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Abstract

This thesis focuses on upscaling solute transport. Upscaling of solute trans-
port is usually required to obtain computationally efficient numerical models
in many field applications such as, remediation of aquifers, environmental risk
to groundwater resources or the design of underground repositories of nuclear
waste. The usual observation of non-Fickian transport observed in the field,
manifested by peaked concentration profiles with pronounced tailing, has ques-
tioned the use of the classical advection-dispersion equation to simulate solute
transport at the computational scale of a numerical model. In this context,
we have investigated the use of upscaled mass transfer models as a tool for
upscaling solute transport in a general numerical modeling framework.

Solute transport by groundwater is very affected by the presence of high
and low water velocity zones, where the contaminant can be channelized or
stagnant. These contrasting water velocity zones disappear in the upscaled
model as soon as the scale discretization is larger that the size of these zones.
We propose for modeling solute transport at large scale a phenomenological
model based on the concept of memory functions that are used to represent
the unresolved process taking place within each homogenized block of the
numerical models.

We propose a new method to estimate equivalent block transport and
mass transfer parameters. The new upscaling technique consists in replac-
ing each block with heterogeneous transmissivities by a homogeneous block
in which the parameters associated to a memory functions are used to rep-
resent the unresolved mass exchange between highly mobile and less mobile
zones occurring within each block. Upscaling of the transmissivity is based on
the Simple Laplacian with skin, whereas block transport parameters are esti-
mated through the interpretation of the residence time distribution of particles
passing through a given block using fine-scale simulations.

The methodology proposed is applied to a Monte Carlo simulations of
solute transport in several two-dimensional synthetic aquifers. The results are
compared to a reference Monte Carlo analysis implemented at a smaller scale.
Transport phenomena at the computational scale were described by means of
a multirate mass transfer model. Several formulations of the multi-rate mass
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transfer model, which differ in the type of memory function, were used as
constitutive transport equation.

The performance of the upscaled models was evaluated from two different
perspectives. First, we analyzed the reproduction of the ensemble mean be-
havior of the main features associated with the simulated breakthrough curves
(BTCs). We examined the effect of upscaling on model uncertainty and the
spatial distribution of the solute mass plume. The results showed that an
appropriate description of the residence time distribution for all blocks of
the numerical model provides an upscaled transport model that is capable
to reproduce the ensemble mean behavior of the BTCs. In addition, results
showed that the reproduction of uncertainty and dilution of plume was not
good enough by any of the upscaled transport models.
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Resumen

El objecto de la presente tesis es el estudio del escalado del transporte de
solutos no reactivos. El escalado es usualmente aplicado para obtener modelos
numéricos de acúıfero, que son una herramienta alternativa altamente eficiente,
para establecer estrategias en problemas tales como, la remediación de suelos
y aguas subterráneas contaminadas, el diseño de almacenamientos de residuos
reactivos, o la evaluación del riesgo ambiental para las aguas subterráneas.

El comportamiento anómalo (en la literatura anglosajona non-Fickian)
observado en los resultados de ensayos de trazadores ejecutados en campo o
en laboratorio, tales como los perfiles de concentración con un alto pico y una
larga cola, cuestionan el uso de la clásica ecuación de advección-dispersión,
para simular el transporte a escala computacional. En este contexto, se pre-
sentan las investigaciones en el uso de los modelos escalados de transferencia
de masa como una herramienta alternativa para el escalado del transporte,
bajo el enfoque de la modelación aplicada.

El desplazamiento de un contaminante en las aguas subterráneas es afec-
tado por la presencia de zonas de altas y de bajas velocidades del flujo, donde
el contaminante puede viajar libremente o bien puede ser retenido. Ese con-
traste de velocidades tiende a desaparecer en los modelos escalados, a medida
que la escala de la malla de modelación sea más grande que el tamaño de esas
zonas. En dichas circunstancias, para reproducir el comportamiento del trans-
porte observado con un modelo escalado, es necesario considerar un proceso
adicional de transferencia de masa entre las zonas más y menos conductivas
en la ecuación de advección-dispersión.

Aśı, se propone como alternativa, un modelo fenomenológico basado en
concepto de que el transporte puede ser simulado a gran escala usando a
una malla de modelación con bloque homogéneos de gran tamaño, donde los
parámetros de transporte asociado consideran alguna memoria vinculada a la
heterogeneidad de las propiedades hidrogeológicas, a cuales son sometidas las
part́ıculas de contaminante a lo largo de su viaje por el medio.

De este modo, se presenta una metodoloǵıa para estimar los valores equiv-
alentes de bloque asociados a la ecuación alternativa de transporte. La nueva
técnica de escalado consiste en que cada bloque con valores heterogéneos de
transmisividad es reemplazado por un bloque homogéneo. A cada uno de esto

v



“myThesis” — 2009/4/9 — 20:11 — page vi — #10

vi CHAPTER 0. RESUMEN

bloques se le asigna un valor equivalente de transmisividad y de los coeficientes
de transferencia de masa y de dispersión, para representar los mecanismos de
transporte que tienen lugar en cada uno a escala fina. Estos valores son asigna-
dos en función de los mismos en las celdas que contiene cada bloque. El valor
equivalente de la transmisividad se obtiene aplicando la técnica de escalado
conocida como Simple Laplaciano con piel. Por su parte, los coeficientes de
transferencia de masa y de dispersión asociados a una función de memoria, son
derivados de la interpretación de la distribución de los tiempos de residencia
de las part́ıculas que atraviesan el área delimitada por cada bloque a escala
fina.

La metodoloǵıa propuesta ha sido evaluada mediante simulaciones de Monte
Carlo de transporte, aplicada en diversos casos sintéticos de acúıferos bidi-
mensionales, y en cada caso usando diferentes formulaciones de transferencia
de masa. Los resultados de los modelos escalados son comparados con una
solución de referencia derivada a una escala fina.

El comportamiento de los modelos escalados fue evaluado desde dos per-
spectivas diferentes: De un lado, se analiza la reproducción del comportamiento
medio de las principales caracteŕısticas del conjunto de curvas de llegada
(BTCs). Además, se determina el efecto que causa el escalado sobre la repro-
ducción de la incertidumbre, aśı como en la reproducción de la distribución es-
pacial del penacho de contaminante de referencia. Los resultados derivados del
análisis estocástico indican, que una apropiada reproducción de la distribución
de los tiempos de residencia en cada uno de los bloques del modelo numérico
a escala gruesa, asegura que el modelo escalado es capaz de reproducir el com-
portamiento medio del conjunto de BTCs. Por otro lado, se muestra que los
modelos escalados poseen un bajo poder predictivo para reproducir el nivel de
incertidumbre y el grado de dilución del penacho de la solución de referencia.
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Resum

L‘objectiu de la presente tesi és l‘estudi de l‘escalat del transport de soluts
no reactius. L‘escalat és usualment aplicat per a obtenir models numèrics
d‘aqüifer, que són una eina alternativa altament eficient, per establir estratègies
en problemes com ara, la remediació de sòls i aigües subterrànies contami-
nades, el disseny d‘emmagatzematges de residus reactius, o l‘evaluació del risc
ambiental per a les aigües subterrànies.

El comportament anòmal (referit en la literatura anglosaxona com non-
Fickian) observat en els resultats d‘assaigs de traçadors executats en camp o
en laboratori, tals com els perfils de concentració amb un alt pic i una llarga
cua, qüestionen l‘ús de la clàssica equació d‘advecció-dispersió, per simular
el transport a escala computacional. En aquest context, es presenten les in-
vestigacions en l‘ús dels models escalats de transferència de massa com una
eina alternativa per l‘escalat del transport, baix l‘enfocament de la modelació
aplicada.

El desplaçament d‘un contaminant a les aigües subterrànies és afectat per
la presència de zones d‘altes i de baixes velocitats del flux, on el contaminant
pot viatjar lliurement o bé pot ser retingut. Aquest contrast de velocitats ten-
deix a desaparèixer en els models escalats, a mesura que l‘escala de la malla
de modelació sigua més gran que la mida d‘aquestes zones. En aquestes cir-
cumstàncies, per reproduir el comportament del transport observat amb un
model escalat, cal considerar un procés addicional de transferència de massa
entre les zones més i menys conductives en l‘equació d‘advecció-dispersió. Es
proposa aćı com a alternativa, un model fenomenològic basat en el concepte de
que el transport pot ser simulat a gran escala utilitzant una malla de modelació
amb bloc homogenis de grans dimensions, on els paràmetres de transport asso-
ciats consideren alguna memòria vinculada a l‘heterogenëıtat de les propietats
hidrogeològiques, a quals són sotmeses les part́ıcules de contaminant al llarg
del seu viatge pel mig.

D‘aquesta manera, es presenta una metodologia per estimar els valors
equivalents de bloc associats a l‘equació alternativa de transport. La nova
técnica d‘escalat consisteix en que cada bloc amb valors heterogenis de trans-
missivitat és reemplaçat per un bloc homogeni. A cadascun dels blocs se
li assigna un valor equivalent de transmisivitat i dels coeficients de trans-
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ferència de massa i de dispersió, per representar els mecanismes de transport
que tenen lloc a cada un a escala fina. Aquests valors són assignats en funció
dels mateixos en les celáles que conté cada bloc. El valor equivalent de la
transmisivitat s‘obté aplicant la técnica d‘escalat coneguda com Laplaciˆ sim-
ple amb pell. Per la seva banda, els coeficients de transferència de massa i de
dispersió associats a una funció de memòria, són derivats de la interpretació
de la distribució dels temps de residència de les part́ıcules que travessen l‘àrea
delimitada per cada bloc a escala fina.

La metodologia proposada ha sigut avaluada mitjançant simulacions de
Monte Carlo de transport, aplicada a diversos casos sintètics d‘aqüifers bidi-
mensionals, i en cada cas usant diferents formulacions de transferència de
massa. Els resultats dels models escalats són comparats amb una solució de
referència derivada a una escala fina.

El comportament dels models escalats va ser valorat des de dues perspec-
tives diferents: D‘una banda, s‘analitza la reproducció del comportament mitjà
de les principals caracteŕıstiques del conjunt de corbes d‘arribada (BTCs). A
més, es determina l‘efecte que causa l‘escalat sobre la reproducció de la in-
certesa, aix́ı com en la reproducció de la distribució espacial del plomall de con-
taminant de referència. Els resultats derivats de l‘anàlisi estocàstic indiquen
que una apropiada reproducció de la distribució dels temps de residència a
cadascun dels blocs del model numèric a escala gruixuda, assegura que el
model escalat ès capaç de reproduir el comportament mitjà del conjunt de
BTCs. D‘altra banda, es mostra que els models escalats tenen un baix poder
predictiu per reproduir el nivell d‘incertesa i el grau de dilució del plomell de
la solució de referència.
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1
Introduction

1.1 Motivation and Objectives

Solute transport models can be used to predict the response of an aquifer
to planned remediation or for assessing environmental risk groundwater re-
sources. The development of theories and methodologies in the last decades
have achieve higher levels of predictive models, allowing a greater use of them.
However, the question is how to represent heterogeneity of transport parame-
ters into numerical models.

Hydrogeologic properties in aquifer vary in space, which means the char-
acterization of the spatial variation of the properties are needed to predict
the behaviour of flow and solute transport. Geostatics provides the ability
to characterize the spatial variation of the hydrogeologic properties of porous
media with a high resolution. Although high resolution are mandatory to
adequately describe the underlying physical processes, modeling groundwater
flow and solute transport with such resolution is most frequently unfeasible,
especially when dealing with geochemical systems. the problems stems from
the proper depiction of subgrid heterogeneity in numerical transport models
without compromising the computational cost.

Upscaling can be used to incorporate subgrid heterogeneity at the same
time that simplifies the system to overcome computational burden. Yet, it is
based on a constitutive upscaled transport model which highly controls the
final solution.
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Solute transport in an aquifer is traditionally simulated using the clas-
sical advection-dispersion equation. Unfortunately, the classical advection-
dispersion equation has been shown not to be adequate to model solute trans-
port at scales lager than the scale of heterogeneity. For instance, the classical
formulation of solute transport significantly underestimates the late-time be-
havior of breakthrough curves at observation locations. Alternative models
have been proposed in the literature for modeling solute transport at the com-
putational scale. Continuous time random walks, fractional derivatives, and
multirate mass transfer models constitute the most promising alternatives.

The objectives of this thesis are to review basic concepts of alternatives
transport models to simulate solute transport at the computational scale, to
present its scope and difference of these approaches, to present a new method-
ology to performance a upscaling mass transfer process based on the concept
of memory function; and to evaluate the use of upscaled mass transfer models
as a tool for upscaling solute transport. In this dissertation, upscaling mass
transport is restricted to non-reactive solute, that is to say, contaminants that
dissolve completely into the groundwater and do not react with any chemical
components of aquifer, nor degrade or chemically change over time.

1.2 Thesis structure

This dissertation is organized as follows. The first chapter of this dissertation
is the introduction. It is intended to present the issues motivating this research
and its organization. Chapter 2 provides an extensive review of alternative
models that have been proposed in the literature for modeling solute trans-
port at the computational scale. We focus our attention on alternative models
have been proposed in the literature for modeling solute transport at the
computational scale. Continuous time random walks, fractional derivatives,
and multirate mass transfer models constitute the most promising alterna-
tive. We examine the underlying assumptions, scope and differences of these
approaches.

Chapter 3 illustrates the use of upscaled mass transfer models as a tool
for upscaling solute transport in a general numerical modeling framework.
This was achieved by comparing Monte Carlo simulations at different support
scales. The performance of upscaled models was evaluated analyzing the re-
production of ensemble mean behaviour of the main features associated with
simulated breakthrough curves and propagation of uncertainty. Furthermore,
we describe how the upscaling process based on the concept of memory func-
tion is performed. Each block with heterogeneous transmissivity, is replaced
by a homogeneous block in which the unresolved processes are represented by
the parameter values associated with the memory function. The parameter



“myThesis” — 2009/4/9 — 20:11 — page 3 — #23

CHAPTER 1. INTRODUCTION 3

values are computed blockwise in order to reproduce, within each block, the
residence time and spread observed at the small scale.

