for scaling-up proposed in the previous chapter (or any other
method that produces of interface conductivity values) to obtain estimates of the
conductivity coefficients at the block interfaces (Fig 5.7b). And third, use both the

map of interface conductivities and the map of macroscale conductivities to infer
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numerically the expected values, the covariances of the interface conductivity and the

cross-covariances between interface conductivities and macroscale conductivities.

(a) — Numerical Upscaling —g (b)

[

Macroscale conductivities Interface conductivity estimates
(Kxx and Kxy) or (Kxy and Kyy)

Figure 5.7: Inferring the statistical model for interface conductivities. A
realization of macroscale conductivities is numerically scaled-up to obtain estimates
of the interface conductivity coeficients. These estimates are used as a training image
to infer a statistical model for their spatial variability.

An Example

The step-by-step procedure for stochastic characterization of interface conductivities
is now presented through an example. Due to personal preference, these stochastic
characterizations will be carried out in terms of variograms and cross-variograms
instead of covariances and cross-covariances, with the understanding that for weak
second-order stationary stochastic processes with finite variance, the relation between

variograms and covariances and between cross-variograms and cross-covariances 1s

unique and given by

12(r) = o} =Ca(r)
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wz(r) = oyz— %(CYZ(‘H‘) + Cyz(~r))

where ¢% is the stationary variance of Z, and 0%, is the stationary cross-variance
between Y and Z. We will further assume that the cross-covariance Cy z is symmetric
about r, i.e., Cyz(+r) = Cyz(-r).

Consider that conductivity data has been collected from an aquifer and the log-
conductivity is modeled by a two-dimensional multiGaussian second-order stationary
and ergodic random function model ()7) The statistics of Y are: mean my = 0, vari-
ance 02 = 2.0 and a variogram with anisotropic nugget effect (0 in the z-direction
and 0.4 in the y-direction) plus an anisotropic spherical component with range in the
z-direction a; = 3! and range in the y-direction a, = 0.3], where [ is the size of the

megascale block. The analytical expression of this variogram is

wn-aum G+ ) v (G )

where Sph(r) is defined as

Sph(r) = { slrl = 3Irf’, i r] <1

1, otherwise

k]

and € is a very small quantity so that Sph(r/e)=1for all ry > €.

The aquifer is a square of size 20! by 20I. Each block contains 10 by 10 cells; thus
the aquifer contains 200 by 200 macroscale cells. There are 1444 block interfaces at
which the megaflows are computed and there are 38 cross-sections at which the total
crossing flow is obtained.

An unconditional realization of ¥ was generated over an area of 200 by 200 cells
using GSIM3D (Fig. 5.8). The minimum area recommended by Journel and Huijbregts
(1978) for inferring reliable estimates of the variograms is 2(a+! ) which, for the largest
practical range of the Y covariance, is equal to 6/. The actual realization is 20! by
20! which is more than 3 times the recommended value. Also, after scaling-up, this
area will contain almost 1500 hundred interface conductivities evenly distributed over

that area. Therefore, both in terms of size and number of points, stable estimates of
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GAUSSIAN SIMULATION (200 by 200 cells)

N(0,1) Quantiles
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. Quantiles of minimum = -3.771
2 K N 2  Simulated Values lower quartiie = -0.648
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Figure 5.8: Macroscale unconditional realization of standardized

log-conductivities used to build a training image of interface conductiv-
ities. Top: Grayscale map of the simulation, Center: quantile-quantile plot of the
simulated values versus normal deviates, Bottom: reproduction of the input vari-
ograms
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the variograms and cross-variograms should be obtained from this training image. If
this is not the case, more training images can be generated and used.

The scaling-up technique proposed earlier in this dissertation (section 4.3) was
applied to the realization in Fig. 5.8. The scaling-up was carried out with four dif-
ferent discretizations, each offset by half a block from the other. That is, if the first
discretization has origin at (0,0), the other three discretizations have their origin at
(0,0.51), (0.51,0.5!) and (0.5,0) respectively. In this way, the variograms of the in-
terface conductivities can be inferred for a distance as small as half a block. During
the scale-up process it was observed that the Ky, coefficients were less than 1% the
diagonal terms and were thus discarded. The reason for the small magnitude of these
terms is the alignment of the major anisotropy axes of the Y covariance with the
cartesian axes.

After discarding the Ky,,, coefficients, a 38 by 38 training image of the estimates
of the interface conductivities Ky ., (Fig. 5.9) and Kv,, (Fig. 5.10) is obtained.

The first analysis carried out on these megascale training images was to check
their univariate distributions. Figures 5.11 and 5.12 give normal and lognormal prob-
ability plots of Ky, and Ky,,, which show that the interface conductivities are
approximately log-normally distributed.

The lognormal character of the interface conductivities suggests that a multi-
Gaussian model may be appropriate for the joint behavior of the logarithm of macroscale
and megascale conductivities. Thus, the co-simulation technique presented in chap-
ter 3 can be applied to the co-simulation of the interface log-conductivities )7‘,’” and
i}V,yy conditioned upon the macroscale log-conductivities Y.

The statistics required for such co-simulation are: the expected values and var-
iogram of 1?, 17‘,’”, and ?V,yy, the cross-variograms between Y and f’v'u, Y and
Yy, and between Yy, and Y, . These statistics were inferred directly from the
three training images of Fig. 5.8 to 5.10. The resulting experimental variograms along
with the positive definite models used to fit them are displayed in Fig. 5.13 and 5.14.

Now that step @of Fig. 5.2 is completed. we can proceed to the direct generation

of conditional simulations of interface conductivities.
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Log Kxx

Figure 5.9: Training image for the horizontal interface log-conductivities.
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Figure 5.10: Training image for the vertical interface log-conductivities.
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Normal probability plot of Kxx

8
8 g

0.9 0@&

Percent
2L L .3B823888 8

R S I I N B
000 200 400 600 800 1000 1200 1400 16.00

K
XX

Log normal probabiliiy plot of Kxx

99.99

©
©
©

8

Percent
4oL 388 838 B8R

Figure 5.11: Normal and lognormal probability plots of the interface con-
ductivities Ky .
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Figure 5.14: Input parameters for the co-simulation of interface conduc-
tivities. The expected values, variances and cross-variances, and variograms and
cross-variograms for the three random functions involved in the co-simulation of Yy .,

and Yy, conditioned upon Y values are given.
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Validation

The previous stochastic modeling of interface conductivities is validated by performing
the Monte-Carlo analysis described in Fig 5.2, and comparing the results to those
obtained with the analysis carried out using the approach described in Fig 5.1, that
is, without shortcutting the scaling-up of each block.

Realizations of interface conductivities are generated for an aquifer with 11 by 11
blocks, each block containing 10 by 10 cells. A total of 42 macroscale conditioning

data were considered. The location of these data is shown in Fig 5.15 with their

values given in Table 5.1.

z/l y/l WK |/l y/l InK

0.5 05 2629105 0.5 -0.617
0.5 1.0 0.676|10.5 1.0 0.861
0.5 1.5 -0477 105 1.5 0.237
0.5 20 0.066|10.5 2.0 -0.520
0.5 25 -0.22910.5 2.5 -0.679
0.5 3.0 0375105 3.0 -0.390
05 3.5 0.827(105 3.5 0.605
0.5 4.0 -0.638|10.5 4.0 -3.291
0.5 4.5 0.581 105 4.5 -1.560
0.5 50 -0.969|10.5 5.0 0.525
0.5 5.5 0.250(10.5 5.5 2.128
0.5 6.0 0.745]10.5 6.0 -1.534
0.5 6.5 -2.697 10,5 6.5 -2.135
05 7.0 2459105 7.0 1.192
0.5 7.5 -0.882}105 7.5 -2.921
0.5 80 -0.376|10.5 8.0 3.033
0.5 85 -2.015]10.5 85 1315
0.5 9.0 0.041 105 9.0 -1.896
0.5 95 0996|105 9.5 -1.477
0.5 10.0 1.281 {10.5 10.0 0.752
0.5 10.5 3.016|10.5 10.5 -1.813

Table 5.1: Conditioning data for Monte-Carlo analysis

Three sets of 200 conditional simulations of conductivities each were generated.
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Figure 5.15: Conditioning data. The location of the 42 conditioning data used for
the Monte-Carlo analysis are shown. The size of the tiny black square representing
the datum is at scale with respect to the block size
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The first set corresponds to log-conductivity realizations generated at the macroscale
over a 110 by 110 cell discretization using GSIM3D. The previous realizations are
scaled-up, using the method proposed in section 4.3, to obtain interface conductiv-
ities over an 11 by 11 block discretization: this constitutes the second set of 200
simulations. The third set corresponds to interface conductivities generated directly
using GCOSIM3D and the statistical model previously inferred from the training im-
ages.