Chapter 4 presents some transport simulations designed to investigate the
ability of upscaled models to reproduce solute transport for different type of
heterogeneous fields. We quantify the predictive power of upscaled models
analyzing the reproduction of dilution index and relative entropy associated
each solute plume. It also evaluates longitudinal mass distribution profiles
under different support scale. Finally, in chapter 5 we close with general
conclusions from this thesis. We also suggest several potential avenues of
future research as well as questions raised during this work that need further
investigation.
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2
Review of upscaling

methodologies

Abstract
The evolution and characterization in the space and time of mass solute

plume in aquifers needs the use of tools such as solute transport models. Non-
reactive transport of solute through porous media has been simulated using
the classical advection dispersion equation (ADE). The anomalous behaviour
transport observed in test field, exhibited by asymmetric shape of break-
through curves, has questioned the use of ADE to simulate transport at a
scale high than scale heterogeneity. In this framework have been proposed
alternatives transport models to treat solute transport. This chapter presents
a review of four approaches that give rise to representations of transport pro-
cess (advection and dispersion) of nonreactive tracer in heterogeneous porous
media.

2.1 Introduction

The quantification of solute transport through aquifers has been focus of re-
search over several decades in hydrogeology. Traditionally, transport solute in
aquifers is represent using the ADE framework at computational scale. How-
ever, it is well documented in the literature and known from field test that
ADE can not reproduce anomalous transport observed. Contaminant trans-
port is very affected by the presence of high and low water velocity zones,
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where solute can be channelized or stagnant. For this reason, trying to repro-
duce the same transport behaviour observed in field requires alternative trans-
port approaches. We focus our attention on four such approaches: Multirate
mass transfer (MRMT), Time-Depend Macrodispersive (TMDM), Continuous
time random walk (CTRW) and Fractional Advection-Dispersion Transport
(FADT). We start present the theoretical framework of ADE.

2.2 Advection Dispersion model (ADE)

The mass conservation equation constitutes the basis for describing the flow
and solute transport in the subsurface. It is basically a mass balance equation
which expresses that the net mass entering a control volume must be equal to
the accumulate mass. For nonreactive solute it is written as,

∂ρ(x, t)
∂t

= −∇ · J(x, t) + r(x, t) (2.1)

where ρ(x, t) is the solute mass per unit volume, J(x, t) is the total mass flux
vector whose magnitude gives the mass per unit time crossing a unit surface
perpendicular to the vector direction, and r(x, t) is a solute mass source/sink
term. This equation is written in differential form but it is also valid for
any fixed control volume in the system, which is the general context in porous
media where most properties area determined over difference support volumes.
In this case, defining a volume average operator of an aquifer property π as,

πv(x) =
1
v

∫

v(x)
πdV

being x the centroid of the control volume, the mass conservation equation
can be written as,

φ
∂Cv(x, t)

∂t
= −∇ · Jv(x, t) + rv(x, t) (2.2)

where φ is the porosity of the medium, and C is the solute concentration.
The control volume denotes any given support scale, ranging from scale of
measurement to the computational scale.

The mass flux is usually written in relative terms with respect to the
advective contribution of mass fluxes, Jv

a(x, t), which is defined as Jv
a(x, t) =

qv(x, t)Cv(x, t). The residual contribution to mass flux with respect to Jv
a

is denoted as Jv
d(x, t) and accounts for dispersive processes, i.e., the effect of

velocity fluctuations about some average value,

Jv
d(x, t) = Jv(x, t) − Jv

a(x, t) (2.3)
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At the laboratory scale (the scale of core sample), denoted herein as v = &,
the groundwater flux q" is given by Darcy’s law

q"(x, t) = −K"(x)∇h"(x, t) (2.4)

and the dispersive mass fluxes J"d(x, t) are typically express through the Fick-
ian constitutive theory, which maintains that the dispersive fluxes at a given
location are proportional to the gradient of solute concentrations at the loca-
tion,

J"d(x, t) = −φD"(x)∇C"(x, t) (2.5)

where D" is the local hydrodynamic dispersion tensor, which is typically de-
fined in two or three dimensions by the eigenvalues associated with principal
axes parallel and perpendicular to the directional flow through

φD"
i = φDdτ + αi|q| (2.6)

where Dd is the molecular diffusion coefficient (assumed isotropic), τ is the
tortuosity, D"

i are the eigenvalues of D", and αi are the local dispersivity
coefficients. Components parallel and transverse to the flow direction are
usually denoted as longitudinal and transverse dispersivities, αL and αT .

Substituting the definitions of the advective and Fickian Dispersive mass
fluxes(2.5) in the mass conservation equations (2.2), it is obtained the classical
advection-dispersion equation presumably valid at the laboratory scale,

φ
∂C"(x, t)

∂t
= −∇ · (q"(x, t)C"(x, t)) +∇ · (φD"(x)∇C"(x, t)) + r"(x, t) (2.7)

Most frequently, numerical models that are used to make solute transport
predictions utilize the Fickian assumption. Unfortunately, the computational
scale typically used in numerical models is significantly larger than the labo-
ratory scale and the Fickian constitutive theory in no longer valid.

Available alternative transport models generalize the Fickian constitutive
theory by taking into account that total mass fluxes should in general depend
on the past history of mass fluxes in space and time. This has been demon-
strated by stochastic theory [Deng et al. (1993)] as well as by the volume
averaging method [Wood et al. (2003)]. This spatialtemporal dependency is
sometimes described by a convolution integral,

Jv
d(x, t) = −

∫ t

0

∫

!3
φMv(s, τ ;x)∇Cv(x− s, t − τ)dsdτ (2.8)

where Mv(s, t;x) is the spatial-temporal kernel memory function, which can
be seen as a weighting function of the concentration gradients. In this way
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the macrodispersive flux depends on the concentration gradients throughout
the space-time domain and thereby it exhibits a nonlocal dependence on the
concentration gradients [Cushman and Ginn (2000)].

In general, the function Mv(s, t;x) is block specific (conditioned to the
x location of the control volume centroid), not depending only on the un-
derlying heterogeneity but also on the numerical discretization of the domain
and the size/shape of the solute plume. Hence, substituting the generalized
Fickian equation (2.8) in the mass conservation equation (2.1), the alternative
transport model reads.

φ
∂Cv(x, t)

∂t
= −∇ · (qv(x, t)Cv(x, t))+

+ ∇ ·
{∫ t

0

∫

!3
φMv(s, τ ;x)∇Cv(x− s, t − τ)dsdτ

}
+ rv(x, t) (2.9)

Considering that for large travel distance (t → ∞) concentration gradients
inside the integral are approximately constant at some point, the advection-
dispersion equation is recovered with an equivalent dispersion coefficient given
by

φDv(x) =
∫ t

0

∫

!3
φMv(s, τ ;x)dsdτ (2.10)

This expression is sometimes written in relative terms with respect to local
Fickian dispersive contribution as,

φDv(x) = φD"(x) +
∫ t

0

∫

!3
φMv

m(s, τ ;x)dsdτ (2.11)

where φMv
m(s, τ ;x) = φM(s, τ ;x) − φD"(x)δ(x − s, t − τ). The subscrip m

refers to the macrodispersive kernel memory function. The first term explains
the contribution of dispersive flux at local scale (assumed Fickian), whereas
the second term represents an additional dispersive contribution duo to hetero-
geneity embedded into the fixed volume v. Using small perturbation stochas-
tic theories, Gelhar and Axness (1983) obtained the same expression in the
probability space. They found that for an infinite domain, large plume, and
steady-state uniform flow conditions the memory function should be expressed
as

φM∞
m (s, t) = G0(s, t)Cqq(s) (2.12)

where G0(s, t) is the Gaussian homogeneous solution to the advection-dispersion
equation and Cqq is the covariance function of the velocity field. following this
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reasoning, modelers that used commercial transport codes based on advection-
dispersion equation, normally need to enhance the values of dispersivity coeffi-
cients to account for the unresolved heterogeneity not described by the model.
In this context, block equivalent dispersion tensor of a numerical transport
code, Db, can be formally expressed as

φDb
i = φτDd + (αi + Ab

a|q|) (2.13)

Db
i are the eigenvalues of Db, and Ab

i is the increase in block dispersivities.
Here, we used the notation that v = b when referring to grid-blocks or elements
of a numerical transport code. For most model discretizations, the increase in
longitudinal dispersivity, Ab

L, is the dominant parameter having values much
larger than αL; Ab

L ranges from meters to kilometers [e.g. Gelhar et al. (1992)]
whereas αL is in order of millimeters [e.g. Fernàndez-Garcia et al. (2004)].

Standard macrodispersion models are those that employ enhanced block
dispersivity coefficients to compensate for the homogenization on the basis
of the aforementioned discussion. However, further research has shown that
these conditions hardly occur in reality. General conditions are not Fickian.
In this case, the Fickian theory tends to largely underestimates the tail of con-
centration breakthrough curves even for moderate field heterogeneities and ”
well-behaving” multiGaussian random fields [Fernàndez-Garcia et al. (2007)].

2.3 Time-Depend Macrodispersive Model (TDM)

Another approach is Time-Depend Macrodispersive Models. This approach is
based on the localization of nonlocal Fickian Theory presented in the previous
section (equation 2.8). The nonlocal Fickian flux is localized about the plume
center of mass. In the case that the memory kernel Mm(s, τ ;x) dies out as
| s | and | τ | increases, the macrodispersive flux strongly depends on the con-
centration gradient at the current time and position and one can approximate
the macrodispersive flux simply as,

Jv
d(x, t) ≈ −φDv(x, t)∇Cv(x, t) (2.14)

being,

φDv(x, t) = φD"(x) +
∫ t

0

∫

!3
φMv(s, τ ;x)dsdτ (2.15)

Now, using the mass conservation equation with the localized version of the
macrodispersive flux (equation 2.14), the solute transport equation is written
as,



“myThesis” — 2009/4/9 — 20:11 — page 10 — #30

10 CHAPTER 2. REVIEW OF UPSCALING METHODOLOGIES

φ
∂Cv(x, t)

∂t
= −∇·(qv(x, t)Cv(x, t))+∇(φDv(x, t)∇Cv(x, t))+rv(x, t) (2.16)

Note that this equation differs from the classical advection-dispersion equation
(2.7)in the tensor of dispersion D(x, t) not only depends on the spatial location
but it also changes with time. Transport models that follow this approach are
referred to as time-dependent macrodispersive models.

Basically, two similar approaches have been suggested to use effective time-
dependent macrodispersion tensors derived from stochastic theories for small
plumes [Dagan (1991);Rajaram and Gelhar (1993); Dentz et al. (2000)]. In
this case, the time-dependent macrodispersion tensors in (2.16) correspond to
a solute plume with shape equal to the grid-block of the numerical model.
Likewise, Rubin et al. (1999, 2003) have determined effective time-dependent
macrodispersion tensor by removing the frequency spectra of velocity fluctu-
ations in small-perturbation expression of macrodispersion.

Although the theoretical framework in (2.16) is general and not restricted
to small perturbations, on practice, there is still not an algorithm to estimate
time-dependent dispersion tensor specific to grid-blocks of a numerical model.
Moreover, close-form analytical stochastic solutions provide time-dependent
dispersion coefficients that vary with time but do not change from one grid-
blocks to another.

2.4 Multi-rate mass transfer model (MRMT)

Other equations for modeling the solute transport at computational scales
lager than the characteristic length is an advection-dispersion equation (ADE)
with an additional source/ sink term, which accounts for exchange between
high and low conductivity zones. In other words, the domain is decomposed
into a mobile zone with pore spaces filled with mobile water, transport process
in this zone include advection, dispersion, and chemical reactions; and an
immobile zone with pore spaces filled with stagnant water where advective
transport is negligible. Figure 2.1 shows a diagram schematic of conceptual
model of mass transfer model. The rate at which solute moves between these
two domains is controlled by a mass transfer coefficient α. One defines Cm

and Cim, the concentrations in mobile and immobile zones respectively. The
ADE, as it includes advection and dispersion, is used to describe Cm. The
source sink term represents the mass transfer exchange between a mobile zone
and a continuous or discrete distribution of immobile zones leading to the
non-Fickian solute mass fluxes at the computational scale,
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θm
∂Cv

m(x, t)
∂t

+ θim

∫ ∞

0
f v(α)

∂Cv
im(x, t;α)
∂t

dα

= −∇(qv(x, t)Cv
m(x, t)) + ∇ · (θmDv(x)∇Cv

m(x, t)) + rv(x, t) (2.17)

The mass flux between mobile and immobile zones is driven by the con-
centration difference between zones as,

θim
∂Cv

im(x, t;α)
∂t

= α(Cv
m(x, t) − Cv

im(x, t;α)) ∀α (2.18)

where α is the mass transfer coefficient, f v(α) is the density function of mass
transfer rates, θm and θim are the volume fractions of the mobile and immobile
zones, Cm is the concentration in mobile zones and Cim is the concentration
immobile zones.

Integrating the mass transfer equation (2.18) and then substitutingCv
im(x, t;α)

into (2.17), one obtains a transport equation simply depending on one variable,
the mobile concentration,

θm
∂Cv

m(x, t)
∂t

+ θm · βv
tot

∫ t

0
gv(τ)

∂Cv
m(x, t − τ)
∂t

dτ

= −∇(qv(x, t)Cv
m(x, t)) + ∇ · (θmDv(x)∇Cv

m(x, t)) + rv(x, t) (2.19)

where βv
tot is the total maximum capacity to retain particles in the immobile

zones, gv(t) is known as the (temporal) memory function,

gv(t) =
∫ ∞

0
αf v(α)e−αtdα (2.20)

The memory function can be interpreted as the particle resident time distri-
bution function in the immobile zone. In other words the memory function
represents the mass flux to the immobile zones per unit volume of aquifer,
for a unit change in concentration in the mobile zones[(Haggerty et al., 2000);
(Carrera et al., 1998)]. The formulation of this term depends on the geometry
of immobile zones and on the variability of mass transfer or diffusion rates
(Haggerty et al., 2000). Table 2.1 shows the density functions f v(α) for the
models of mass transfer used in this dissertation.

Various researches [e.g. Zinn and Harvey (2003)] have demonstrated that
nonreactive solute transport through heterogeneous medium is often better
simulated when an advection-dispersive model is used in conjunction with
a mass transfer equation. Conceptually, this artificial mass term does not
represent local kinetic reactions but it rather accounts for solute mass exchange
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between high and low velocity areas occurring at the Darcy-scale within each
grid block. Although straightforward relationships between memory functions
and physical properties of the aquifer are not established yet, the meaning
of the memory function has been seen to strongly depend on heterogeneity.
The formulation of the memory function depends on the geometry of immobile
zones and on the variability of mass transfer or diffusion rates (Haggerty et
al., 2000).

Model f v(α) gv(t)

First-order βtotδ(α − αf ) αfβtote−αf t

Multirate Series f v(α)
∫ ∞
0 αf v(α)e−αtdα

Power Law Distributiona βtot(k−2)

αk−2
max−αk−2

min

αk−3
∫ αmax

αmin
αf v(α)e−αtdα

a A truncated power law density function with k > 0, k != 2, and αmin !
α ! αmax. αmax is the maximum rate coefficient, αmin is the minimum rate
coefficient, and k is the exponent.

Table 2.1: Density Functions f v(α) corresponding Memory Func-
tions gv(t) (after Haggerty et al., 2000)
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!1,"1 !2,"2 
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Figure 2.1: Representation of mass transfer conceptual model.
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2.5 Continuous time random walk (CTRW)

The continuous time random walk (CTRW) is a generalization of the standard
(discrete) random walk. It is based on the idea that not only the length of a
particle jump is random (not necessarily following a Gaussian distribution as
the standard random walk) but also the particle undergoes a random waiting
time between two successive jump. The length of a given jump and the waiting
time are drawn from a joint pdf ψ(x, t), which is known as the jump pdf.
From ψ(x, t), the jump length pdf and the waiting time pdf can be derived as
marginal distribution,

λ(x) =
∫ ∞

0
ψ(x, t)dt (2.21)

and

ω(t) =
∫ ∞

−∞
ψ(x, t)dx (2.22)

Following Metzler and Klafter (2000), different types of CTRW processes
can be categorized by the characteristic waiting time and jump length second
moment,

T =
∫ ∞

0
tω(t)dt (2.23)

Σ2
ij =

∫ ∞

−∞
xixjλ(x)dx (2.24)

Anomalous dispersion takes place when either the characteristic waiting
time or characteristic jump length are not finite. The continuous time ran-
dom walk method provides a general framework in the sense that both the
fractional-dispersion transport models and mass transfer models haven demon-
strated to be particular cases of the CRTW formalism (Dentz and Berkowitz ,
2003; Cushman and Ginn, 2000). Most frequently, for simplicity, the CTRW
formalism is simplified by considering the waiting time and jump length mu-
tually independent. In this case, assuming a finite characteristic jump length
but undefined characteristic waiting time, the transport equation governing
the movement of particles under steady state flow condition is (Dentz and
Berkowitz , 2003)

φ
∂Cv

m(x, t)
∂t

= −∇·[
∫ t

0
Mv(t)qv(x)Cv(x, t)−M t(v)Dv(x)∇Cv(x, t)dt]+rv(x)

(2.25)



“myThesis” — 2009/4/9 — 20:11 — page 14 — #34

14 CHAPTER 2. REVIEW OF UPSCALING METHODOLOGIES

being M(t) the memory function which is typically expressed in the Laplace
domain as

M(p) = Tp
ψ(p)

1 − ψ(p)
(2.26)

p is the Laplace variable. The memory function serves to capture the non-
Fickian transport induce by the heterogeneity not represented by the model.

2.6 Fractional Advection-Dispersion Transport Mod-
els (FADTM)

Fractional advection-dispersion transport models have been used in recent
years [e.g. Metzler and Klafter (2000); Schumer et al. (2003); Benson et al.
(2000)] as a way to generalize the advection-dispersion equation with the ob-
jective to better describe the power-law scaling behavior in the spread of so-
lute plume observed in the field. Mathematically, fractional dispersion can
be viewed as a specific case of continuous time random walk in which the
transition displacement distribution of particles p(s) is described by a Lévy
distribution. A Lévy distribution is a generalization of the Gaussian distribu-
tion. It is defined in the Fourier space as

f(k) = e(|σk|)α
(2.27)

where k is the Fourier variable, α is the magnitude of the Lévy flight and
α is the Lévy index. For α < 2 the variance of the distribution function is
undefined, for α < 1 the mean of the distribution function is also undefined.
For α = 1 we recover the standard Gaussian distribution and the inverse of
The Fourier Transform has an explicit expression.

The transport equation is defined as

φ
∂Cv

m(x, t)
∂t

= −∇·(qv(x, t)Cv(x, t))+∇·(φDv
α−1(x)∇α−1Cv(x, t))+rv(x, t)

(2.28)

where the term Dv
α−1(x)∇α−1Cv(x, t) is defined in the Fourier space as

F[Dv
α(x)∇αCv(x, t)] = −Dv

α(x) | k |α Cv(k, t) (2.29)

Note that this expression is a generalization of the Fourier Transform of
a derivative for noninteger numbers. In order to emphasize the relationship
between this model and the previous discussion, we will use the convenient
result that the fractional advection-dispersion equation can be obtained as a
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special case of the nonlocal Fickian transport equation (2.8). That is, Cush-
man and Ginn (2000) demonstrated that the fractional advection-dispersion
equation is recovered from CTRW when the kernel memory term is given by
the following specific form, which in one-dimension reads as,

M(s, τ) =
Dv
α−1δ(τ)H(s)

Γ(2 − α)sα−1
(2.30)

where Dv
α−1 is constant, δ(τ) is the Dirac delta, and H(s) is Heaviside function

on (0,∞). The important point here is to note that the Dirac delta function
serves to localize the flux in time, so that the fractional advection dispersion
equation only nonlocal in space (Cushman and Ginn, 2000). Also, the Heav-
iside function serves to restrict the nonlocality in space to positive s values,
which corresponds to an upstream weighting memory function.

2.7 Summary and Conclusions

A review of recent transport approaches to simulate solute transport using
numerical models has been presented. The emphasis of this review has been
place on the theoretical framework of each approach. These models provide
new ways to quantify contaminant transport. However, transport problem
generally require a great detail of heterogeneity than the flow problems. The
issues important to represented solute transport is the capture of aquifer het-
erogeneity.

The question of how to assign appropriate transport parameter values to
each element or block in the numerical model has been not completely resolved.
A way to resolve this issue is to use upscaling. In this context, the next
chapters of this dissertation will investigate and propose a methodology to
upscale solute transport, since upscaling of transport is usually required to
obtain computationally efficient numerical models in many field applications.
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3
Upscaling Transport with

Mass Transfer Model

Abstract
The ambiguity associated with the choice of an adequate conceptual trans-

port model constitutes a major challenge associated with the upscaling of
solute transport. Among the different alternatives to the classical advection-
dispersion model, the (multirate) mass transfer model has been proposed as a
valuable and convenient alternative to model the large-scale behavior of solute
transport. Here, we evaluate the use of mass transfer models as a constitutive
equation for upscaling solute transport. To achieve this, we compare Monte
Carlo simulations of solute transport at two different support scales. Transport
simulations performed at the smallest scale represent a set of reference trans-
port solutions, which are contrasted against transport simulations obtained
using an upscaled model. Several formulations of the multi-rate mass transfer
model, which differ in the type of memory function, are used as a constitutive
transport equation. The large scale scenario represents an operational model
obtained by partially homogenizing the reference solution. Results show that,
albeit the double-rate and the truncated power-law mass transfer models were
capable to properly describe the ensemble average behavior of the main fea-
tures associated with the integrated breakthrough curves, the uncertainty as-
sociated with the upscaled mass transfer models was still substantially smaller
than that attributed to the reference solution. Importantly, the corresponding
cumulative distribution function of concentrations (CDF) associated with the

21
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upscaled model follows a distribution similar to the reference solution but with
smaller dispersion. The reason is that while appropriate memory functions can
be used to preserve the residence time distribution of mass particles during
upscaling, the lack of memory in space prevents the model from reproducing
mass fluxes in all directions. Specifically, the reproduction of mass fluxes tak-
ing place at the interface between two homogeneized blocks of the upscaled
model are not satisfied, thus providing a poor description of the spatial distri-
bution of mass particles.

3.1 Introduction

Albeit different approaches can be used to generate high-resolution maps of
aquifer attributes by means of geostatistics or related tools, still, in prac-
tice, due to computational efficiencies, some sort of upscaling (i.e., transfer
of small-scale information into a larger support volume) is usually necessary
to construct a numerical transport model. In subsurface hydrology, the large
spatial variability observed in aquifer attributes, being the hydraulic conduc-
tivity an attribute that varies several orders of magnitude within an aquifer,
largely influences solute transport predictions and drastically complicates the
upscaling of solute transport.

Among the effects of heterogeneity, the usual observation of anomalous
(non-Fickian) transport, manifested in the field by peaked concentration pro-
files having long back-tails, has questioned the use of the classical advection-
dispersion equation (ADE) to model transport phenomena at the usual com-
putational scale of a numerical model (Mackay et al., 1986; Adams and Gelhar ,
1992; Riva et al., 2008; Gouze et al., 2008; Haggerty et al., 2000). These field
observations are supported by laboratory experiments (Levy and Berkowitz ,
2003; Fernàndez-Garcia et al., 2005c), numerical simulations of solute trans-
port in heterogeneous media (Zinn and Harvey, 2003; Feehley et al., 2000;
Fernàndez-Garcia et al., 2005a, 2007; Salamon et al., 2007), and fundamental
statistical theory.

By modeling hydraulic conductivity (defined at a small support scale) as
a correlated random space function, stochastic theories have succeeded in
demonstrating that mean mass fluxes at the x location and time t should
not in general be exclusively dependent on the mean concentration gradients
at that location and time, as it is expressed by Fick’s law. Instead, dispersive
mass fluxes should depend on the past values of the mean concentration gra-
dients over the entire space-time domain (Hu et al., 1995; Morales-Casique et
al., 2006), thus rendering memory to the transport equation.

In response to this lack of Fickianity, several alternative transport models
have been proposed in the literature to properly describe transport phenomena



“myThesis” — 2009/4/9 — 20:11 — page 23 — #43

CHAPTER 3. UPSCALING TRANSPORT WITH MASS . . . 23

at a large support scale. Promising alternatives contemplate continuous time
random walks (CTRW) (Berkowitz and Scher , 1998), fractional derivatives
(Benson et al., 2000), and multirate mass transfer models (MRMT) (Hag-
gerty and Gorelick , 1995; Carrera et al., 1998) among others. Comprehensive
reviews of the theories of anomalous transport in heterogeneous media are
provided by Berkowitz et al. (2006) and Neuman and Tartakovsky (2008). In-
terestingly, the CTRW formalism supposes a more general framework, but
simplifies to the MRMT model in its most common adopted form (Dentz and
Berkowitz , 2003). Still, the MRMT model has the advantage that its formu-
lation and physical interpretation is well-known by practitioners, and many
numerical transport codes based on the MRMT model are already available
for field applications (Zheng and Wang, 1999; Carrera et al., 1998; Salamon
et al., 2006; Willmann et al., 2008). Alternatively, the stochastic ADE equa-
tion, defined over a small support volume, can be used to directly provide the
conditional low-order moments (mean and covariance) of concentrations and
solute fluxes (Morales-Casique et al., 2006). Interestingly, upon considering no
statistical interdependence of the velocity field, the mean transport equation
reduces to the CTRW model (Neuman and Tartakovsky, 2008).

Here, we focus on the use of MRMT models as a constitutive equation
for upscaling solute transport. Various researches (e.g., Guswa and Freyberg,
2002; Carrera et al., 1998; Harvey and Gorelick , 2000; Zinn and Harvey, 2003;
Liu et al., 2004; Riva et al., 2008; Willmann et al., 2008) have shown that large-
scale non-reactive solute transport phenomena observed in a heterogeneous
medium is often better represented when a mass transfer equation is coupled
with the ADE.

Conceptually, this artificial mass transfer equation does not represent lo-
cal kinetic reactions or diffusive mass transfer processes but it rather accounts
for subgrid heterogeneity (Zinn and Harvey, 2003; Willmann et al., 2008).
In this context, we compare Monte Carlo simulations of solute transport ob-
tained at two different support scales with the aim to evaluate the adequacy
of MRMT models as a tool for upscaling. Transport simulations performed at
the smallest scale represent a set of reference solutions defined on the basis of
a local ADE. At the large scale, several formulations of the MRMT model are
evaluated as potential constitutive transport equations.

The upscaled model scenario represents an operational or a functional
model obtained by partially ”homogenizing” the reference geological system
(defined over a fine-scale) so that it ultimately consists of various homogeneous
regions. We emphasize the word ”partial homogenization” to be in contrast
with most previous analysis of upscaling of solute transport (e.g., Harvey and
Gorelick , 2000; Zinn and Harvey, 2003; Willmann et al., 2008) in which the
system is completely homogenized. The distinctive aim of this work is that:
(1) we look at the process of transferring subgrid information to finite blocks
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or homogeneous regions of a numerical model by means of MRMT models;
(2) we seek for a more comprehensive understanding of the interplay between
the (homogenized) regions of an upscaled transport model; and (3) we evalu-
ate how uncertainty is affected by the change of the support scale when the
MRMT model is selected for upscaling.

3.2 Transport Models

3.2.1 The Local Transport Model

At the local scale, denoted herein as ω, we considered solute transport to be
governed by the advective-dispersion equation (ADE). Neglecting the changes
in porosity with time and disregarding the source/sink term, this is written as

θω
∂cω

∂t
= −∇·(qωcω − θωDω∇cω) , (3.1)

where the first term in the divergence operator is the advective mass flux
and the second term accounts for dispersive fluxes. cω is the volume average
concentration of solute in ω, and qω is the Darcy flux. This equation is based
on the mass conservation principle and assumes that the dispersive mass fluxes
can be described by Fick’s law at some small scale ω, i.e., mass fluxes at point
x and time t are proportional to concentration gradients at point x and time
t,

Jωd (x, t) = −θωDω
d∇cω(x, t). (3.2)

This assumption has been challanged by several authors. In general, in the
absence of dead-end-pores, Fick’s law can be argued to be valid for sufficiently
small support volumes (Neuman and Tartakovsky, 2008). In any case, from
a practical point of view, our analysis is based on the fact that the non-
Fickian transport behavior observed at the Lauswiesen site (Riva et al., 2008)
and at the MADE site (Salamon et al., 2007) has been adequately modeled
using an ADE (defined over a small support volume) in conjunction with a
high-resolution description of heterogeneity. This is precisely the situation we
consider here.