All three sets of 200 conditional simulations were subjected to flow modeling
using a finite-difference method with prescribed head boundaries on the perimeter as
described in Fig 4.10. These boundary conditions force an overall flow at a 45° from
the aquifer boundaries. The total flows crossing the 10 vertical cross-sections and the
10 horizontal cross-sections aligned with the block interfaces were computed for each
of the 200 realizations.

From each set of 200 realizations a frequency distribution of the total flow cross-
ing the 20 cross-sections is obtained. This frequency distribution is conditional to
the log-conductivity data and to the statistical description of the joint variability
of macro- and megascale conductivities. The frequency distribution obtained from
direct solution of flow over the first set of 200 macroscale realizations is considered
as the reference. The very goal of this dissertation is to reproduce this reference fre-
quency distribution, yet without the expensive process of scaling-up or solving flow
at the macroscale.

Figures 5.16 and 5.17 show a comparison of these three sets of frequency distribu-
tions. The reference cumulative frequency distribution is the bold line, the distribu-
tion obtained with the full Monte-Carlo approach of Fig. 5.1 is the dashed line, and
that obtained with the proposed faster Monte-Carlo approach (Fig. 5.2) is the dotted
line. The dashed line and the bold line are difficult to distinguish; indeed, they were
computed using exactly the same macroscale conductivity realizations, hence any dis-
crepancy is only due to inaccuracies in the scale-up process. From a practical point
of view, the dashed line is the best one could hope to have, since actual reference

values are never available.

The proposed method (dotted line) does not reproduce the reference values as well
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as the traditional approach (dashed line); however, given the tremendous savings in
time, that reproduction is considered satisfactory. Best reproduction of the reference
frequency distribution by the proposed method is within the inter-quartile range. In
particular, median flows are well reproduced for most cross-sections. Outside this
inter-quartile range, the proposed method produces a larger spread of the horizontal
flows, i.e., those flows parallel to the major direction of continuity. The total flows
orthogonal to the major direction of continuity are better reproduced although with
a small bias.

The loss of accuracy in reproducing the different reference pdfs is overcome by
the fact that the proposed Monte-Carlo analysis using direct simulation of interface
conductivities is computationally feasible. Some execution times for each of the steps
in Fig. 5.1 and Fig 5.2 and for the specific configuration considered are given in Ta-
ble 5.2. According to these CPU times, the technique proposed in this dissertation,
outperforms the more traditional approach. The traditional approach involves the
generation of macroscale log-conductivities (9,000 s), computation of the interface
conductivities for the block model which involves a small flow simulation for each
interface (60,000 s), and simulation at the megascale (80 s) for a total of 69,080 s.
On the other hand, the technique proposed requires the direct simulation of interface
conductivities (460 s) and the simulation of flow at the megascale (80 s), for a total
of 540 s. Therefore, once the block conductivities have been statistically character-
ized the method proposed in this dissertation can analyze 200 realizations when the
traditional approach could analyze only 1.6.

Clayton Deutsch, in a personal communication, points out that the approach taken
in this dissertation would be about 20 times faster than a power average approach ,
(Journel et al., 1986; Deutsch, 1987, 1989; see also page 27).

The CPU time required for the inference of the stochastic models for interface
log-conductivities was 1500 s, 200 of which were required for the generation of the
200 by 200 macroscale training image (Fig 5.8). and the remaining 1300 s for the
scale-up of the interface conductivities. Additional time was required for the analysis
and modeling of the variograms and cross-variograms. Since a manual analysis was

preferred to an automatic one, this time is difficult to quantify.
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Figure 5.16: Monte-Carlo analysis of horizontal flows (cont.).
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Figure 5.17: Monte-Carlo analysis of vertical flows (cont.).
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Step CPU (in seconds)
Generation of 200 110 by 9,000
110" cell realizations using
GSIM3D
Scaling-up each one of the 60,000

24,000 block interfaces us-
ing the proposed method of
Chapter 4

Direct generation of 200 re- 460
alizations of interface con-
ductivities on 11 by 11
blocks using GCOSIM3D
Simulation of flow on 200 11 80
by 11 block discrétization

Table 5.2: Apollo DN10000 CPU times required by the various steps of the
Monte-Carlo analyses (200 realizations)

These estimates could change for other discretizations and scale-up ratios.

Discussion

A numerical technique for inference of a stochastic model for interface conductivities
has been proposed. This numerical technique is not limited by the magnitude of the
spatial variability of hydraulic conductivity as is the analytical technique presented
in section 5.2.

An example has been given of how the numerical analysis would proceed start-
ing from the simulation of macroscale conductivities and ending in a Monte-Carlo
analysis of aquifer responses. This analysis has been limited to an aquifer discretized
into square blocks of a single size for which the coefficients Ky, are negligible. Ac-
counting for these limitations, the numerical method proposed in this dissertation
is clearly faster than other more traditional methods. The price to pay for such in-

crease in speed appears to be a minor loss of accuracy in the reproduction of the
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frequency distributions of the response variables. Further research is required to de-
termine whether this loss of accuracy could be reduced further by carrying out a more
extensive analysis of the synthetic training images.

The proposed technique can be readily extended to rectangular blocks of a single
size. The extension to rectangular blocks of different sizes although theoretically
possible would be tedious and unwieldy: at the block scale, there will be as many
random functions as possible pairs of blocks of different sizes sharing an interface.
Inference of the joint behavior of all these random functions will quickly become
unfeasible for more than two or three different block sizes.

The limitation to blocks of a single size is serious for practical applications. Note
though, that this limitation is shared by all analytical methods. The proposed method
lacks flexibility in the choice of the block shapes to better account for the geometry
of both the flow units and the flow patterns: flow units of a very irregular shape are
difficult to discretize with blocks of a single size; localized flow patterns with high
concentration of streamlines (as is the case of flow near a well) are better reproduced
using a higher density of smaller blocks where the concentration of streamlines occurs.

The extension of the proposed technique to blocks of a single size with non-
negligible Ky, coefficients would require further research. As a first approximation,
the coefficients Kv ., could be treated as another random function requiring its own
stochastic modeling. This approximation may pose problems because the relation
between the different coefficients Ky ., Kv,r, and Ky, is likely to be stronger than
the one provided by a measure of mere linear correlation. Reproduction of the differ-
ent variograms and cross-variograms mays not be enough to generate plausible sets

of these three coefficients.



Chapter 6

Conclusions

The objective of this dissertation is to provide tools that allow performing Monte-
Carlo analyses of aquifer response variables within a reasonable CPU-time. As de-
scribed in the introduction (see Fig. 1.1, repeated here as Fig. 6.1) the ideal Monte-
Carlo analysis, in which flow is repeatedly simulated at the scale of the measurements
is presently unattainable. The first improvement consists of the development of very
fast techniques for the generation of hydraulic conductivity fields at the scale of the
measurements and conditioned to the data. The first part of this dissertation (chap-
ter 3) is devoted to this objective. The second improvement consists of developing a
technique for the change of scale from the scale of the measurements into a scale that
can be easily handled by current numerical flow simulators. The second part of this
dissertation (chapter 4) is devoted to this objective. Then the approach represented
by the second row in Fig. 6.1 becomes feasible. Finally, a third improvement consists
of merging the fast generation of hydraulic conductivity fields with the change of
scale techniques into the direct generation of hydraulic conductivities at the scale of
the numerical simulator gridblocks. The third part of this dissertation (chapter 5)
develops this latter algorithm.

Regarding techniques for the fast generation of hydraulic conductivity fields, the

141



CHAPTER 6. CONCLUSIONS 142

1a 1b
w© |,
o |,
..
» 2a 2b___ 2e
o )
Q. .
ol . .
3 .
= oot

Figure 6.1: Three Monte-Carlo approaches. 1) An ideal approach: fields of
hydraulic conductivities are generated at the measurement scale (1b) conditioned
to the data (1a), groundwater flow is simulated at that scale (1c) and a frequency
distribution of the response variables is built (1d). 2) A two-steps approach: fields
of hydraulic conductivities are generated at the measurement scale (2b) conditioned
to the data (2a), hydraulic conductivity values are scaled-up so that the number
of resulting gridblocks can be easily handled by current numerical simulators (2c¢),
groundwater flow is simulated at the gridblock scale (2d) and a frequency distribution
of the response variable is built (2). 3) Proposed approach: fields of hydraulic
conductivities are directly generated at the gridblock scale (3b) conditioned to data
measured at a smaller scale (3a), groundwater flow is simulated at the gridblock scale
(3c) and a frequency distribution of the response variable is built (3d)
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sequential simulation technique proposed by Journel (1985), is studied in depth re-
sulting in the first full implementation of the sequential simulation algorithm for the
generation of both Gaussian and non-Gaussian random fields with direct conditioning
to local data. This algorithm is also applied for the first time to the co-simulation
of several variables with a joint Gaussian multivariate distribution. Two important
implementation decisions are taken, one regarding the search procedure (p. 54) the
other regarding the computation of the covariances (p. 55). The solutions adopted
minimize CPU time at the cost of increased memory requirements. Another im-
portant implementation decision relates whether ordinary kriging or simple kriging
should be used in the modeling of the conditional probability distributions (p. 56).