The local dispersion tensor, Dω
d , is the sum of the effective molecular dif-

fusion tensor, Dω
diff , and the mechanical dispersion tensor, Dω

disp. The latter
accounts for residual fluxes at the local scale ω, and is typically defined with
eigenvectors oriented parallel and perpendicular to the direction of flow, and
eigenvalues defined as

Dω
disp,i = αi

|qω|
θω

, (3.3)



“myThesis” — 2009/4/9 — 20:11 — page 25 — #45

CHAPTER 3. UPSCALING TRANSPORT WITH MASS . . . 25

where αi are the local dispersivity coefficients. The αi components parallel
and transverse to the flow direction are usually denoted as longitudinal and
transverse dispersivities, αL and αT .

3.2.2 The Upscaled Mass Transfer Model

At the computational scale, denoted here as v (v & ω), transport phenomena
is represented by means of the MRMT model (Haggerty and Gorelick , 1995;
Carrera et al., 1998; Haggerty et al., 2000). The MRMT model allows to rep-
resent a large variety of mass transfer processes taking place simultaneously
over a wide range of scales, i.e., processes ranging from pore diffusion at the
grain scale to matrix diffusion into fractured rocks can be simultaneously rep-
resented. This model considers an overlapped continuum media formed by a
mobile domain, where advection-dispersion takes place, and many immobile
domains, where mass can be transferred to and temporarily be trapped.

Here, the MRMT model is not used in strict sense to represent a variety of
diffusive processes. Instead, the mobile and immobile zones are viewed as to
represent areas of relatively fast and relatively slow solute movement (inside
v). Similar representations of a heterogeneous media have been considered by
Zinn and Harvey (2003) and Willmann et al. (2008). Formally, the MRMT
equation is essentially an ADE with a source/sink term,

θv ∂cv

∂t
= −∇·(qvcv − θvDv

d∇cv) + θvΓv(x, t), (3.4)

where

Dv
d,i = Dω

diff,i + (αi + Ai)
|qv|
θv

(3.5)

Γv(x, t) = β(x)
∫ t

0
g(x, τ)

∂cv

∂t
(x, t − τ)dτ (3.6)

The additional dispersive contribution term in (3.5), Ai, accounts for pro-
cesses that can actually be represented with a Fickian model, whereas pro-
cesses associated with anomalous transport are represented through the mem-
ory function g(x, τ).

As time evolves, the memory function emphasizes the different past values
of the concentration derivatives with time, thus rendering memory to solute
transport. The coefficient β(x) defines the magnitud of memory effects and is
known as the capacity coefficient.

Several forms of the MRMT model are found in the literature (e.g., Carrera
et al., 1998; Haggerty et al., 2000). Among them, the single-rate model, the
gamma model, the log-normal model, the power-law model, and the diffusion
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model (with spherical, layered and cylindrical geometries) are the most com-
monly used. Each one of these conceptual models have been successfully em-
ployed to model field and laboratory experiments. Remarkably, the single-rate
mass transfer model was successfully utilized to reproduce the tracer experi-
ment at the Macrodispersion Experiment (MADE) site using either (partially
homogenized) numerical models (Feehley et al., 2000) or (completely homog-
enized) analytical solutions (Harvey and Gorelick , 2000). Importantly, the
quantities associated with these mass transfer models at the MADE site were
shown to be mostly related to Darcy-scale heterogeneity (Salamon et al., 2007).

Here, we selected three potential upscaled constitutive equations based on
a different form of the memory function: the single-rate model, a discrete
multirate model with two immobile domains (double-rate), and the truncated
power-law memory function. The mathematical expression of the memory
function g(x, t) can be generally written as

g(x, t) =
∫ ∞

0
αf(x,α)e−αtdα (3.7)

where f(x,α) is a function that can be physically interpreted as the probability
distribution function of mass transfer rates associated with distinct domains
of the overlapped continuum. Detail description of the three selected upscaled
mass transfer models are provided in Table 3.1. We note that becuase our
upscaled model considers a domain formed by various homogeneous regions,
the mass transfer parameters in (3.6) depend also on the space location ac-
cordingly.

Table 3.1: Parameters to be estimated for each constitutive upscaled mass transfer
model.

Model Memory function Parameters
First-order Mass Transfer α1e−α1t β, α1, vm, AL

Double rate Mass Transfer a α1
β1
β e−α1t + α2

β1
β e−α2t βj=1,2, αj=1,2, vm, AL

Power Law Mass Transfer b ∼ t1−k β, αmax, αmin, k, vm, AL
a β = β1 + β2
b The power law model is only defined over the interval αmin ≤ α ≤ αmax

In a randomly heterogeneous aquifer, stochastic theories predict that the
mean dispersive flux should in general depend on the past mean concentration
gradients throughout the entire space-time domain (Neuman, 1993; Morales-
Casique et al., 2006; Neuman and Tartakovsky, 2008). In a similar manner,
the memory function in the MRMT model operates as a weighting function
that penalizes past concentration derivatives in time (but not in space). In
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this context, the MRMT model should be seen as a model with a space-
localized memory kernel. This is in contrast with the time-localized memory
kernel associated with the fractional advection-dispersion model (Cushman
and Ginn, 2000). In anyway, we note that the intend here is not to question
the validity of the theoretical premises underlying the upscaled MRMT model
but to directly assess the applicability of a well established model.

3.3 Monte Carlo Transport Simulations

3.3.1 Setup

We consider a confined two-dimensional aquifer whose domain consists in a
square area of 240 × 240 units. Flow is driven by a mean hydraulic gradient
oriented parallel to the x-direction (Jx = 0.01, Jy = 0) under steady-state flow
conditions. Boundary conditions were no-flux for boundaries parallel to the
mean flow and constant-head otherwise. Thus, groundwater flow is moving
from left to right.

Aquifer heterogeneity is represented by considering the natural log of trans-
missivity, Y(x), as a spatially varying attribute. All other properties are as-
sumed spatially constant. A total of 50 different transport solutions were
obtained by generating multiple equally likely realizations of Y(x). Y (x) is
assumed isotropic at the small support scale and is represented by uniformly
discretizing the entire domain into 240 × 240 square pixels of 1 unit size.

Each upscaled mas transfer model was obtained by transferring the fine-
scale pixel information into a numerical model formed by 10 × 10 regular
homogeneous blocks. Thus, the size of each block was of 24×24 units. Figure
3.1 shows an individual reference transmissivity field, Y (x), contrasted against
the corresponding depiction of the transmissivity field in the upscaled model.

To simplified the problem, at the local scale, transport is assumed purely
advective so that Dω

d = 0. The transport problem setup considers a solute
plume initially distributed over a long transverse line located upgradient and
having a constant concentration. This line was centered in the transverse
dimension of the domain and takes up 140 units. To avoid boundary effects,
the plume source was separated 21 units from the upgradient head boundary
and 50 units from the impermeable boundaries.

Transport simulations were designed to efficiently calculate the global mass
flux breakthrough curves observed at 14 x-control planes equally distributed
within the entire domain. The simulated breakthrough curves constituted the
reference transport solution used to subsequently analyze the performance of
upscaling by the different upscaled models.
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Block 
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 properties

Figure 3.1: Illustration of the upscaling process: (a) Map of transmissivities
for a given realization superposed with the discretization of the upscaled model
(black lines); (b) Map of equivalent transmissivities (T v

xx).

3.3.2 Reference Transmissivity Fields

The reference transmissivity fields were conceptualized as an stochastic bi-
modal composite medium. The objective here was to test the upscaled models
in a complex geological system formed by highly conductive conduits embed-
ded in an otherwise well behaving Gaussian heterogeneous medium. Thus,
we assumed that the aquifer is composed of two coexisting materials or facies
(M1 and M2), each represented by a different random function model of the
spatial distribution of the natural log of transmissivity, Y1(x) and Y2(x),

Y (x) = (1 − I(x))Y1(x) + I(x)Y2(x) (3.8)

where I(x) is an indicator spatial random variable,

I(x) =

{
1 x ∈ M2

0 otherwise
(3.9)

The natural log of transmissivity Y1(x) of the first material, M1, follows
a multiGaussian random function with a geometric mean of Tg=1 and an
anisotropic exponential covariance function,

CY1(|r|) = σ2
Y1

exp



−

√√√√
(

rx

λY1
x

)2

+

(
ry

λY1
y

)2


 (3.10)

where r = (rx, ry) is the separation vector between two points of the aquifer,
σ2

Y1
is the variance of Y1(x) = ln T1(x) assumed as 9, and λY1

x and λY1
y are

the longitudinal and transverse correlation scales set to 40 and 4 units, re-
spectively. The second material, M2, represents a family of highly conductive
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Y(x) = (1-I(x))Y1(x) + I(x)Y2
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Figure 3.2: Illustration of the steps involved in the stochastic generation of
the composite transmissivity field, Y (x) = (1−I(x))Y1(x)+I(x)Y2. Blue and
red pixels in the I(x)-map indicates materials M1 and M2, respectively.

conduits. We considered that the variation of Y2(x) is of minor importance
compared with Y1(x), and we therefore assigned a deterministic constant trans-
missivity value to Y2(x), i.e., Y2(x) = Y2 = 2.0. Figure 3.2 illustrates the steps
involved in the stochastic generation of the composite random field for a given
realization of Y (x).

In a bimodal media, the volumetric proportion of material M2, denoted as
p2, defines the mean and variance of the indicator random variable, respec-
tively written as < I(x) >= p2 and σ2

I = p2p1, where p1 is the volumetric
proportion of M1 (p1 = 1 − p2). We consider that the family of highly con-
ducive conduits (material M2) occupies 20% of the domain, i.e., p2 = 0.2 and
p1 = 0.8. This choice allowed us to obtain transmissivity fields leading to
breakthrough curves with long back-tailing during transport simulations. Fig-
ure 3.3 compares the cumulative mass flux breakthrough curves obtained at
a given x-control plane using one realization of Y1(x) and its associated com-
posite medium, Y (x). Note that the slope of the late-time behavior observed
for Y1(x) is substantially more elongated than that observed for Y (x). The
indicator variable was further characterized with an anisotropic covariance
function,

CI(|r|) = σ2
I exp

(
−

√(
rx

λI
x

)2

+
(

ry

λI
y

)2
)

(3.11)

where λI
x and λI

y are the longitudinal and transverse correlation scales of
the indicator variable set to 16 units and 1 unit, respectively. Following (Rubin
and Journel , 1991; Rubin, 1995), we assumed that the spatial distribution of
Y1(x) and I(x) are mutually uncorrelated. Based on this and according to
Rubin (1995) and Lu and Zhang (2002), the resulting composite random field,
Y (x), displays a theoretical mean, variance and covariance function given by,
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Figure 3.3: Comparison of the cumulative mass flux breakthrough curves ob-
tained at a given x-control plane (x = 143.3 units) using one realization of the
transmissivity field Y1(x) and its associated composite medium Y (x).

< Y (x) >= p1 < Y1 > +p2Y2 (3.12)

CY (|r|) =
[
CI(|r|) + p2

1

]
CY1(|r|) + (< Y1 > −Y2)2 CI(|r|) (3.13)

σ2
Y =

[
p1p2 + p2

1

]
σ2

Y1
+ (< Y1 > −Y2)2 p1p2 (3.14)

Thus, the statistical properties of the final composite media are < Y (x) >=
0.4 and σ2

Y = 7.84, having integral scales in the x and y directions of λY
x = 32.8

units and λY
y = 3.2 units. Because Y1(x) and I(x) are not correlated, the

stochastic generation of Y1(x) and I(x) was performed independently. Thus,
for each realization of Y (x), we separately generated I(x) using an indicator
sequential simulation program, ISIM3D (Gómez-Hernández and Srivastava,
1990), and Y1(x) using a sequential gaussian simulation program, GCOSIM3D
(Gómez-Hernández and Journel , 1993). The composite media is finally ob-
tained from Y (x) = (1 − I(x))Y1(x) + I(x)Y2.

3.3.3 Flow and Transport Solution

A finite difference ground-water flow model, MODFLOW2000 (Harbaugh et
al., 2000), was used to solve the flow problem at both scales. The discretization
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of the numerical grid was given by the discretization of the spatial distribu-
tion of transmissivities. The model calculates the flow rates at grid interfaces.
These velocity fields were then used in a transport code based on the Random
Walk Particle Method, RW3D (Fernàndez-Garcia et al., 2005a,b), to simulate
either conservative solute transport needed to obtain fine-scale transport so-
lutions or solute transport coupled with multirate mass transfer to obtain the
corresponding upscaled model solutions (coarse-scale).

The particle tracking methodology presented by Salamon et al. (2006) was
employed to simulate multirate mass transfer processes. Essentially, transport
is simulated by injecting a large number of mass particles into the system;
each particle representing a small portion of the solute plume. Advection is
simulated by moving particles along flowlines, whereas dispersion is emulated
by a Brownian motion. Mass-transfer processes are efficiently incorporated by
switching the state of the particle between mobile/immobile states according
to appropriate transition probabilities.

Transport simulations start by injecting a large number of particles (10,000)
equidistantly distributed in a line transverse to the mean flow direction with
size 140 units. For each movement, the time step was adapted based on a grid
Courant number of 0.01 (Wen and Gómez-Hernández , 1996). A unit mass was
assigned to each particle. The first arrival time and the position of particles
passing through 14 control planes transverse to the mean flow direction and
located at several distances away from the source were tracked until particles
exited the last control plane. Figure 3.4 shows the map of hydraulic heads su-
perposed with the pathlines of particles obtained in an individual realization
of Y (x). Only the movement of 100 particles are depicted so that the figure
can be easily understood.

3.4 Estimation of Block Equivalent Properties

3.4.1 Methodology

In the upscaled model, flow is still driven by Darcy’s law but we use an equiv-
alent anisotropic transmissivity tensor, Tv, to represent the heterogeneous
medium inside v. For each block, Tv, was calculated based on the sim-
ple Laplacian method with skin (Gómez-Hernández , 1991; Wen and Gómez-
Hernández , 1996) as

T v
ii =

∫
v qωi (u)du

−
∫
v ∂hω/∂xi(u)du

. (3.15)

This methodology yields flow fluxes in the upscaled model, qv(x), that
represent block spatial average quantities,
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Figure 3.4: Map of hydraulic heads superposed with particle paths obtained
from a transport simulation (only 100 particles) in an individual realization of
the composite random field.

qv =
1
v

∫

v
qω(u)du. (3.16)

Then, we estimated the appropriate mass transfer parameters of the up-
scaled transport model by using a methodology conducive to preserve the res-
idence time distribution of solute mass particles in each block. This seems a
natural approach when using the upscaled MRMT model because the memory
function, which plays a central role, can be physically interpreted as the resi-
dence time distribution of solute mass in the immobile domains (slow velocity
areas) (Haggerty et al., 2000). Essentially, the upscaled parameters were esti-
mated by curve-fitting the residence time distribution (numerically obtained
from fine-scale transport simulations) with a theoretical MRMT model. When
transport takes place according to the MRMT model in an equivalent homoge-
neous medium (i.e., a block of the upscaled model), the cumulative residence
time distribution, Fτ (τ), can be approximately written in Laplace space as

F̂τ (p) ≈ 1
p

exp

[
Lb

(
1

2A"
−

√
1

4A2
"

+
ψ(p)
A"vm

)]
(3.17)

ψ(p) = p + β

∫ ∞

0
f(α)

pα

p + α
dα (3.18)
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where A" is the effective longitudinal dispersivity coefficient, Lb is the mean
travel displacement of solute mass particles in v, and vm is the mobile velocity.
Here, we have assumed that Fτ is not significantly influenced by transverse
dispersion since we are measuring integrated mass fluxes over a surface.

The effective velocity of the solute inside v moving through the mobile
domain (preferential channels) is the mobile velocity, vm. This is an important
concept here because the solute plume is not necessarily sampling the entire
region of a given block. Moreover, θv does not represent the void ratio of the
entire aquifer (θω), but only defines the pore volume fraction associated with
the mobile domain. The parameters obtained from curve-fitting are: vm, β
and those characterizing f(α) (see Table 3.1). From them, we estimated θv so
that the mean residence time, τ , is preserved during upscaling,

θv =
θω

1 + β
Cτ , (3.19)

where Cτ is

Cτ =
τ

τv
, τv =

θωLb

|qv|
, (3.20)

and τ is the mean residence time

τ =
∫
τfτ (τ)dτ, fτ =

dFτ

dτ
, (3.21)

being fτ the frequency distribution function of residence times. The parameter
Cτ takes into consideration that the mean residence time, τ , is not necessary
given by the averaged spatial velocity inside v. This term can be also related to
the noncontributing capacity coefficient (βnc) introduced by Zinn and Harvey
(2003) as

Cτ =
1 + βnc + β

1 + β
. (3.22)

A block equivalent transverse macrodispersivity value associated with the
MRMT model was estimated using the method of moments as

At =
σ2

y

2Lb
(3.23)

where σ2
y is the variance of transverse displacements of the particles moving

through v.
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Figure 3.5: Calculation of residence times in a given block of the numerical
model.

3.4.2 Implementation Details

Numerically, the residence time distributions, fτ (τ) and Fτ (τ), were obtained
by recording the first passage time (tin) and the exiting time (tout) of a particle
passing through a given block during fine-scale simulations (see Figure 3.5).
The distribution of residence times was estimated by reconstructing the (cu-
mulative) frequency distribution of residence times {τi, i = 1, ...,Np}, where
Np is the number of particles traveling through the block, and τi = tout − tin
is the residence time of the i-th mass particle. The mean residence time τ was
estimated as

τ =
∫
τfτ (τ)dτ ≈ 1

Np

Np∑

i=1

τi (3.24)

The time-domain solution of (3.17) was calculated using the STAMMT-L
code (Haggerty and Reeves, 2002). An optimization program, PEST (Doherty,
2004), was utilized to calibrate the mass transfer parameters associated with
Fτ (τ). The minimized objective function by PEST included the estimates of
the cumulative distribution function obtained at different times as well as the
low-order temporal moments of fτ (τ) (see appendix).

The fact that the residence time distribution at each block is preserved
during upscaling renders the upscaled mass transfer model a promising tool to
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couple solute transport with chemical reactions controlled by residence times.
Yet, from a practical point of view, we recognize that the proposed upscaling
methodology can be computationally expensive because it requires to solve
flow and transport at a small-scale. This is only justifiable when the upscaled
model is used afterwards to solve a more computationally demanding problem
(e.g., reactive transport involving many species and reactions). Nevertheless,
several approaches to reduce the computational burden can be considered.
Similar to what is known for upscaling hydraulic conductivity (Sánchez-Vila
et al., 1995; Wen and Gómez-Hernández , 1996; Sánchez-Vila et al., 2006),
instead of solving the flow and transport problem over the entire domain,
the equations can be iteratively solved over smaller support volumes, which
contain v plus a ”skin” region.

The skin ensures a more realistic flow and transport boundary condition
associated with each block. Importantly, in this case, we note that the in-
jection of solute should be placed in the skin region so that enough memory
effects are retained. Anyhow, noticing that the objective of this paper is not
to present an upscaling methodology but to evaluate the adequacy of an al-
ternative constitutive transport model, we employed the most exact version of
the upscaling methodology, which is to resolve fτ and Fτ directly from global
fine-scale simulations.

3.5 Numerical Results and Discussion

The evaluation of each constitutive upscaled transport model was performed
by contrasting the Monte Carlo simulated BTCs obtained using the upscaled
models against the reference BTCs solution. In addition to the upscaled mass
transfer models, we further compare the results with the well-known macrodis-
persive model and the purely advective upscaled model. The purely advective
model does not account for macrodispersive fluxes and memory effects, and
serves to illustrate the effects of smoothing the heterogenous Y (x)-field by
upscaling.

The macrodispersive model is defined as a particular case of the MRMT
model in which ψ(p) = 0 in (3.17) and serves to compare the upscaled mass
transfer model with a Fickian model. The structure of the discussion is as
follows. First, we analyzed the reproduction of the ensemble average behavior
of BTCs and its associated uncertainty with AT = 0. This avoids mass transfer
effects between blocks Fernàndez-Garcia et al. (2007) and allows to focus on
the longitudinal component of dispersive fluxes. Then, we discuss the effect
of including AT += 0 into the upscaled models.
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3.5.1 Ensemble Average Behavior

We start by looking at the ensemble average behavior of the main features
associated with the simulated BTCs, which we characterized by: (a) the early
arrival time (the time at which 5% of the mass arrives at the x-location,
denoted as T05); (b) the maximum value of concentrations (peak); (c) the
late-time slope of BTCs; and (d) the spreading of BTCs. The spreading of
BTCs is measured by means of an effective longitudinal dispersivity coefficient
estimated as

Aeff (x) =
x

2

〈
µ2(x)
µ′

1
2(x)

〉
(3.25)

where the brackets denote the expected operator, x is the coordinate of the
control plane in the mean flow direction, and µ′

1 and µ2 the first two temporal
moments of BTCs, written as

µ′
1 =

∫ ∞
0 tC(t)dt∫ ∞
0 C(t)dt

(3.26)

µ2 =
∫ ∞
0 (t − µ′

1)2C(t)dt∫ ∞
0 C(t)dt

=
∫ ∞
0 t2C(t)dt∫ ∞
0 C(t)dt

− (µ′
1)

2 (3.27)

where C(t) denotes flux-concentrations. Figure 3.6 displays Aeff as a func-
tion of travel distance for the different upscaled models. Remarkably, we see
that the inclusion of memory in the transport equation allows an accurate
reproduction of effective spreading when either a discrete MRMT model with
more than two immobile domains are considered or a continuous distribution
of mass transfer rates is described with a truncated power-law.

This is in contrast with the macrodispersive model and the single-rate
mass transfer model results which largely underestimate Aeff . The reason
for this is that the memory function associated with these models are too
simple to properly describe the heterogeneous processes taking place within
a block. This is shown in Figure 3.7 which depicts the mean sum of square
errors (SSE) associated with the calibrated model obtained after curve-fitting
the block residence time distribution with the theoretical model. Note that
the ultimate SSE values for the single-rate model are substantially larger than
those associated with the truncated power-law and the double-rate model.

Spreading by itself does not provide enough information about the com-
plete distribution of concentrations. The interest on the different characteristic
behaviors of the BTC depends on the type of application. The early-time of
BTCs usually displays a sharp rising limb and can be characterized by its early
arrival time, T05. In practice, this parameter is important for designing under-
ground radioactive repositories. Figure 3.8 compares the simulated mean T05
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Figure 3.6: Evolution of the effective longitudinal dispersivity with travel dis-
tance .

Figure 3.7: Evolution with travel distance of the mean sum of square error as-
sociated with the calibrated model obtained curve-fitting fτ with a theoretical
model.
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Figure 3.8: Evolution of the ensemble average first arrival of the BTC T05 with
travel distance.

value obtained at the small support scale to its corresponding upscaled model
solution. As expected, the upscaled advective model yields not conservative
estimates of travel times, i.e., the upscaled model overestimates T05. Most re-
markably, in this case, even though the double-rate and the power-law model
are described with the same number of parameters (degrees of freedom), the
truncated power-law model can largely underestimate T05.

A proper representation of the late-time behavior of BTCs has recently re-
ceived much attention for being indicative of anomolous transport (e.g., Hag-
gerty et al., 2000; Harvey and Gorelick , 2000; Salamon et al., 2007; Riva et
al., 2008; Willmann et al., 2008). It also constitutes an important parame-
ter for the calculation of clean-up times needed to remediate contaminated
aquifers. Typically, BTCs are observed to behave as a power law at late times
(i.e, C(t) ∼ t−m), where m is the slope of the BTC on double log-scale. The
mechanisms by which the presence of slow and fast channels (heterogeneity)
affects the slope m have been recently studied by Willmann et al. (2008), who
found that, for conservative solutes moving in a heterogeneous medium, the
slope mainly depends on ”connectivity” rather than the classical statistical
properties of the aquifer (variance of lnT ).

Here, we do not concentrate on the fundamental nature of the slope but we
look at the capability of upscaled mass transfer models to reproduce tailing.
In other words, we evaluate whether a proper description of residence times,
fτ , at each block of a numerical model assures the reproduction of the late-
time behavior of BTCs. To do this, we concentrate on the simulated slope



“myThesis” — 2009/4/9 — 20:11 — page 39 — #59

CHAPTER 3. UPSCALING TRANSPORT WITH MASS . . . 39

Figure 3.9: Evolution of the ensemble average slope T60 − T80 with travel
distance.

attained over two time intervals of the BTCs: (T60, T80) and (T80, T95), where
T60 denotes the time at which 60% of the mass passes through the observation
location and so on. The slope was estimated by using least square regression
of the corresponding BTC values plotted in a double log-scale. The ensemble
average behavior of the slope as a function of travel distance is shown in
Figures 3.9 and 3.10.

For all models and time scales, the slope slowly increases with travel dis-
tances and thus tends to a more Fickian-like behavior. As expected, the
upscaled mass transfer models provide a better description of the late-time
behavior of BTCs, being the macrodispersive model a less adequate model for
this matter. In this context, we see that while the truncated power-law model
can accurately simulate the late-time behavior of BTCs at all time scales (the
two intervals of time), the double-rate model is only capable to describe the
late-time behavior over the time interval (T60, T80). This is consistent with the-
ory, Carrera et al. (1998) demonstrated that the late-time behavior of BTCs
associated with MRMT models is the result of an infinite superposition of
single-rate mass transfer modes (Carrera et al., 1998). Thus, a proper de-
scription beyond t > T80 in this case requires a discrete mass transfer model
with more than two modes.

Interestingly, the slope reproduced by the macrodispersive model is small
compared to the reference solution. This points out an important conceptual
limitations of the macrodispersive model, which is back-dispersion. Close to
the source, where concentration gradients are usually higher, the macrodisper-
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Figure 3.10: Evolution of the ensemble average slope T80 − T95 with travel
distance.

sive model creates dispersive mass fluxes oriented in the opposite direction to
flow, which are not physically possible. Due to this mechanism, particles close
to the source were susceptible to be trapped in low velocity regions during
simulations, causing the presence of very slow particles.

Another important characteristic parameter of a BTC is the concentration
peak. When groundwater is the source for drinking water, this water is re-
quired to meet certain drinking water standards. This standard is typically
contrasted against a maximum concentration threshold. Figure 3.11 shows
the performance of the upscaled models in terms of the peak of concentrations
associated with the simulated BTCs. Now, we see that, albeit both models
are described with the same number of degrees of freedom, a discrete MRMT
model with only two modes provides a better description of the maximum
value of concentrations than the the truncated power-law model.

3.5.2 Propagation of Uncertainty

The lack of complete knowledge of an aquifer on the one hand and the large
spatial variability of the aquifer attributes on the other makes deterministic
models to be highly inadequate for representing solute transport in heteroge-
neous media. Alternatively, multiple possible scenarios should be considered
(see (Riva et al., 2008) for an illustrative field example). In this context, the
transfer of information from one scale to another by upscaling should also
require the proper propagation of model uncertainty.
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Figure 3.11: Evolution of the mean concentration peak with travel distance.

Here, we evaluate the reproduction of uncertainty by qualitatively examin-
ing the 95%-confidence interval associated with the ensemble of BTCs. Figures
3.12 and 3.13 compares the ensemble of Monte Carlo-based BTCs obtained
using the reference transmissivity fields to those associated with each upscaled
mass transfer model at two control planes (x = 34 units and x = 110 units).
By comparing the ensemble of BTCs to the 95%-confidence interval associated
with the fine-scale model, it is clear that all the upscaled mass transfer models
exhibit a reduction of uncertainty to a certain degree. This reduction is more
apparent for late times (slow particles) and small travel distances. The latter
is shown in Figure 3.14, which displays the 95%-confidence intervals of the
BTCs obtained at two different control planes.

A complete evaluation of uncertainty is provided by examining the cumu-
lative frequency distribution function (CDF) of the main features associated
with the BTCs obtained at a given control plane.