Regarding the scale-up of conductivities, two new techniques are proposed and val-
idated, one is analytical and the other is numerical. The analytical technique results
in a closed-form expression for the value of the megascale conductivity (Eq. 4.6).
The two most important requirements needed to obtain this analytical expression
are: i) small variability of log-conductivity (variance of In K below 2) and ii) the
block conductivities must be isotropic to flow, so that the block conductivity tensor
is reduced to a scalar. An important consequence of Eq. (4.6) is that the block con-
ductivity is dependent on the boundary conditions existing at the sides of the block.
The numerical technique is more flexible than the analytical one since it is not lim-
ited by the variability of log-conductivity nor is there a requirement that the block
values be isotropic. The novel aspects of the proposed technique are: i) the use of a
“skin” surrounding the interface whose conductivity is sought (see Fig. 4.9), and ii)
the solution of flow within this “skin” for a set of boundary conditions that drive the
groundwater flow in several directions within the “skin” (see Fig. 4.11). These two
innovations attempt to reduce the impact of using unrealistic bouﬁdary conditions
on the calculation of the interface conductivity values (see discussion in p. 78 and
following).

Finally, sequential stochastic simulation and the proposed scale-up techniques are
combined in a single step allowing for the direct generation of interface conductivities

conditioned on data measured at a smaller scale. This combination requires knowledge
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of the expected value and covariance of the megascale conductivities and of the cross-
covariances between microscale and megascale conductivities. Two techniques are
proposed to obtain these statistics, again one is analytical and the other is numerical.
The analytical technique develops the stochastic version of (4.6) to reach closed-form
expressions for the above mentioned statistics (Eq. 5.3, 5.6 and 5.7). It is limited
by the same assumptions as required to obtain (4.6). The numerical technique is
based on the generation of a training image (Fig. 5.7): a realization—much smaller
than the aquifer size—of macroscale conductivities is numerically scaled-up to obtain
estimates of the interface conductivities. These estimates along with the macroscale
realization are used as training images to infer numerically a statistical model for
their joint spatial variability. The single major limitation of this numerical approach
is that it can handle only blocks of a single size.

All algorithms proposed were tested on synthetic data sets with specific statistical
properties, and all demonstrated positive results. The proposed Monte-Carlo analysis
(third row in Fig. 6.1) of total flow crossing an aquifer is 125 times faster (CPU-wise)
than a similar Monte-Carlo analysis carried out with the two-steps approach (second
row in Fig. 6.1). This large gain of computer time is obtained at the cost of minor

loss of accuracy.

6.1 Suggestions for Further Research

Simulation of Random Fields

Sequential simulation appears to be a very efficient algorithm for the generation of
conditional realizations of random fields, whether Gaussian or not, whether single
variable or with multiple dependent variables.

Some important implementation solutions were proposed in this dissertation.

However, the following issues still deserve further research:

e Relocation of the conditioning data values. Presently, the conditioning data are

relocated to the nearest grid nodes prior to the beginning of the simulation. This
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relocation has a minimum impact on the final realization if the average distance
between data points is large compared to the grid node spacing. However, when
simulating directly block values at a scale larger than the data, the data spacing
could be small with respect to the block size; moreover, there could be several
data within a grid block. In such a case, it would be necessary to account for
all the conditioning data at their exact original locations. This is not a problem

in theory, but could result in less efficient coding.

e Search. More efficient search algorithms should be considered. The extent of
the search neighborhood should decrease gradually as the sequential simulation
progresses, being largest in the beginning when only a few nodes have been
simulated and much smaller at the end. Similarly, the procedure for selecting
both original data and previously simulated values within the neighborhood

could vary as the sequential simulation progresses.

e Linear system solvers. The kriging systems of linear equations are presently
solved using a generic lower-upper decomposition of the matrix of coeflicients.
Other solvers, such as Cholesky decomposition or Gauss elimination without
pivoting, should be considered and some may be faster. For instance, in those
cases where simple kriging is used to obtain the conditional probability distri-
bution, the kriging matrix is symmetric and positive definite, thus a Cholesky
decomposition could be used. Another case concerns the generation of realiza-
tions of non-Gaussian random fields using several threshold values. This case
requires the solution, at each simulated node, of as many systems of linear
equations as there are different indicator variables. If the data configuration for
each threshold value is the same, and since the indicator covariances do not, in
general, vary drastically from one threshold to the next, one can expect that
the solutions of the systems of equations will not be very different from one
threshold to the next. Consequently, one could derive a solving algorithm in
which the solution for the first threshold is obtained using a direct method and
the solutions for the remaining thresholds are obtained by an iterative method

using for initial guess the solufi‘on for the previous threshold.
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e Drawing from the conditional probability distribution. Presently, the condi-
tional probability distribution is built first and then a random value is drawn
from it. In the non-Gaussian case, one might draw first a random number be-
tween 0 and 1 and then start solving the systems of indicator kriging until two
consecutive thresholds provide estimates of the conditional probability distri-
bution that are above and below that random value. The simulated value for

that node will be in the class delimited by those two thresholds.

Scaling-up of conductivities

The analytical results should be extended to the case of statistically anisotropic point
conductivities with arbitrary orientation of the major direction of continuity. Simi-
larly, the case of point conductivity anisotropic to flow should be considered.

The present restriction for the variance of log-conductivity to be lesser than two
should be relaxed.

The numerical technique, as proposed, should work for any block size and any
level of variability of the point conductivities as long as the boundary conditions used
to determine the flows crossing the interfaces are similar to the boundary conditions
prevailing in the actual aquifer. Presently, only constant head boundaries along the
four sides of a “skin” surrounding the interface are considered; in some instances,
these boundary conditions may be inadequate and alternatives should be proposed.
For instance, a block extracted from a perfectly stratified aquifer subject to flow
orthogonal to the direction of stratification should be modeled with no flow boundaries
on the faces parallel to the flow direction. _

The problem of which boundary conditions to use would disappear if a “skin” as
large as the entire aquifer could be used. Since this is numerically unrealistic, further
research should be carried in order to determine how large the skin should be so that
the resulting estimates of the interface conductivity tensors are close to the estimates

that would have been obtained, had the entire aquifer been used as skin.
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Conversely, one could attempt to identify the most appropriate boundary condi-
tions that should be applied to a particular skin as a function of the skin size relative

to the point conductivity correlation length and aquifer size.

Stochastic Modeling of Block Conductivities

The analytical approach has been developed for multiGaussian, isotropic, point log-
conductivities with small variability; it provides closed-form expressions for all the
auto- and cross-covariances required for the direct generation of block conductivities.
Extension of this work to statistically anisotropic point conductivities, possibly also
anisotropic to flow, and with large variances requires further research. An even more
challenging problem would be the extension to non-Gaussian point log-conductivities,
such as bimodal distributions (sand/shale, pay/non-pay).

The numerical approach is not limited by previous restrictions; however, in practice—
although not in theory—it is limited to blocks of a single size. More research is needed
to extend these results to blocks of different sizes. Blocks of different sizes are needed
for a better match of both the geometry of the flow units and that of the flow pat-
terns (as is required for better approximation of converging flow). Ideally, closed-form
expressions similar to those obtained in the analytical approach should be pursued.

The problem of direct generation of realizations including the coefficient Kv zy
was not addressed in this dissertation. In the example given in section 5.3, these
coefficients, as obtained from the training image, happen to be negligible with respect
to both Ky, and Ky,,; as a result, only the joint characterization of the spatial
variability of Ky and Kv,y, was required. As a first approximation the coefficients
Ky 4y could be treated as another random function to be jointly characterized with the
other two random variables. However, the relation of the three coefficients Kvzz, Kv,yy
and Ky, is likely to be stronger than the one provided by the linear correlation of a

cross-variogram.






Appendix B

Finite Differences Formulation Of
A Groundwater Flow Problem

With Full-Tensor Conductivities

This Appendix presents the finite-difference formulation of the two-dimensional
groundwater flow equation for the generic case in which the principal components

of the hydraulic conductivity tensor are not aligned with the cartesian axes. No

external sinks or sources are considered.

B.1 Numerical formulation

The partial differential equation governing flow in two dimensions is written as

0 (. Oh . Oh o (., O . Oh\ _
oz (A”E—E_ + I‘Iyay) + dy (Aryaz + By 8y) =0

where r and y are the cartesian coordinates, h is the hydraulic head and K, Ky, Kyy

are the components of the hydraulic conductivity tensor.
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If this equation is discretized on the grid shown in Fig. B.1 using central differences

the following equation results

-1,J-1] LJ-1 +1,J
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Figure B.1: Finite differences discretization. Nine point scheme
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The partial derivatives of the hydraulic head are approximated using central dif-

ferences as follows
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oh _ hig—hi-14

or I-1/2.d Az

oh 1 (kg —hiag | hragor —hioiga
dy 1-1/2,J T2 ( 24y 2Ay
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oz 1J41/2 2 2Az 2Azx
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1, 141/2 Ay
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Substitution in B.1 and multiplying both sides by AzAy results in

A

K:m:;1+1/2,J‘_y“' (hry1,0 — hr1,J)

Az
1

+sz;l+1/2,.lz (hr41,041 —h1—1041 + his1,0 — hi-1,7)

Ay
Kepg- —(—=h hr_
+Kooi1 1/2,1Ax( g+ hr1)

1

+Koyr1y20+ (mhrp g+ b1, — kg + hr-1,4-1)

4
Ar

+Kyy;1,1+1/2&/— (h1 41— h1g)

1

+ K y1041/2~ (Rryr,s — Rr-1,0 + hrargs — hr-1,041)

4

Az

+Kyyi1,0-1/2 Ay (=hrg+ h1a-1)

. 1
+I\zy;I,J—1/2Z (=hrs1,0+ bro1g —hryrg + hr—1g-1) = 0

Rearranging terms, the following nine-point scheme results

Ahi_rgo1+Bhigi +Chryr g+
Dhi_yyj+Ehryg+ Fhig+
Ghrvgyp+Hbrgo + 1 hryig41 = 0
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where
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Equation (B.2) is written for all nodes within the aquifer, except for those for
which the head is given, resulting in a set of linear equations that is solved using an
iterative method based on a successive overrelaxation (SOR) scheme.

On each iteration, the heads at all nodes are updated. Then, an intermediate value
h 1.7 is computed using the most recently updated head values, these heads could be
from the previous iteration if they have not been updated in this iteration yet, or the

heads just updated during the present iteration.

A 1
hry = E(_A hi—1g-1— Bhij-1—Chryig-1 —Dhiay

—Fhiyg—Ghicvgnn —Hbhrgn —1 hiyig41)

The updated head value for iteration m + 1 is given by

W73t = hiy+ w(hry — hTy)
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where the coefficient w is the relaxation coefficient. We talk of overrelaxation if w is
larger than 1 and of underrelaxation if it is smaller than 1. For w = 1 the iterative
scheme is the standard Gauss-Seidel algorithm. Iterations are stopped when the
maximum absolute head change over all aquifer nodes is smaller than a prespecified
closure value. (This value was set to le-8 for all runs in this dissertation.)

All aquifers for which flow was solved using full hydraulic conductivity tensors
were small (maximum of 21 by 21 blocks). For this reason, the convergence of the
solution was very fast for a wide range of the parameter w. As a consequence a value
of w =1 was used for all runs.

The boundary conditions used for all problems were constant head boundaries at
the outermost rows and columns of the aquifer. For this reason, no special care had
to be taken in the computer code to account for boundary conditions. The handling

of the boundary conditions amounts to not updating the nodes for which the head is

prescribed.

B.2 Computer code

The C code according to the ANSI standard follows

#include "stdio.h"
#include "math.h"

/* #define 0S Unix */
#define 0S Mac
#if 0S==Mac
#include "stdlib.h"
#elif 0S==Unix
typedef unsigned size_t;

char *malloc();
#endif
#define CONVERGENCE 1

#define NO_CONVERGENCE O
#define PARAMETER_FILE '"kxy_parm"



APPENDIX B. FINITE DIFFERENCES CODE 324

#define DEBUG 1
#ifndef DEBUG
#define DEBUG O
#endif

float **cc,**cr,**ccxy,**cryx,**a,**b,**c,**d,
*ke , kxf kkg **h,*k*x1;

float **head,**head_fluctuation, **qxx,
**qyy,average_qx=0,average_qy=0;

float accl,closure,dx,dy,max_head_change,jx,jy;

int **ibound,ncol,nrow,max_iter;

char kxx_file[80],kxx_format[80] ,kyy_file[80],
kyy_format [80], head_file[80] ,head_format[80],
Head_file[80] ,Head_format[80],
qxx_file[80],qxx_format[80],qyy_file[80],
qyy_format[80];

FILE *fpdebug;

main()
{
read_parameters();
initialize();
read_permeabilities();
set_boundary_conditionsi();
compute_abc();
if (iterate() == CONVERGENCE) print_results();
else printf ("Max Iteration achieved with no convergence!!\n");
#if DEBUG >= 1
check_flows();,
print_coefficients();
print_conductances();
#endif
}
initialize()
{
int 1i,3;
float **matrix();
int  **imatrix();

/* allocate matrices */
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cc =matrix(0,ncol,0,nrow); cr =matrix(0,ncol,0,nrow)£
ccxy=matrix(0,ncol,O,nrow); cryx=matrix(0,ncol,O,nrow);
a=matrix(0,ncol,0,nrow); f=matrix(0,ncol,0,nrow);
b=matrix(0,ncol,0,nrow); g=matrix(0,ncol,0,nrow);
c=matrix(0,ncol,0,nrow); h=matrix(0,ncol,0,nrow);
=matrix(0,ncol,0,nrow); 1=matrix(0,ncol,0,nrow);
=matrix(0,ncol,0,nrow);
ibound=imatrix(0,ncol,0,nrow);
head=matrix(0,ncol+1,0,nrow+l);
head_fluctuation=matrix(0,ncol+1,0,nrow+1);
qxx=matrix(0,ncol,O,nrow);
qyy=matrix(0,ncol,O,nrow);

/* initialize cc, cr, ccxy, CIrxy and head */

for(i=0;i<=ncol;i++) for(j=0;j<=nrow;j++) {

cc[i][j]=cr[i][j]=ccxy[i][j]=cryx[i][j]=qxx[i][j]=qyy[i][j]=0.;

ibound[i] [j1=1;

if(i==1 || i==ncol || j==1 || j==nrow)
head[i] [jl=dx*(i-1)*jx+dy*(j-1)*jy;

else head[i][j1=0.;

}

#if DEBUG >=1

if ( (fpdebug=fopen(DEBUG_FILE,"w"))==NULL) {

printf ("Error openning debug file\n");

exit(30); '

}

#endif

}

read_parameters()

{
FILE *fp;

if( (fp=fopen(PARAMETER_FILE,"r")) == NULL) {

printf ("Error openning parameter file\n");

exit (20);

}

if(fscanf(fp,"%d%d%*s",&ncol,&nrow)!=2II
fscanf (fp,"%EfUfh*s", &dx,&dy) =2 R
fscanf (£p,"hE%Eh*s",&jx,&jy) =2 i
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fscanf(fp,"%f%f%d%*s",&accl,&closure,&max_iter)!=3 I
fscanf(fp,"%s%s%*s",kxx_file,kxx_format)!=2 |1
fscanf (fp,"%shsh*s" ,kyy_file,kyy_format) !'=2 ||
fscanf (fp, "Y%skh*s" ,Head_file) !=1 ||
fscanf (fp,"%sl*s" ,head_file) t=1 ||
fscanf (fp,"%sh*s",qxx_file) !=1 ||
fscanf (fp,"%sl*s",qyy_file) '=1
) {
printf ("Error reading parameter file\n");
exit(21);
}
fclose(fp);
}
read_permeabilities()

{

/* we will assume that the permeability file has been created
by ’extractt’ and therefore the values of Kxx for the first
and last rows and the values of Kyy for the first and last
columns are zeroes, what is OK for constant heads in the outer
perimeter */

FILE *fp;
int i,j;

if ( (fp=fopen(kxx_file,"r")) ==NULL) {
printf("Error openning Kxx file \n");
exit(22);

}

/* reading by rows */

for(j=2;j<=nrow-1;j++) for(i=1;i<=ncol-1;i++) {
if( fscanf(fp,kxx_format,&(ccl[il[jl1), &(ccxy[1][3]))'-2) {
printf ("Error reading Kxx\n");
exit (23);
}
}
fclose(fp);

if ( (fp=fopen(kyy_file,"r")) ==NULL) {
printf("Error openning Kyy file \n");