Figures ?? and 3.17 respectively show the CDF of the slope (T60 − T80)
and the first arrival (T05) associated with the simulated BTCs obtained at
x = 34.9 units and x = 110.8 units. Interestingly, at early times, when parti-
cles have still not pass through few blocks, the integrated BTC is simply the
superposition of residence time distributions of all sample blocks, and there-
fore, for small travel distances, the CDF of the late-time slope associated with
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Figure 3.14: Propagation of uncertainty: Comparison of the reference confi-
dence interval with those obtained using the upscaled models at two different
control planes.



“myThesis” — 2009/4/9 — 20:11 — page 45 — #65

CHAPTER 3. UPSCALING TRANSPORT WITH MASS . . . 45

Figure 3.15: Cumulative frequency distribution of the late-time slope of BTCs
for the different upscaled models. The late-time slope corresponds to the
region of the BTCs comprised between the 60% and 80% of the BTC total
mass obtained at x = 34.9 units.

the double-rate and the truncated power-law model is adequately reproduced.
As soon as particles pass through few blocks, the CDF of the late-time slope
associated with the upscaled mass transfer model largely underestimates the
dispersion of the corresponding probability density function. This effect in-
creasing with distance.

In regards to the CDF associated with T05, results show that only the
double-rate model is able to properly describe uncertainty for all travel dis-
tances. In this case, the truncated power-law model provides a biased estima-
tor of T05, but still seems to properly capture the general trend depicted by
the CDF.

Now, we examine the effect of including a macroscopic transverse disper-
sion into the upscaled model. This parameter describes the dispersive fluxes
taking place in the transverse direction to the block-averaged flow based on
a Fickian model. From Figure 3.18 we see that while accounting for trans-
verse dispersive fluxes improves the reproduction of the late-time behavior of
the BTCs, it causes an excess of dilution into the system (reduction of peak
concentrations). Again, this is attributed to the Fickian assumption.
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Figure 3.16: Cumulative frequency distribution of the late-time slope of BTCs
for the different upscaled models. The late-time slope corresponds to the
region of the BTCs comprised between the 60% and 80% of the BTC total
mass obtained at x = 110.8 units.
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Figure 3.17: Cumulative frequency distribution of the early arrival time (T05)
of BTCs for the different upscaled models.
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Figure 3.18: Comparison of the simulated ensemble of BTCs obtained with
and without transverse macrodispersivity.

3.6 Summary and Conclusions

We have investigated the use of upscaled mass transfer models as a tool for
upscaling solute transport in a general numerical modeling framework. This
was achieved by comparing Monte Carlo simulations of solute transport at two
different support scales. Transport phenomena at the computational scale was
described by means of a multirate mass transfer model.

The performance of the upscaled models was evaluated from two differ-
ent perspectives. First, we analyzed the reproduction of the ensemble mean
behavior of the main features associated with the simulated BTCs. Impor-
tantly, results showed that an appropriate description of the residence time
distribution for all blocks of the numerical model provides an upscaled trans-
port model that is capable to reproduce the ensemble mean behavior of the
BTCs. In particular, the truncated power-law model provided an excellent
reproduction of the effective spreading as well as the ensemble mean slope of
the BTCs for all time scales. Yet, it slightly underestimated the first arrival of
mass particles at control planes as well as the maximum concentration of the
BTCs. In this context, the double-rate mass transfer model, which involved
the same number of degrees of freedom as the truncated power-law, gave more
consistent estimates of the first arrival and the concentration peak. However,
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as a drawback and consistent with theory, this model was found not able to
properly describe the slope of the BTCs at all time scales (t > T80). Remark-
ably, the single-rate model did not capture any of the main features of the
BTCs, giving then a sign of caution to the use of this widely employed model
in field applications.

Then, we examined the effect of upscaling on model uncertainty. We found
that a complete reproduction of uncertainty was not provided by any of the up-
scaled transport models, which substantially underestimated the uncertainty
associated with the late-time behavior of BTCs and the peak of concentra-
tions. Essentially, this was the result that a truthful reproduction of a BTC
associated with an individual realization cannot in general be satisfied. The
reason mostly lies on the poor description (lack of memory) of the dispersive
mass fluxes transverse to the block-averaged flow direction. While using mass
transfer models as a tool for upscaling can preserve the residence time distri-
bution of mass particles in the system, the lack of memory in space prevents
the model from reproducing mass fluxes in all directions. In particular, the
reproduction of mass fluxes taking place at the interface between two blocks of
the upscaled model are not satisfied by upscaling. Thus, results indicate that
the lack of directionality involved in the memory term associated with mass
transfer models prevents upscaling from reproducing uncertainty and mass
fluxes at block interfaces. In this case, a proper description of the non-Fickian
nature of dispersive mass fluxes should also be included into the constitutive
transport equation.
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4
Modeling solute transport at
large scale in heterogeneous

media

Abstract

We evaluate the use of (multi-rate) mass transfer as the constitutive trans-
port model at large scale in heterogeneous media. The non-Fickian transport
usually observed in field, manifested by peaked concentration profiles with pro-
nounced tailing, has questioned the use of the classical advection-dispersion
equation to simulate solute transport at large scale with a numerical model.
In this framework, performance assessment of the alternative transport equa-
tions is achieved by comparing transport simulations of non-reactive solute
plume at two different support scales. The solutions are illustrated in a com-
plex geological environment formed by highly conductive conducts embedded
in an otherwise well behaving Gaussian heterogeneous medium. For model-
ing solute transport at large scale, the numerical transport model consists in a
phenomenological model based on memory functions that are used to represent
the unresolved process taking place within each homogenized block of the nu-
merical models. The parameters values associated with memory functions are
determined by transferring the small scale information on aquifer properties
into the computational scale defined by the numerical model discretization.
The numerical results demonstrated that upscaled transport models based on
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memory functions can yield a good prediction of the large scale main features
associated with mass plume in comparison to a macrodispersion model.

4.1 Introduction

Hydrogeologic properties in an aquifer vary in space and time, which means the
characterization of the spatial variation of the properties are needed to predict
the behavior of flow and solute transport. Geostatistics provides the ability to
characterize the spatial variation of hydrogeologic properties with a high reso-
lution. However, in hydrogeology practice modeling flow with such resolution
is most frequently unfeasible. Traditionally, the flow and hydraulic head are
simulated using equivalent hydraulic parameter values obtained by the anal-
ysis of aquifer tests, these parameters are assigned over various grid-blocks
formed big homogeneous zones in the model. During the calibration process,
these equivalent parameters are adjusted at computational block scale to re-
produce the historical field measurements. But, to simulate solute transport,
the aquifer models must capture the heterogeneity of hydrogeologic properties
at small scale, however a representation of high definition of the architec-
ture hydrogeology of the aquifer is not feasible, so that effects that control
the spacial-temporal evolution of transport must be capture with an upscaled
model (Fernàndez-Garcia et al., 2007; Guswa and Freyberg, 2002).

In the literature there are a lot of work about the upscaling of hydraulic
conductivity (Wen and Gómez-Hernández , 1996; Renard and de Marsiliy,
1993; Sánchez et al., 2006). Scheibe and Yabusaki (1998) showed that up-
scaling of conductivity is effective for reproduction of flow behaviour, but do
not necessary lead the best reproduction of transport behaviour. Since the val-
ues of conductivity obtained through upscaling does not contain information
about the attribute heterogeneity that control solute transport.

Much attention has been devoted in recent years to the development of
methodologies for the characterization of heterogeneity of the hydrogeologic
properties (Carrera, 1993; de Marsily et al., 2005; Gómez-Hernández , 2006),
and important theories have been developed in area of stochastic and/or de-
terministic hydrogeology to describe the flow and solute transport through
aquifer.

The effect of the hydrogeology heterogeneity that produces an anoma-
lous (non-Fickian) transport behaviour, such as plumes asymmetry and break-
through curves with large tails has been revealed through experimental data
from field (Boggs et al., 1992; Adams and Gelhar , 1992; Feehley et al., 2000;
Salamon et al., 2007; Riva et al., 2008) and from laboratory (Bajracharya and
Barry, 1997; Fernàndez-Garcia et al., 2005c; Levy and Berkowitz , 2003).
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The high contrast between high and low conductivities zones makes the
mass solute to travel quickly in the direction of preferential flow paths, whereas
that in low conductivities areas the solute moves slowly along the velocity
creating tailing that cannot be reproduced by the classical advection dispersion
equation (ADE) (Adams and Gelhar , 1992; Feehley et al., 2000; Guswa and
Freyberg , 2000; Zinn and Harvey, 2003; Berkowitz et al., 2006; Fernàndez-
Garcia et al., 2007; Riva et al., 2008). Furthermore, ADE has been shown
not to be adequate to model solute transport at scale larger than the scale of
heterogeneity.

Various numerical experiment using synthetic models Guswa and Frey-
berg (2000); Zinn and Harvey (2003); Liu et al. (2004); Carrera et al. (1998);
Willmann et al. (2008), have demonstrated that the quality of solute trans-
port predictions, in particular the late-time behavior of breakthrough curves,
is significantly improved when the mass transfer equations are added to the
ADE.

Alternative transport formulations based on the ADE have been proposed
in the literature for modeling solute transport (Haggerty and Gorelick , 1995;
Carrera et al., 1998). Carrera et al. (1998) proposed to add a sink/source term
to ADE to account for the exchange of solute mass between high and low con-
ductivity zones producing anomalous behaviors. This is formally represented
by decomposing the domain into a mobile zone, where the transport phenom-
ena include advection and dispersion, and an immobile zone where advection
is negligible (Haggerty and Gorelick , 1995; Carrera et al., 1998; Haggerty et
al., 2000). The mass flux between mobile and immobile zones is modeled by
linear mass exchange process controlled by a source/sink term. This term can
be expressed as a convolution product of a memory function. The memory
function represents the mass flux to the immobile zones per unit volume of
aquifer, for a unit change in concentration in the mobile zones (Haggerty et
al., 2000; Carrera et al., 1998). The formulation of this term depends on the
geometry of the immobile zones and on the variability of mass transfer or dif-
fusion rates (Haggerty et al., 2000). This type of model is commonly referred
to as multirate mass transfer models (MRMT).

Similarly, models to better represent the anomalous transport behaviour
observed in heterogeneous aquifers at the computational scale have been devel-
oped in recent years. In this context, Berkowitz and Scher (1998); Berkowitz
et al. (2000) presented a model based on the framework of continuos time ran-
dom walk (CTRW). In this models particle transport in heterogeneous aquifer
is represented as a random walk in space and time (Berkowitz and Scher , 1998;
Dentz and Berkowitz , 2003; Dentz et al., 2004). Dentz and Berkowitz (2003)
demonstrated that the mathematical formulation of MRMT is a special case
of CTRW.
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Neuman and Tartakovsky (2008); Berkowitz et al. (2006) present extensive
review of the developed approaches to describe the evolution of the solute
transport in porous media.

An interesting real case in which to evaluate these concepts is the MADE
experimental site (Adams and Gelhar , 1992). Some transport models have
been developed used a fine grid-cells entire domain to capture the aquifer
heterogeneity. For example, Salamon et al. (2007) improved a geostatistical
interpretation of the flowmeter data, and concluded that the ADE model is
capable of describe the extensive tracer spreading, when small-scale variability
of hydraulic conductivity is modeled at the flowmeter measurement support
scale. Barlebo et al. (2004) using inverse flow and transport modeling obtained
the same results, however the effective hydraulic conductivities product of the
calibration phase were 5 times higher than the measured in the field using the
flowmeter. Harvey and Gorelick (2000); Feehley et al. (2000) used the dual-
domain mass transfer model to explain the solute transport at the MADE site.
Both work compare the mass transfer model with ADE.

Feehley et al. (2000) used the ordinary kriging and conditional simulation
based on fractional Brownian motion to represent the hydraulic conductiv-
ity, and calibrating the mass transfer coefficient and the immobile porosity
reproduced the shape of mass plume.Harvey and Gorelick (2000) developed a
transport model to recreate one-dimensional concentration profiles observed
using ADE and an analytical homogeneous solution of mass transfer model.
Results of both work indicate that including mass transfer effects can largely
improve the performance of solute transport in comparison with the macrodis-
persive model.

Another approach used to simulate the anomalous transport behavior at
MADE site is continuous time random walk model (Berkowitz and Scher ,
1998). This model was able to reproduce the anomalous breakthrough curves
and the non-Gaussian shape of tracer plume observed in the complex geological
environment of MADE site.

Riva et al. (2008) analyzed the solute transport at the Lauswiesen forced-
gradient trace test experiment. This study consists of a stochastic Monte
Carlo analysis to evaluate the structure the heterogeneity of the aquifer and
the application of the numerical transport models to represent the advective,
advection-dispersion and mass transfer process to recreate the tailed multilevel
breakthrough curves, and conclude the same as Salamon et al. (2007) on the
fact that the ADE can describe the behaviour transport anomalous at a small
support scale combined with a high-resolution description of heterogeneity.

In a practical application of flow and solute transport we used models that
employ coarse computational grid and large effective transport coefficients ob-
tained from the interpretation of a tracer test or compute some spatial average
of the concentration field that are distributed uniformly over the entire domain
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or assigned homogeneous zones of aquifer. In this context various researchers
[e.g (Guswa and Freyberg, 2002; Carrera et al., 1998; Zinn and Harvey, 2003;
Liu et al., 2004; Willmann et al., 2008; Riva et al., 2008)] have shown that the
description of behaviour of non-reactive solute transport observed in heteroge-
neous medium is better simulated at large scale using upscaled mass transfer
models. In this framework, the scope of this work is to evaluate the use of
MRMT as the constitutive transport model to simulate the large scale behav-
ior of solute transport within a given area. Performance assessment of the
alternative transport equation is achieved by comparing transport simulations
of a non-reactive solute plume at two different support scales.

We simulated the solute transport at smallest scale to obtain a representa-
tive set of the reference solutions, in this case the transport solution is defined
on the basis of a local ADE. At coarse scale we use as alternative transport
model based on the form of the memory function of a discrete series of mass
transfer rate with two immobile domains (double-rate).

Solute transport at large scale consists of a phenomenological model based
on the memory functions that are used to represent the unresolved processes
talking place within each homogenized block of the numerical model. The pa-
rameters associated with the memory functions are determined by transferring
the small scale information on aquifer attribute into the computational scale
defined by the numerical model discretization.