326
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exit(24);
}

/* reading by rows */

for(j=1;j<=nrow-1;j++) for(i=2;i<=ncol-1;i++) {
if( fscanf(fp,kyy_format,&(cryx[il[j1),&(cr[i1[j1)) =2 ) {
printf("Error reading Kyy\n");
exit(25);
}
}
fclose(fp);

#if DEBUG>=1
print_conductances();
#endif

/* if the values read are permeabilities instead of conductances,
also called transmissibilities, apply the correction factors */

for(j=1;j<=nrow;j++) for(i=1;i<=ncol;i++) {
cclil[j] *= (dy/dx);
cr[i1[j] *= (dx/dy);
}
#if DEBUG>=1
print_conductances();
#endif

}
set_boundary_conditions1()
{

int i,j;

/* boundary conditions in this case are constant head boundaries
all around the perimeter of the field. We need to set the
ibound flag to -1 and the conductance between adjacent
constant head cells equal to zero */

for (i=1;i<=ncol;i++) { o
cc[i][1]=ccxy[i][1]=cc[i][nrdﬁ]=ccxy[i][nrow]=0.;
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ibound[i] [1]=ibound[i] [nrow]= -1;

}

for (j=1;j<=nrow;j++) {
cr[11[jl=cryx[1][jl=crncoll [jl=cryx[ncoll [j]=0.;
ibound[1] [j]=ibound [ncoll [j]= -1;

}

}

set_boundary_conditions2()

{

int i,j;

/* boundary conditions in this case are constant head boundaries
at parallel sides and on flow boundaries the other two
ibound flag to -1 and the conductance between adjacent
constant head cells equal to zero */

for (j=1;j<=nrow;j++) {
cr[1]1[jl=cryx[1] [jl=crncoll [j1=cryx[ncoll[j]1=0.;
ibound[1] [j]l=ibound[ncoll [j1=-1;

}

}

compute_abc ()

{

int 1i,3;

/* computing the coefficients of the finite difference equation for
the Laplace equation (no external stresses) */

for (i=1;i<=ncol;i++) for(j=1;j<=nrow;j++) {
alil[j1=.25*(ccxy[i-1] [j1+cryx[i1[j-11);
blil[j1=.25%(-ccxy[i] [j1+ccxy[i-11[j1)+cr[il[j-1];
clil[j1=.25%(-ccxy[i] [j1-cryx[il[j-11);
dlil[j1=ccli-11[j1+.26*(~cryx[il [j1+cryx[il[j-11);
e[il[j1= -cclil[j1-ccli-11[j1-cr[i1[jI-cr[il[j-1];
£[i][jI=cc[i1[j]+.25*(cryx[i]l[j]-cryx[i][j-11);
glil[j1=.25%(-cexy[i-1]1 [j1-cryx{il [j1);
nlil[j1=.25%(ccxy[il [j1-cexyli-1] [ +crlil[j];
1[i1[j1=.256*(ccxy[i] [j]+cryx[1]1[3j1);

y:

#if DEBUG >=1



APPENDIX B. FINITE DIFFERENCES CODE 329

print_coefficients();
#endif

}

iterate()

{

int 1i;

for(i=1;i<=max_iter;i++) {

£i11_outside_ring();

if( one_iteration() == CONVERGENCE ) break;

}

if(i>=max_iter) return (NO_CONVERGENCE);

else return (CONVERGENCE);

}

£ill_outside_ring()

{

/* rows 0 and nrow+l and columns 0 and ncol+l are filled with
the same values as in row 1, row nrow, column 1 and column ncol,
respectively in order to simulate no flow boundaries around
the edge of the field. Because of the way the tangencial pressure
gradients are computed at the faces of the blocks, there has not
been yet accounted for the possibility of having inactive nodes
within the field */

int i,j;

head[0] [0]=head[1][1];

head[0] [nrow+1]=head[1] [nrow]l;

head [ncol+1] [0]=head[ncol] [1];
head[nrow+1][ncol+1]=head[nrow][ncol];

for(i=1; i<= ncol; i++) {
head[i][0]=head[i][1];

head[i] [nrow+1]=head[i] [nrow];
}

for(j=1; j<= nrow; j++) {
head[0] [jI1=head[1]1[j];

head [ncol+1] [j1=head[ncoll [j];
}

}

one_iteration()
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{

/* this subroutine performs one Gauss-Seidel iteration with
over-relaxation. At the end of the iteration makes a closure
check by comparing the maximum head change in the iteration
with the maximum difference allowed */

int 1,j;
float intermediate_h,increment;

max_head_change=0.;

for(i=1;i<=ncol;i++) for(j=1;j<=nrow;j++)

if (ibound[il[j] == 1) {

intermediate_h = (-a[i][jl*head[i-1][j-1]
-b[i] [jI1*head[il [j-1]
-c[i][jI*head[i+1][j-1]
-d[i] [j1*head[i-1] [j]
-f[i] [j1*head [i+1] [j]
-gli][j1*head[i-1][j+1]
-h[il [jI*head[i] [j+1]
-1[i] [j]*head[i+1] [j+1]
) / elillj];

increment= intermediate_h - head[i][jl;

if (fabs(increment) >= max_head_change)

max_head_change=fabs(increment);

head[il[jl=head[i] [jl+accl*increment;

}

if (max_head_change <= closure) return (CONVERGENCE);

else return(NO_CONVERGENCE) ;

}

print_results()

{

compute_flows();

print_flows();

print_head();

compute_head_fluctuation();

print_head_fluctuation();

}

compute_flows()

{

int i,3;



APPENDIX B. FINITE DIFFERENCES CODE 331

£i11_outside_ring();

for(i=1;i<=ncol;i++) for(j=1;j<=nrow;j++) {
qxx[i]1[j1= -cc[i][j]*(head[i+1][j]—head[i][j])
-ccxy[i][j]*(head[i+1][j+1]—head[i+1][j-i]
+head[i] [j+1]1-head[i]1[j-11)/4.;
qyylilljl= -cr[i][j]*(head[i][j+1]-head[i][j])
-cryx[i][j]*(head[i+1][j+1]-head[i-1][j+1]
+head[i+1][j]-head[i-11[j1)/4.;

}

}

print_flows()

{

int i,j,counter=0;
FILE *fp;

if( (fp=fopen(qxx_file,"w")) == NULL) {
printf("Error openning qxx file\n");
exit(26);

}

/* writing by rows */
for (j=1;j<=nrow;j++) {
counter=0;
for (i=1;i<=ncol;i++) {
fprintf (fp,"%15.4e",qxx[i1[31);
average_qx+=qxx[i][j];
if (++counter % 5 == 0) fprintf(fp,"\n");
}
fprintf (fp,"\n");
}
fprintf (fp,"\n\nAverage qx ———>Y%£/%d\n" ,average_qx,counter) ;
fclose(fp);

if( (fp=fopen(qyy_file,"w")) == NULL) {
printf ("Error openning qyy file\n");
exit (27);

¥
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/* writing by rows */
for (j=1;j<=nrow;j++) {
counter=0;
for (i=1;i<=ncol;i++) {
fprintf(fp,"%15.4e",qyy[i]1[j1);
average_qy+=qyy[il [j];
if (++counter % 5 == 0) fprintf(fp,"\n");
}
fprintf(fp,"\n");
} |
fprintf (£fp,"\n\nAverage qy --->%f/%d\n",average_qy,counter);
fclose(fp);
}
print_head()
{
int i,j,counter;
FILE *fp,;

if( (fp=fopen(Head_file,"w")) == NULL) {
printf ("Error openning head file\n");
exit(28);

}

/* writing by rows */
for (j=1;j<=nrow;j++) {
counter=0;
for (i=1;i<=ncol;i++) {
fprintf(fp,"%8.2f" ,head[i1[j1);
if (++counter % 8 == 0) fprintf(fp,"\n");
}
fprintf(£fp,"\n");
}
fclose(fp);
}
compute_head_fluctuation()

{

int 1,];

for(i=1;i<=ncol;i++) for(j=1;j<=nrow;j++)
head_fluctuation[i] [jl=head[i][j]-dx*(i-1)*jx-dy*(j-1)*dy;
}
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print_head_fluctuation()
{

FILE *fp;

int 1,j,counter;

if( (fp=fopen(head_file,"w“)) == NULL) {

printf ("Error openning head fluctuation file\n");
exit(29);

}

/* writing by rows */
for (j=1;j<=nrow;j++) {
counter=0;
for (i=1;i<=ncol;i++) {
fprintf(fp,"28.2f",head_fluctuation[i][j]);
if (++counter % 8 == 0) fprintf(fp,"\n");
}
fprintf(fp,"\n");
}
fclose(£fp);
}
check_flows()
{
int i,3;
float qtot;

fprintf(fpdebug,"Col Row Head  qxx[i][j] qxx[i-11[j1");
fprintf (fpdebug,“qyy[il [j] qyy[i1[j-11 qtot\n");
for(j=1;j<=nrow;j++) for(i=1;i<=ncol;i++) {
qtot= qxx[i][j]-qxx[i-l][j]+qyy[i][j]-qyy[i][j-l];
fprintf(fpdebug,
w34 %3d %10.4f %10.4f %10.4f %10.4f %10.4f %10.4f\n",
i,j,head[i][j],qxx[i][j],qxx[i-l][j],qyy[i][j],qyy[i][j-i],

qtot);
}
¥
print_coefficients()
{
int i,j;

fprintf (fpdebug,"\n(i,j) a b c d e");
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fprintf (fpdebug," f g h 1\n");
for(i=1;i<=ncol;i++) for(j=1;j<=ncol;j++) {
fprlntf(fpdebug,"('/.3d %3d) %7.2f %7.2f %7.2f %7.2f",
i,3,ali1031,b[i1[3],cl41[3],d0i1050);
fprintf (fpdebug,"%7.2f %7.2f %7.2f %7.2f %7.2f\n",
e[i1[31,£[i1[31,gli] (31,0041 031,281 050);
}
fprintf (fpdebug,*\n\n");
}
print_conductances()
{

int 1,3;

fprintf (fpdebug,"Column to column conductances... Kxx \n");
for(j=0;j<=nrow;j++) {

for(i=0;i<=ncol;i++) {

fprintf (fpdebug,"%8.2f ",cc[il[j1);
}
fprintf (fpdebug,"\n");

fprintf(fpdebug,"Column to column conductances... Kxy \n");
for(j=0;j<=nrow;j++) {
for(i=0;i<=ncol;i++) {
fprintf (fpdebug,"%8.2f ",ccxy[il[j]);
}
fprintf (fpdebug,"\n");
}
fprintf (fpdebug,"Row to row conductances... Kyy \n");
for(j=0;j<=nrow;j++) {
for(i=0;i<=ncol;i++) {
fprintf (fpdebug,"%8.2f ",cr[i]1[j1);
}
fprintf (fpdebug,"\n");
}
fprintf (fpdebug,"Rov to row conductances... Kyx \n");
for(j=0;j<=nrow;j++) {
for(i=0;i<=ncol;i++) {
fprintf (fpdebug,"%8.2f ",cryx[il1[j1);
}
fprintf (fpdebug,"\n");
}
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B.3 Example input files

Three files are required, a parameter file and the two files containing the interface

conductivities for the horizontal interfaces and for the vertical interfaces.

Parameter file

7 7 e ncolumns...... nrows

1. 1. emmmmme—mm- deltax........ deltay

1. 0.  cmmmm——- gradx......... grady

1. 1e-9 10000 e accel.param...closure..... maxiter
kxx V% &/ S kxx.file...... kxx.format

kyy Y£ht 0 mmmmmmee- kyy.file...... kyy.format

head = mmmee—ma- Head.file

head_fluct = cccmmmm—ee head.fluctuation.file

Qxx  emmmmee—e- qxx.file

QuUyry | ememem———- qyy.file

Column to column interface conductivities

5 1

3 1

4 0

2 .1
5 .3
4.1 1.1
3.1 1.2
3 1

4 0
3.2 0.4
5 .3
4.1 1.1
5 1

3 1

N
w
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L
<

Row to row interface conductivities
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Appendix C

Least Squares Formulation

Obtaining the coefficients Kv,zz and Kv., in Eq. (4.11) requires the solution of an
overdetermined system of linear equations. The solution of such system is obtained
by standard linear least squares. The least squares procedure is described below for

the sake of completeness, it closely follows Press et al. (1988, p.109 and following).

Consider the set of linear equations:

M
Za,-j:z:jzb; i=1,...,N (C].)
1

where M is the number of unknowns, N is the number of equations, and N > M.
Let A be the matrix whose N by M components are a;;, b be a vector whose N
components are b;, and x be the vector of M unknowns z;. The unknowns z; are

obtained by minimizing the sum of the square differences between the left and right

hand side in C.1

N M 2
X2 = Z bg - ai;; = b,’
i=1 1=1

The minimum occurs when the derivative of 2 with respect to all M unknowns

vanishes

Nt
X0 k=1.....M
Ok
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that is,

N (M
Z(Zaiﬂj—bi) a;x =10 k=1,....M
=1

=1

interchanging the summations

M M N
Z(Za,-jaikxj) —Zaikbizﬂ kzl,,M
=1

7=1 \i=1

which can be written in matricial notation as
(AT-A)-x=AT b, (C.2)
from which the values of z; that minimize x? are obtained as
x=(AT-A)" -AT-b

The equations (C.2) are known as normal equations.



Bibliography

Ababou, R., Gelhar, L. W., and McLaughlin, D. (1988). Three-dimensional flow in
random porous media. Technical Report no. 318 of the Ralph M. Parsons Labo-

ratory, Department of Civil Engineering, Massachusetts Institute of Technology.

Alabert, F. G. (1987a). The practice of fast conditional simulations through the lu
decomposition of the covariance matrix. Math. Geology, 19(5):369-387.

Alabert, F. G. (1987b). Stochastic imaging of spatial distributions using hard and

soft data. Master’s thesis, Stanford University, Branner Earth Sciences Library.
Anderson, T. W. (1984). Multivariate statistical analysis. Wiley, New York.

Aris, R. (1956). On the dispersion of a solute in a fluid flowing through a tube. Proc.
R. Soc. London. Ser. A, 235:67-77.

Bachu, S. and Cuthiell, D. (1990). Effects of core-scale heterogeneity on steady state

and transient fluid flow in porous media: numerical analysis. Water Resources

Research, 26(5):863-874.

Bakr, A. A., Gelhar, L. W., Gutjahr, A. L., and MacMillan, J. R. (1978). Stochastic
analysis of spatial variability in subsurface flow, 1, Comparison of one- and three-

dimensional flows. Water Resources Research, 14(2):263-271.

Bear, J. (1979). Hydraulics of Groundwater. Mc Graw-Hill, New York.

340



BIBLIOGRAPHY 341

|/
Begg, S. H., Carter, R. R., and Dranfield, P. (1989). Assigning effective values to

simulator gridblock parameters for heterogeneous reservoirs.. SPE Reservoir En-

gineering, pages 455—463.

Begg, S. H., Chang, D. M., and Haldorsen, H. H. (1985). A simple statistical method
of calculating the effective vertical permeability of a reservoir containing discon-

tinuous shales. SPE 14271.

Begg, S. H. and King, P. R. (1985). Modelling the effects of shales on reservoir

performance: calculation of effective vertical permeability. SPE 13529.

Black, T. C. and Freyberg, D. L. (1990). Simulation of one-dimensional correlated
fields using a matrix-factorization moving average approach. Math. Geology,

22(1):39-62.

Borgman, L. E., Taheri, M., and Hagan, R. (1984). Three-dimensional, frequency-
domain simulations of geological variables. In Verly, G., David, M., Journel,

A. G., and Marechal, A., editors, Geostatistics for Natural Resources Character-
ization. D. Reidel Publishing.

Bouwer, H. (1969). Planning and interpreting soil permeability measurements. Jour-

nal of the Irrigation and Drainage Division of the A.S.C.E., IR(3):391-402.

Bratley, P., Fox, B. L., and S., L. E. (1983). A Guide to Simulation. Springer-Verlag,
New York.

Brenner, H. (1980). Dispersion resulting from flow through spatially periodic porous
media. Philos. Trans. R. Soc. London, Ser. A, 297(1498):81-133.

Brooker, P. (1985). Two-dimensional simulations by turning bands. Math. Geology,
17(1).

Chirlin, G. R. and Dagan, G. (1980). Theoretical head variograms for steady flow in
statistically homogeneous aquifers. Water Resources Research, 16(6):1001-1015.



BIBLIOGRAPHY 342

Clifton, P. M. and Neuman, S. P. (1982). Effects of kriging and inverse modeling on

conditional simulation of the Avra Valley aquifer in Southern California. Water

Resources Research, 16(6):1215-1234.

Dagan, G. (1979). Models of groundwater flow in statistically homogeneous porous

formations. Water Resources Research, 15(1):47-63.

Dagan, G. (1981). Analysis of flow in heterogeneous random aquifers by the method
of embedding matrix. 1. Steady flow. Water Resources Research, 17(1):107-121.

Dagan, G. (1982a). Analysis of flow through heterogeneous random aquifers, 2, Un-
steady flow in confined formations. Water Resources Research, 18(5):1571-1585.