In this work, the numerical simulation at large scale the aquifer domain
is discretized into computational scale and assigned of parameters associated
with the memory function to each of these blocks. Then, to simulate solute
transport the aquifer at large scale is not completely homogenized as other
studies about solute transport upscaling reported in the literature (e.g., Harvey
and Gorelick , 2000; Zinn and Harvey, 2003; Willmann et al., 2008)

4.2 Solute transport experiments

4.2.1 Experimental Design

We consider a synthetic case to simulate a typical field tracer test, where the
mass of solute is introduced instantaneously into a steady-state flow field at
an injection point. The flow domain in two-dimension has an extension of
240 units in each side. The aquifer is confined and under steady-state flow
and uniform flow. No-flow boundary conditions were fixed on the top and
bottom limits while constant head boundaries on the other sides imposed a
mean hydraulic gradient equal to 0.01 along x.

The aquifer is heterogeneous with respect to transmissivity T , and rep-
resented considering ln T = G(x). G(x) is assumed isotropic at the small
support scale and is represented with a resolution of 240 x 240 pixels of 1 unit
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size. The transport experimental consist in a realization of transport simula-
tion obtained by generating unconditional stochastic realization of G(x).

Here, two different sizes of upscaled block were defined in the spatial dis-
cretization of domain at coarse scale. Hence, the upscaling process consist in
transferring from fine-scale information (240 x 240 cells) to regular computa-
tional grid of 48 x 48 and 16 x 16 regular homogeneous blocks, corresponding
a size of square block of 5 and 15 cells, respectively.

The antilog of G(x) at coarse scale is represented by a diagonal tensor T v.
We applied the Simple Laplacian with skin to compute T v (Gómez-Hernández ,
1991; Wen and Gómez-Hernández , 1996). Essentiality, for a given realization
of G(x), the grid-block being upscaled is isolated from the rest of the blocks
in the aquifer. This area comprises the grid-block plus a skin region. The
skin is used to represented approximately the realistic boundary conditions on
the grid-block without having to solve the flow problem for the entire domain.
Wen and Gómez-Hernández (1996); Renard and de Marsiliy (1993); Sánchez
et al. (2006) presented a extensive review of the different methods for hydraulic
conductivity upscaling.

In this study the skin was arbitrarily set to 12 units in each direction of
the block. In each numerical experimental we considerate at local scale the
simulate the simple process transport purely advective.

4.2.2 Reference transmissivity field

The performance of upscaled models are compared for three different envi-
ronment scenarios test. We simulate flow and transport through an aquifer
complex geological formed by high or low conductive lenses embedded into a
heterogeneous background material. Among the 3 scenarios, the material M1

and M2 represents background material and a lenses family, respectively. In
different scenarios, we vary the background material and the value of trans-
missivity assigned to M2. The orientation of the lenses family we have chosen
to align to the head gradient with the x axe in the simulations.

The lenses family was obtained employing a binary random function. The
binary function is defined as

I(x) =

{
1 x ∈ M2

0 otherwise
(4.1)

The volumetric proportion of material M2, denoted as p2, defines the
mean and variance of the indicator random variable, respectively written as
< I(x) >= p2 and σ2

I = p2p1, where p1 is the volumetric proportion of M1

(p1 = 1− p2). We consider that the lenses family (material M2) occupies 20%
of the domain, i.e., p2 = 0.2 and p1 = 0.8. The indicator variable was further
characterized with an anisotropic covariance function,
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CI(|r|) = σ2
I exp
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λI
y

)2
)

(4.2)

where λI
x and λI

y are the longitudinal and transverse correlation scales of the
indicator variable set to 16 units and 1 unit, respectively.

The background fields G1(x) were generated using a sequential Gaus-
sian simulation program, GCOSIM3D (Gómez-Hernández and Journel , 1993),
whereas the lenses family I(x) generated using an indicator sequential simu-
lation program ISIM3D (Gómez-Hernández and Srivastava, 1990).

The stochastic generation of G1(x) and I(x) was performed independently,
assuming G1(x) and I(x) are not correlated. The composite media is finally
obtained from Y (x) = (1 − I(x))G1(x) + I(x)G2. Figure 4.1 illustrates the
steps involved in the stochastic generation of the composite random field for
a given realization of G(x) in each case.
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Figure 4.1: Representation of the steps involved in the stochastic generation
of composite transmissivity field.

All background fields have the same geometric mean of one. The first field
of background material M1 is heterogeneous and described by a transmissiv-
ity characterized with a multi-Gaussian distribution following an anisotropy
exponential covariance function.
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 (4.3)

where r = (rx, ry) is the separation vector between two points of the aquifer,
σ2

Y1
is the variance of G1(x) = ln T1(x) assumed as 9, and λG1

x and λG1
y are

the longitudinal and transverse correlation scales set to 40 and 4 units, re-
spectively. Figure 4.2 display the realization of G1(x) for first scenario of
M1.
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Figure 4.2: Illustration of the realization of the reference natural log of trans-
missivity G1(x) of M1 of the first environment

The second field of G1(x) associated to M1 is characterized with a multi-
Gaussian distribution following an isotropic exponential covariance function.

CG1(|r|) = σ2
G1

exp
(
− |r|
λ

)
(4.4)

where the correlation scale set to 4 units. G1(x) of M1. The field exhibit a
mean of zero and a variance of one as shown in the figure 4.3.

In all environment scenarios test we considered that the variation within G2

is of minor importance compared with the contrast between G1 and G2, and we
therefore assigned a constant log transmissivity value to M2 of 2.0 and -4,0 in
the scenarios 1 and 2 respectively. Figure 4.4 is shown the composite random
field for first scenario considered in this work. The frequency distribution and
univariate statical of the values set are provides in the image of the histogram
plotted on the right side. The semivariogram of ln T for the x and y directions
are illustrated in figure 4.5. For reference the first composite field the integral
scale in the x and y directions are λG

x = 32.8 units and λG
y = 3.2 units for the

anisotropic exponential model fit.
Figure 4.6 illustrates the comparison of the cumulative breakthrough curves

obtained at given x− control plane using the realization of composite random
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Figure 4.4: Transmissivity structure and histogram for the first composite
field.

field G(x) and G1(x) for the scenario 1. We observed that the the solute trans-
port behaviour for G1(x) is clearly different than that the observed for G(x).
Note different substantial between the slope late-time behavior observed for
both cases.

The second composite transmissivity field considered in this work is shown
in figure 4.7. The field exhibit a mean of -0.77 and a variance of 3.2. The
semivariogram of ln T for the x and y direction are illustrated in figure 4.8.
The integral scale in the x and y directions are λG

x = 7.0 units and λG
y = 2.0

units for the anisotropic exponential model fit.
Cumulative mass flux breakthrough curves obtained using the realization of

G1(x) is compared with those obtained with the associated second composite
transmissivity field in figure 4.9 for travel distance of x = 159.9 units. Note
the big different between transport behaviour observed for G1(x) and G(x)

A third field test was build by transformation of the second field. The
transformation consist in multiplying by -1.0 the values of ln T that form the
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Figure 4.5: Experimental variogram and model variogram as inferred from to
realization of the first scenario for the x and y directions.

second composite random field. The field is shown in figure 4.7. The integral
scale in the x and y directions for field 3 are the same that its associated field
2. Figure 4.11 provide examples of the cumulative mass flux breakthrough
curves obtained at a given x-control plane (x = 159.90 units) using second
and third composite fields. For field 3, where the solute particles is traveling
faster than through field 2, this reflect that high values of transmissivity are
connected.

The crucial point about the composite transmissivity fields is, that they
present different hydrogeologic character, which is important in order to illus-
trated the influence of high and low conductivity zones features and how they
can be captured by the block equivalent parameters associated to the upscaled
models.
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Figure 4.6: Cumulative mass flux breakthrough curves obtained at a given
x-control plane (x = 159.9 units) using the realization of the transmissivity
field G1(x) and its associated the first composite medium G(x)
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Figure 4.7: Transmissivity structure and histogram for the second composite
field.
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Figure 4.8: Experimental variogram and model variogram as inferred from to
realization of the second composite field for the x and y directions.

Figure 4.9: Cumulative mass flux breakthrough curves obtained at a given
x-control plane (x = 159.9 units) using the realization of the transmissivity
field G1(x) and its associated second composite medium G(x) for field 2.
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Figure 4.10: Transmissivity structure and histogram for the third composite
field.
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Figure 4.11: Cumulative mass flux breakthrough curves obtained at a given
x-control plane (x = 159.9 units) using the realization of the transmissivity
composite field 2 and its associated composite field 3.
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4.2.3 Flow and transport solution

Three type of numerical grids are used to simulate the flow and solute trans-
port: a fine grid with 1 unit side square cells that provides the reference
solution and two coarse grid with 5, and 15 units side square grid-blocks re-
spectively that are used to model transport at large scale using upscaled mass
transfer model (see figure 4.12). The fine-grid is designed on the basis of the
discretization of the spacial distribution of transmissivities.

15 x 15 cells

5 x 5 
cells

 Fine-grid 
cells

Figure 4.12: Different size of blocks used to change of scale of the reference
G(x) field

The flow problem was solved with MODFLOW2000 (Harbaugh et al., 2000)
at both scale. The solute transport was solved with random walk particle
tracking code RW3D (Fernàndez-Garcia et al., 2005a,b; Salamon et al., 2006).
RW3D was used to simulate either conservative solute transport needed to
obtain the reference solutions or solute transport coupled with multirate mass
transfer to obtain the corresponding solution at large scale.

Simulation of solute transport with mass transfer is based on the particle
tracking methodology presented by Salamon et al. (2007). Basically, transport
is simulated by injecting a large number of mass particles into the system,
each particle representing a small portion of the plume solute. Advection is
simulated by moving particles along flowlines, whereas dispersion is emulated
by a Brownian motion. Mass-transfer process are efficiently incorporated by
switching the state of the particles between mobile/immobile states according
to appropriate transition probabilities.

In each case we simulated the behaviour of the released solute for a period
of time, t = 3000. For this purpose 40,000 particles, where each particle was
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assigned the same mass, and were uniformly distributed over the 15 x 150 units
rectangular source area is indicated in the figure 4.13. For each movement,
the time step was adapted based on a grid Courant number of 0.01 (Wen and
Gómez-Hernández , 1996).
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Figure 4.13: Plan view of the location of source and a transverse cross section.
Cross-section indicate the location used to display temporal evolution of mass
profiles at x-distance 75 units from injection point.

4.2.4 Flow and transport parameters

Transport parameter values to each grid-block are obtained with the upscaling
technique presented in chapter 3. The new technique consist in replacing each
block with heterogeneous transmissivity by a homogeneous block, in which
the parameters associated to the memory function are used to represent the
unresolved mass exchange between highly mobile and less mobile zones occur-
ring within each block. Block transport parameters are estimated through the
interpretation of the residence time distribution of particles passing through
a given block using fine-scale simulations.
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4.3 Results and discussion

4.3.1 Overview of plume behavior

The spatial distribution of solute mass obtained at t = 300 after the release
for the upscaled models using the size of block of 5 x 5 and 15 x 15 cells are
presented in figures 4.14 and 4.15, respectively. They show the same solute
plume discretized on two different scales. The reference corresponds ”true”
plume obtained at fine scale, and the coarser grid to some large-scale represen-
tation of the same plume simulated by upscaled models. The representation
of solute plume at coarse scale and fine scale were obtained by accounting over
a fine grid with 1 unit side square cells. Then the tracer mass for each cell
was calculated a total of particles, where each particle was assigned the same
mass, was allocated according to the total amount of mass in each cell.

For completeness, the double rate mass transfer models is contrasted against
the standard macrodispersive transport models. The macrodispersive model
is determined by simply using the macrodispersion coefficient in equation al-
ternative of transport without mass transfer process.

Since the solution of transport in either of these examples test is purely
advective at local scale, the solute spreading is due entirely to the heterogeneity
in the composite transmissivity fields. One can see after the release the solute
mass display that behavior of the transport solute is non-Fickian at local scale
for the three composite fields test. The solute mass travel through preferential
zones narrow paths, which are controlled by the attribute of heterogeneity
causing the variations of velocity. Another characteristic of plume at local scale
is that display a shape highly asymmetric. Note, the solute plume associated
to the second field present a shape regular.

The solute plume simulated with the upscaled models are smoothing and
display more spreading in comparison than reference solution. Note, for all test
case, the plume simulated by upscaled models exhibit larger spreading that
the reference solution. In general, the fine structure of aquifer heterogeneity,
that generated velocity fluctuations at small scale, are explicitly included in
the upscaled models. Note, however, that the velocity variations cause by
those fine structure for the reference solution ares seen in the upscaled models
results when the size of block used is 5 x 5 cells, whereas that the results
associated with the size of block of 15 x 15 cells, the solute plume displays a
greater dilution.
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Figure 4.14: Solute log concentration plume simulated for different upscaled
models at t = 300 using a size of block 5 cells and corresponding the reference
solution for the three cases of composite field. (a) case of the first scenario,
(b) case of the second scenario and (c) case of the third scenario.
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Figure 4.15: Solute log concentration plume simulated for different upscaled
models at t = 300 using a size of block 15 cells and corresponding the reference
solution for the three cases of composite field. (a) case of the first scenario,
(b) case of the second scenario and (c) case of the third scenario
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Applying the concept of relative entropy we measure the performance of
upscaled models. The relative entropy is a measure of the difference between
two distribution p and q over the same space(Kullback , 1959). For a set of
n blocks the relative entropy (RE) between two distribution of particles is
defined

RE(t) =
n∑

i=1

piln
pi

qi
(4.5)

where the frequencies qi and pi are computed from the sample number particles
located within of a block ni associated with each plume outcomes as qi =
ni/Np, Np is the total number of particles found within the system flow at a
given time, i.e. a snapshot. RE is zero only when two distribution of particles
are identical.

RE computed for each of the three cases test are presented in figure 4.16
for two size of blocks used in the spatial discretization at coarse scale. In each
case, RE is estimated based on the representation of solute plume at coarse
scale and fine scale were obtained by accounting over a square fine-grid formed
by 240 x 240 blocks of 1 unit side.

In the first and third cases, the comparison of the temporal evolution of
RE associated double rate and macrodispersion shows in figure 4.16. Since,
RE is a measure of the lack of fit, a value of RE close to zero implies that
the fit is perfect. This plot indicates that the representation solute plume at
coarse scale through double rate or macrodispersion predict the same results
when the size of block used is 15 x 15 cells. However, from these figure one can
see that, in the first case macrodispersion is better than double rate, whereas
in third case double rate does as well, when the size of block is 5 x 5 cells.