Dagan, G. (1982b). Stochastic modeling of groundwater flow by unconditional and

conditional probabilities, 1, Conditional simulation and the direct problem. Wa-

ter Resources Research, 18(4):813-833.

Dagan, G. (1985). Stochastic modeling of groundwater flow by unconditional and
conditional probabilities, 2, The inverse problem. Water Resources Research,

21(4):573-578.

Dagan, G. (1986). Statistical theory of groundwater flow and transport: Pore to
laboratory, laboratory to formation, and formation to regional scale. Water

Resources Research, 22(9):1205-134S.
Dagan, G. (1989). Flow and Transport in Porous Formations. Springer-Verlag.

Dagan, G. and Rubin, Y. (1988). Stochastic identification of recharge, transmissiv-
ity and storativity in aquifer unsteady flow: a quasi-steady approach. Water

Resources Research, 24(10):1698-1710.

Davis, M. W. (1987). Production of conditional simulations via the LU triangular

decomposition of the covariance matrix. Math Geol, 19(2):91-98.

Delhomme, J. P. (1979). Spatial variability and uncertainty in groundwater flow
parameters: A geostatistical approach. Water Resources Research, 15(2):269-

280.



BIBLIOGRAPHY 343

Desbarats, A. J. (1987a). Numerical estimation of effective permeability in sand-shale

formations. Water Resources Research, 23(2):273-286.

Desbarats, A. J. (1987b). Stochastic M&deling of Flow tn Sand-Shale Sequences. PhD

thesis, Stanford University, Branner Earth Sciences Library.

Desbarats, A. J. (1988). Estimation of effective permeabilities in the Lower Stevens
formation of the Paloma field, San Joaquin Valley, California. SPE Reservoir
Engineering, pages 1301-1307.

Desbarats, A. J. (1989). Support effects and the spatial averaging of transport prop-
erties. Mathematical Geology, 21(3):383-389.

Deutsch, C. V. (1987). A probability approach to estimate effective absolute perme-

ability. Master’s thesis, Stanford University, Branner Earth Sciences Library.

Deutsch, C. V. (1989). Calculating effective absolute permeability in sand-shale se-
quences. SPE Formation Evaluation, 4(3):343-348.

El-Kadi, A. I. and Brutsaert, W. (1985). Applicability of effective parameters for

unsteady flow in nonuniform aquifers. Water Resources Research, 21(2):183-198.

Freeze, R. A. (1975). A stochastic-conceptual analysis of one-dimensional ground-

water flow in nonuniform heterogeneous media. Water Resources Research,

11(5):725.
Freeze, R. A. and Cherry, J. A. (1978). Groundwater. Prentice-Hall.

Gelhar, L. W. (1974). Stochastic analysis of phreatic aquifers. Water Resources
Research, 10(3):539-545.

Gelhar, L. W. and Axness, C. L. (1983). Three dimensional stochastic analysis of

macrodispersion in aquifers. Water Resources Research, 19(1):161-180.

Goémez-Hernandez, J. J. (1989). Indicator conditional simulation of the architecture of

hydraulic conductivity fields: application to a sand-shale sequence. In Sahuquillo,



BIBLIOGRAPHY 344

A., Andréu, J., and O'Donell, T, editors, Groundwater Management: Quantity
and Quality IAHS publication no. 188, pages 41-51. IAHS, IAHS Press.

Gémez-Hernandez, J. J. (1990a). Simulation of block effective permeabilities condi-
tioned upon data measured at a different scale. In Kovac, editor, Calibration and

Reliability in Groundwater, Oxforshire, UK. IAHS, IAHS Press

Gémez-Hernandez, J. J. (1990b). The impact of the multiGaussian hypothesis on
the generation of hydraulic conductivity fields with significant connectivity of

extreme values. In Proc. of the NEA workshop on flow heterogeneity. Nuclear

Energy Agency..

Gémez-Hernandez, J. J. (1991). A case study of three-dimensional multiple indicator

conditional simulation: Florida’s Jay oil field. submitted for publication to JPT.

Gémez-Herndndez, J. J. and Gorelick, S. M. (1988). Influence of spatial variability
of aquifer and recharge properties in determining effective parameter values. In
Peck, A. et al., editors, Consequences of Spatial Variability in Aquifer Properties
and Data Limitations for Groundwater Modelling Practice IAHS publication no.
175, pages 217-272, Oxforshire, UK. IAHS, IAHS Press.

Gémez-Hernandez, J. J. and Gorelick, S. M. (1989). Effective groundwater model pa-
rameter values: Influence of spatial variability of hydraulic conductivity, leakance

and recharge. Water Resources Research, 25(3):405-419.

Gémez-Hernéndez, J. J. and Journel, A. G. (1989). Conditional simulation of the
Wilmington sand-shale sequence, Los Angeles basin. In Ports, M. A., editor,

Hydraulic Engineering, NY. American Society of Civil Engineers.

Gémez-Hernandez, J. J. and Journel, A. G. (1990). Stochastic characterization of
grid-block permeabilities: from point values to block tensors. In Proceedings of

the 2nd European conference on the mathematics of oil recovery.

Gomez Hernandez, J. J. and Rubin, Y. (1990). Spatial averaging of statistically
anisotropic point conductivities. In Optimizing the Resources of Water Manage-

ment, pages 566-571. ASCE.



BIBLIOGRAPHY 345

Gémez-Herndndez, J. J. and Srivastava, R. M. (1990). ISIM3D: An ANSI-C three
dimensional multiple indicator conditional simulation program. Computer and

Geosciences, 16(4):395-440.

Gutjahr, A. L. and Gelhar, L. W. (1981). Stochastic models of subsurface flow: Infi-
nite versus finite domains and stationarity. Water Resources Research, 17(2):337-

350.

Gutjahr, A. L., Gelhar, L. W., Bakr, A. A., and MacMillan, J. R. (1978). Stochastic
analysis of spatial variability in subsurface flows. 2. Evaluation and application.

Water Resources Research, 14(5):953-959.

Haldorsen, H. H. (1986). Simulation parameters assignment and the problem of scale
in reservoir engineering. In Lake, L. W. and Carroll, H. B., editors, Reservoir

Characterization, pages 293-340. Academic Press.

Haldorsen, H. H. and Chang, D. M. (1986). Notes on stochastic shales; from outcrop
to simulation model. In Lake, I', W. and Carroll, H. B., editors, Reservoir

Characterization, pages 445-485. Academic Press.

Haldorsen, H. H. and Lake, L. W. (1982). A new approach to shale management in
field scale simulation models. SPE 10976.

Hoeksema, R. J. and Kitanidis, P. K. (1984). An application of the geostatistical ap-
proach to the inverse problem in two-dimensional groundwater modeling. Water
Resources Research, 20(7):1003-1020.

Hoeksema, R. J. and Kitanidis, P. K. (1985a). Analysis of the spatial structure of
properties of selected aquifers. Water Resources Research, 21(4):563-572.

Hoeksema. R. J. and Kitanidis, P. K. (1985b). Comparison of Gaussian conditional
mean and kriging estimation in the geostatistical solution of the inverse problem.
Water Resources Research, 21(6):825-836.



BIBLIOGRAPHY 346

Isaaks, E. H. (1990). The Application of Monte-Carlo Methods to the Analysis of Spa-
tially Correlated Data. PhD thesis, Stanford University, Branner Earth Sciences

Library.

Journel, A. G. (1974). Geostatistics for conditional simulation of ore bodies. Economic

Geology, 69(5):673-687.

Journel, A. G. (1987). Geostatistics for the Environmental Sciences. Report of EPA
project no. CR811893.

Journel, A. G. (1979). Geostatistical simulation: Methods for exploration and mine

planning. Engineering and Mining Journal, 180(12):86-91.

Journel, A. G. (1983a). Non-parametric estimation of spatial distributions. Math.
Geology, 5(3):445-468.

Journel, A. G. (1983b). The place of non-parametric geostatistics. In Verly, G.,
David, M., Journel, A. G., and Marechal, A., editors, Geostatistics for Natural
Resources Characterization. Proceedings of the NATO Advanced Study Institute,
South Lake Tahoe, California, September 6-17, D. Reidel, Dordrecht, Holland.

Journel, A. G. (1985). Sequential simulation. Unpublished notes, Stanford University.

Journel, A. G. (1986). Constrained interpolation and qualitative information, the soft

kriging approach. Math. Geology, 18(1):119-140.

Journel, A. G. (1989). Imaging of spatial uncertainty: A non-Gaussian approach.
In Buxton, B., editor, Geostatistical, Sensitivity, and Uncertainty Methods for
Ground-Water Flow and Radionuclide Transport Modeling. DOE/AECL, Batelle

Press.

Journel. A. G. and Alabert, F. G. (1988). Focusing on spatial connectivity of extreme-

valued attributes: Stochastic indicator models of reservoir heterogeneities. SPE

18324.



BIBLIOGRAPHY 347

Journel, A. G. and Alabert, F. G. (1989). Non-Gaussian data expansion in the earth
sciences. Terra Nova, 1(2):123-134.

Journel, A. G. and Alabert, F. G. (1990). New method for reservoir mapping. JPT,
pages 212-218.

Journel, A. G., Deutsch, C. V., and Desbarats, A. J. (1986). Power averaging for
block effective permeability. SPE 15128.

Journel, A. G. and Gémez-Hernandez, J. J. (1989a). Stochastic imaging of the Wilm-
ington clastic sequence. SPE 19857.

Journel, A. G. and Gémez-Herndndez, J. J. (1989b). Topics in advanced geostatistics.
Unpublished class notes.

Journel, A. G. and Huijbregts, C. J. (1978). Mining Geostatistics. Academic Press,

London.

Journel, A. G. and Rossi, M. (1989). Do we need kriging with a trend? Math.
Geology, 21(7).

Kasap, E. and Lake, L. W. (1989). An analytical method to calculate the effective
permeability tensor of a grid block and its application in an outcrop study. SPE
18434.

King, P. R. (1987). The use of field theoretic methods for the study of flow in a
heterogeneous porous medium. J. Phys. A: Math. Gen., 20:3935-3947.

King, P. R. (1988). The use of renormalization for calculating effective permeability.

Transport in Porous Media, 4(1):37-58.

Kirkpatrick. S. (1973). Percolation and conduction. Reviews of Modern Physics,
45(4):574-588.

Kitanidis, P. K. (1990). Effective hydraulic conductivity for gradually varying flow.
Water Resources Research, 26(6):1197-1208.



BIBLIOGRAPHY 348

Lasseter, T. J., Waggoner, J. R., and Lake, L. W. (1986). Reservoir heterogeneities
and their influence on ultimate recovery. In Lake, L. W. and Carroll, H. B.,

editors, Reservoir Characterization, pages 545-559. Academic Press.

Long, J. C. S., Remer, J. S., Wilson, C., and Witherspoon, P. A. (1982). Porous
media equivalents for networks of discontinuous fractures. Water Resour. Res.,

18(3):645-658.

Long, J. C. S. and Witherspoon, P. A. (1985). The relantionship of the degree of inter-
connection to permeability in fracture networks. J. Geophys. Res., 90(B4):3087-

3098.

Luenberger, D. L. (1969). Optimization by Vector Space Methods. Wiley and Sons,
NY.

Luster, G. (1985). Raw Materials for Portland Cement: Applications of Conditional
Simulation of Coregionalization. PhD thesis, Stanford University.

Mantoglou, A. (1987). Digital simulation of multivariate two and three-dimensional
stochastic processes with a spectral turning bands method. Math. Geology,
19(2):129-149.

Mantoglou, A. and Wilson, J. L. (1981). Simulation of random fields with the turning
band method. Technical Report no. 264 of the Ralph M. Parsons Laboratory,
Department of Civil Engineering, Massachusetts Institute of Technology.

Mantoglou, A. and Wilson, J. L. (1982). The turning bands method for simulation
of random fields using line generation by a spectral method. Water Resources

Research, 18:1379-1394.

Matern, B. (1960). Spatial variation. Meddelanden Fran Statens Skogsforskningsin-
stitut, Stockholm, 49(5):144.

Matheron, G. (1967). Eléments pour une Théorie des Milieur Poreuzr. Mason et Cie.



BIBLIOGRAPHY 349

Matheron, G. (1973). The intrinsic random functions and their applications. Adv.
Appl. Probabilities, 5:439—458.

Matheron, G. (1984). L’émergence de la loi de Darcy. Annales des Mines, 5/6:11-16.

McDonald, M. G. and Harbaugh, A. W. (1984). A modular three-dimensional finite-
difference ground-water flow model. Open-file report 83-875, U.S. Geological

Survey.

Mizell, S. A., Gutjahr, A. L., and Gelhar, L. W. (1982). Stochastic analysis of spatial
variability in two-dimensional steady groundwater flow assuming stationary and

nonstationary heads. Water Resources Research, 18(4):845-860.

Myers, D. E. (1989). To be or not to be ... stationary?That is the question. Math.
Geology, 21(2):347-362.

Naff, R. L. and Vecchia, A. V. (1986). Stochastic analysis of three-dimensional flow
in a bounded domain. Water Resources Research, 22(5):645-704.

Naff, R. L. and Vecchia, A. V. (1987). Depth-averaging effects on hydraulic head

for media with stochastic hydraulic conductivity. Water Resources Research,

23(4):561.

Papoulis, A. (1986). Probability, Random Variables and Stochastic Processes.
McGraw-Hill, New York, 2nd edition.

Poley, A. D. (1988). Effective permeability and dispersion in locally heterogeneous
aquifers. Water Resources Research, 24(11):1921-1926.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1988). Nu-

merical recipes in C. Cambridge University Press, Cambridge.

Rubin, Y. and Dagan, G. (1987a). Stochastic identification of transmissivity and effec-
tive recharge in steady groundwater flow, 1, Theory. Water Resources Research,

23(7):1185-1191.



BIBLIOGRAPHY 350

Rubin, Y. and Dagan, G. (1987b). Stochastic identification of transmissivity and
effective recharge in steady groundwater flow, 2, Case study. Water Resources

Research, 23(7):1192-1200.

Rubin, Y. and Dagan, G. (1988). Stochastic analysis of boundary effects on head
spatial variability in heterogeneous aquifers, 1, Constant head boundary. Water

Resources Research, 24(10):1689-1697.

Rubin, Y. and Dagan, G. (1989). Stochastic analysis of boundaries effects on head
spatial variability in heterogeneous aquifers, 2, Impervious boundary. Water

Resources Research, 25(4):707-712.

Rubin, Y. and Gémez-Hernandez, J. J. (1990). A stochastic approach to the prob-
lem of upscaling of conductivity in disordered media, Theory and unconditional

numerical simulations. Water Resources Research, 26(4):691-701.

Rubin, Y., Gémez-Hernandez, J. J., and Journel, A. G. (in press, 1991). Analysis

of upscaling and effective properties in disordered media. In Lake, L. W. and

Carroll, H. B., editors, Reservoir Characterization II.

Siez, A. E., Otero, C. J., and Rusinek, L. (1989). The effective homogeneous behavior

of heterogeneous porous media. Transport in Porous Media, 4:213-238.

Shinozuka, M. and Jan, C. M. (1972). Digital simulation of random processes and its
applications. Journal of Sound and Vibration, 25(1):111-128.

Smith, L. (1981). Spatial variability of flow parameters in a stratified sand. Math.
Geology, 13(1):1-21.

Smith, L. and Freeze, R. A. (1979a). Stochastic analysis of steady state groundwater

flow in a bounded domain, 1, One-dimensional simulations. Water Resources

Research, 15(3):521-528.

Smith. L. and Freeze, R. A. (1979b). Stochastic analysis of steady state groundwater
flow in a bounded domain, 2, Two-dimensional simulations. Water Resources

Research. 15(6):1543-1559.



BIBLIOGRAPHY 351

Sudicky, E. A. (1986). A natural gradient experiment on solute transport in a sand
aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion

process. Water Resources Research, 22(13):2069-2082.

Sullivan, J. (1984). Non-parametric Estimation of Spatial Distribution. PhD thesis,

Stanford University, Branner Earth Sciences Library.

Thompson, A. F. B., Ababou, R., and Gelhar, L. W. (1989). Implementation of
the three-dimensional turning bands random field generator. Water Resources

Research, 25(10):2227-2244.

Trescott, P. C., Pinder, G. F., and Larson, S. P. (1976). Finite-difference model
for aquifer simulation in two dimensions with results of numerical experiments.
In Techniques of Water-Resources Investigations of the United States Geological
Survey. U.S. Gov. Printing Office.

Vanmarcke, E. (1983). Random Fields, Analysis and Synthesis.

Wagner, B. and Gorelick, S. M. (1989). Reliable aquifer remediation in the presence of

spatially variable hydraulic conductivity: from data to design. Water Resources

Research, 25(10):2211-2226.

Warren, J. E. and Price, H. S. (1961). Flow in heterogeneous porous media. Society
of Petroleum Engineering Journal, 1:153-169.

White, C. D. (1987). Representation of Heterogeneity for Numerical Reservoir Sim-
ulation. PhD thesis, Stanford University, Branner Earth Sciences Library.

White, C. D. and Horne, R. N. (1987). Computing absolute transmissibility in the
presence of fine-scale heterogeneity. SPE 16011.