In the second case, the temporal evolution of RE shows that the fit of the
double rate to the reference solution is better than observed for the macrodis-
persion model for two size of blocks. This indicates the coarse grid represen-
tation of the behaviour of the solute mass plume with double rate for this case
is accept as an well description some scale.

The examples of composite test are characterized by large, eccentric, very
low or high conductivity lenses oriented in direction to the flow mean direction.
The models given comparable results in case of the first and third scenario,
because the nature of behaviour transport around the lenses produce spread-
ing that the macrodispersion and double rate can reproduces at large scale.
However, in the case of second scenario the transport is controlled the low
transmissivity values gives rise behaviour that is describe well by double rate.
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Figure 4.16: Comparison of the temporal evolution of relative entropy of dou-
ble rate and macrodispersion models for the three cases test.
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4.3.2 Longitudinal distribution mass profile

In the following section, longitudinal mass profiles of the reference solution and
the simulated plumes by upscaled models at two elapsed times after injection
are compared. In each case the mass profile was obtained by integrating the
mass of 240 equally step sizes each of 1 unit of width along Y − direction and
normalizing it by the total injected mass.

Figures 4.17 and 4.18 plots the longitudinal mass distribution profiles at
times t = 300 and t = 600 after the release for two different support scale.
These plots represent the value obtained from the simulations with transport
realizations of each model. From these graphics we can see that the shape of
the mass profiles of the reference solution at both times is better reproduced
by the upscaled models associated to double rate in comparison to macrodis-
persive as shown in figure of the case of the second scenario, where the mass
profile of reference is described well by the double rate. The profile calcu-
lated by the macrodispersive model display a back dispersion, which is not
physically possible, since the particles displace opposite to flow direction.

Figure 4.19 shows the performance of upscaled models in term of the tem-
poral evolution of mass profiles sampled from a cross sections to the mean
flow direction and located at x-distance = 75 units from the injection point.
In each case the mass profile was obtained by integrating the normalized mass
cross the section a given time, i.e. a shapshot..

The results shown in figure 4.19 illustrated that upscaled models represent
by double rate provide a better description of the temporal evolution of mass
profile of reference at cross sections. Note, however, the peak and tails are
not matched exactly. We see that mass profiles obtained from the results of
macrodispersive model for case the second scenario present very little solute
passes over the period of simulation through the fraction of the domain of
sampled. Indicating that the plume simulated by macrodispersive model with
macrodispersion coefficient assigned in big homogeneous blocks to describe the
spreading effects of aquifer heterogeneity gives rise a retardation greater that
in case of the double rate model.

4.3.3 Dilution Index

Here, we analyzed the relative aquifer volume occupied by the solute plume.
The dilution index is a quantitative measure of the plume structure, which
can help us to evaluate the capability of upscaled models.

The dilution index is proposed by (Kitanidis, 1994) and it is expressed by

I =
E(t)
Emax

(4.6)

where E(t) for a set of m blocks is expressed as
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Figure 4.17: Longitudinal mass distribution profiles of the reference solution
and predictions using double rate with those associated with macrodispersive
models corresponding at time t = 300 (left column) and t = 600 (right col-
umn). Row a), b) and c) corresponding to the 5 x 5 upscaled case 1, case 2
and case 3 of the scenarios of composite field test, respectively. Injection point
at x = 60 units
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Figure 4.18: Longitudinal mass distribution profiles of the reference solution
and predictions using double rate with those associated with macrodispersive
models corresponding at time t = 300 (left column) and t = 600 (right col-
umn). Row a), b) and c) corresponding to the 15 x 15 upscaled case 1, case
2 and case 3 of the scenarios of composite field test, respectively. Injection
point at x = 60 units
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Figure 4.19: Comparison of the temporal evolution of normalized mass at a
given location downstream from the injection point x = 75 units for double
rate with those associated with macrodispersive models versus the reference
solution: (a) case of the first scenario, (b) case of the second scenario, and (c)
case of the third scenario of composite field test.
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Figure 4.20: Comparison of the temporal evolution of the dilution index
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E(t) = ∆V exp

[

−
m∑

k=1

Pk(t)ln(Pk(t))

]

(4.7)

where Pk(t) is the ratio of the mass of solute in a region volume ∆V of the
system to total mass of solute in the aquifer at time t. In a practical point
view I expressed the ratio of volume occupied by the mass solute in a region to
the total aquifer volume at time t. Thus, values of I near 1 indicate complete
dilution, whereas values near 0 that the mass solute is nonuniform distributed
in the porous media.

Figure 4.20 displays the behaviour of I as function of time for double rate
and macrodispersive models. These I values plots in the figure, I obtained
from the simulations of transport realizations in each case. In each case the
dilution index was obtained using a square grid with a resolution of 240 x 240
cells of 1 unit size.

We can see that the mean value associated with the reference solution is
less that 0,15, and at larger times decreases to values near to 0.1, since part
of the solute mass is out of system. In contrast the solute mass simulated by
upscaled models display larger dilution in comparison to reference solution,
and this behaviour reflect that the plume simulated at large scale displays
greater dispersion due to partial homogenization of the attribute of the aquifer
heterogeneity. Also, so far, the dilution increases with the scale over which
local solute concentration fluctuate.

4.4 Summary and conclusions

We developed a numerical experiment to evaluate the ability of upscaled mass
transfer models to reproduce the solute behaviour at large scale. The results
of upscaled models were evaluated using simulations of solute transport con-
sidering three cases of scenarios of a complex geological system formed by high
or low conductivity lenses embedded into an anisotropic and an isotropic back
field. In particular, the solute plume simulated at local scale in each scenario
has specific features due to aquifer heterogeneity.

Performance assessment of upscaled models is done by comparing trans-
port simulations of non-reactive solute plume at two different different support
scales. First, we simulated the solute transport at a smallest scale to obtain a
set of reference solutions. At large scale, the formulation double rate of mass
transfer model is evaluated as an alternative transport model. For complete-
ness, the double rate mass transfer models is contrasted against the standard
macrodispersive transport models.

In order to examine the performance of upscaled models we analyzed the
results from two different perspectives. Diagnostic of performance of upscaled
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models is provided by comparing of the behavior the solute mass plume at
times after the releases in a single realization transport. The solute plume
simulated in each case of scenarios investigated in this work, have traveled
sufficiently far to sample a wide range of aquifer heterogeneity, both at fine
scale and large scale. We have observed that the transport simulation with
upscaled models do not accurately recreated the asymmetric shape of the
spatial distribution of solute mass observed at smallest scale. Note, however,
in the cases of the second scenario, double rate can describe well the main
features associate with solute plume of reference solution.

Otherwise, the results showed that representation of solute transport at
computational scale with upscaled models based on the memory functions that
is used to represent the unresolved process yielded a good prediction of the
description of the behaviour solute plume in comparison to macrodispersive
model. However, a part of our numerical experiment shown that the effects of
small scale aquifer heterogeneity can captured both double rate and macrodis-
persion models, at least if there is no large scale variability (scenario 1 and
3) In the first models a sink term to account for exchange of solute between
mobile and immobile phases to describe the solute spreading, whereas the
second model a macrodispersion coefficient accounts for the effect of aquifer
heterogeneity on the solute spreading.

We observed that solute plume predictions using upscaled models presents
greater dilution than the reference solution. Dilution at coarse scale is affected
by sub-grid heterogeneity, then due to partial homogenization of the attribute
of the aquifer heterogeneity the upscale model fail to reproduce some key
features, especially the dilution of a plume. In general, large-scale features
of a solute plume can not be reproduced by any upscaled transport model
investigated in this work. The reason is that albeit the parameters associated
to memory function are calibrated to replicate the residence time distribution
of mass particles during the upscaling process the models at large scale present
a lack of memory in space that caused the inability of reproduction of mass
fluxes taking place at interface between two homogeneous block of upscaled
model.
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5
Conclusions and future

research

5.1 General Conclusion

The hydrogeologic properties of an aquifer often exhibit high degree of spa-
tial variability over the range of scales because of the heterogeneous nature
of geologic formations. This means that to predict the behavior of flow and
transport the characterization of the spatial variability is needs. Geostatis-
tics provides the ability to characterize the spatial variation of hydrogeologic
properties with high resolution. However, in hydrogeologic practice model-
ing, due the high computational demands when running flow and transport
at such resolution it is often necessary to reduce the dimensions of the prob-
lem. Traditionally, the flow and hydraulic head are simulated using equivalent
hydraulic parameter values obtained of the analysis of aquifer tests, these
parameters are assigned over various grid-blocks forming large homogeneous
zones in the model. During the calibration process, these equivalent parame-
ters are adjusted at computational block scale to reproduce the historical field
measurements. In contrast, to simulate solute transport, there is a need to
introduce additional equivalent parameters such as block macrodispersion, in
order to reproducing of the solute behaviour. We analyze different methods
for solute upscaling.

The effect of the hydrogeology heterogeneity that produce an anomalous
(non-Fickian) behavior, such as asymmetric plume and breakthrough curves
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with large tails has been revealed through experimental data from field. In
other words, transport phenomena by groundwater is very much effected by
the existence the high and low water velocity zones, where the contaminant
can travel quickly in direction preferential flow path or get stagnant. For
this reason, the use of the classical advection-disperion equation (ADE) has
questioned to model transport solute at the usual computational scale. In
this framework, trying of reproduce the transport behaviour observed in the
upscaled model may be impossible if only ADE is used to represent the same
controlling transport mechanics at small scale.

For the reasons exposed above in Chapter 2 the task was to review the
main alternatives transport approach has been proposed in the hydrogeo-
logic literature. We focus our attention on four approach that are: Multirate
mass transfer (MRMT), Time-Depend Macrodispersive (TDM), Continuous
time random walk (CTRW) and Fractional Advection-Dispersion Transport
(FADT). We start presenting the theoretical framework of ADE. The empha-
sis of this review has been place on the theoretical framework of each approach.
These models provide new ways to quantify contaminant transport. However,
transport problem generally requires a greater detail of heterogeneity than the
flow problems.

The important issues to represent solute transport is to capture aquifer
heterogeneity. The question of how to assign appropriate transport parameter
values to each element or block in the numerical model has not been completely
resolved. A way to resolve this issue is to use upscaling. So, the main objective
in chapter 3 the developed a methodology to performance upscaling of non-
reactive solute transport.

The proposed scale-up technique is based on multirate mass transfer model.
Each block with heterogeneous transmissivities is replaced by a homogeneous
block in which the parameters associated to a memory functions are used
to represent the unresolved mass exchange between highly mobile and less
mobile zones occurring within each block. Upscaling of the transmissivity is
based on the Simple Laplacian with skin, whereas block transport parameters
are estimated through the interpretation of the residence time distribution of
particles passing through a given block during fine-scale simulations.

The new upscaling technique is evaluated using the upscaled models as a
tool for upscaling solute transport in a general numerical modeling framework
(chapter 3 and 4). This was achieved by comparing Monte Carlo simulations
of solute transport at two different support scales. Importantly, results showed
that an appropriate description of the residence time distribution for all blocks
of the numerical model provides an upscaled transport model that is capable
to reproduce the ensemble mean behavior of the BTCs, and also that a com-
plete reproduction of uncertainty and dilution of plume was not provided by
any of the upscaled transport models. The major drawback of the proposed
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method, from practical point of view, is that it is specific to each case can
be computational expensive because it requires to solve flow and transport at
fine scale. This is only is possibly when running complex upscaled model to
simulate a more computational demanding problem (e.g., reactive transport
with many species and reactions).

5.2 Future researches

As product of task developed within this dissertation, following future studies
are suggested:

The extension of the methodology to three dimension is also a important
research issue. Hence, it is important to consider the possibility of improving
the scale-up technique without consider the entire flow and transport solution
at fine scale. To avoid solving the transport problem for the entire domain, the
equations can be iteratively solved for each block over smaller support volume,
which contain the block plus a ”skin” region. The skin should be used to
approximately reproduce flow and transport boundary conditions on the block
without having to solve the transport problem for the entire domain. Further
research should be carried in order to determine how large the skin should be
so that resulting estimates of upscaled models are close to the calculating that
would have been obtained considering the entire aquifer been used as skin. In
order to account for spatiotemporal memory effects on transport, the injection
of particles should be performed in the skin region. In this way particles
passing through the block have already sampled the heterogeneous system
nearby. Furthermore, evaluate the alternative type of injection of particles.
One possibility is introduced the particles along a line proportional to fluid
flux, as proposed by Desbarats (1990).

Furthermore, it is important to test the methodology in a real-case study.
Existing well-studied tracer test that are readily available, for example, Air
Force Base in Mississippi.
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A
Calibration of Mass Transfer

Parameters

This appendix describes the numerical details involved in the calibration pro-
cess of mass transfer parameters. The objective function minimized by PEST
included the estimates of the distribution function obtained at different times
as well as the low-order temporal moments of fτ (τ), formally written as

J(P) =
Nobs∑

i=1

ωi[Fτ (ti)−Fτ,m(ti;P)]2 + λ1[τ − τm(P)]2 + λ2[σ2
τ − σ2

τ,m(P)]2(A.1)

where P is a vector of parameters (see Table 3.1), Nobs is the number
of time observations, Fτ (ti) is the sample cumulative distribution function of
residence times at time ti. Fτ,m is the analytical solution (3.17), τ and σ2

τ are
the sample mean and variance of the residence time distribution, τm and σ2

τ,m

are the analytical solutions of the mean and variance of the residence time
distribution, and {ωi,λ1,λ2} are the weights of the observations, mean and
variance of the residence time. The number of estimated parameters depends
on the selected upscaled mass transfer model. The analytical solution of the
mean and variance of the residence time distribution can be easily obtained
from (3.17) as

τm(P) = − lim
p→0

df̄τ (p)
dp

=
Lb

vm
(1 + β) (A.2)
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σ2
τ,m(P) = lim

p→0

d2 ln f̄τ (p)
dp2

=
2A"

v2
m

(1 + β)2Lb +
2Lb

vm
β

∫ ∞

0

f(α)
α

dα (A.3)

These results are consistent with the temporal moment analysis conducted by
Lawrence et al. (2006).
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