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ABSTRACT 

Network design for estimation of groundwater flow and mass transport in aquifers must 

include the time component so that not only where but when the sampling should be taken is 

determined. For this purpose, standard linear estimation techniques for static problems are 

coupled with variance propagation in time through the use of the Kalman filter to devise a 

methodology for dynamic network design.  

The criterion used to discriminate between possible sampling schemes is the mean 

estimation error variance over time and space for the entire simulation period and the entire 

aquifer. Shorter spans of time and/or parts of the aquifer could have been used instead. The 

optimization is constrained by the location of the possible sampling points (in both time and 

space) and by the total number of samples to be taken. For the results presented here the 

optimization is carried out by exhaustive search, which results in a very expensive method. 

The solution to the network design problem for estimation of groundwater flow and 

mass transport in a one-dimensional aquifer with uniform parameters permits one to draw some 

conclusions that may ease the problem for more realistic higher-dimensional problems. In 

groundwater flow the optimal location is mainly related to the geometry of the system. 

However, no relationship between the optimal sampling time and the system parameters is 

found. In mass transport the timing is determined by the travel time, and the location by the 

geometry and the boundary conditions. The Peclet number seems to influence only the level of 

uncertainty, not the design. 
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1. INTRODUCTION 

The problem of network design has been recognized since the very moment that somebody had 

to decide where to take a number of samples to establish the state of a system. Initially, the 

good judgment of an expert was used to decide where and when to take the samples, but the 

cost of sampling and the need to optimize the information provided by those samples lead to 

the problem studied here: to find the sampling location and times such that those samples are 

optimal under a set of criteria. 

Network design for phenomena that do not vary in time or vary very slowly has been 

developed in a number of fields. But I would like to include time in the network design 

problem so that phenomena that clearly vary in time, as well as in space, can be addressed. 

Some attempts have been made in this respect but they reduce the problem to a static one by 

separating space and time. In groundwater hydrology, a feasible methodology for dynamic 

network design has not been found to apply to practical problems. The dimensionality of the 

problem is one of the major drawbacks. Notice that a small three-dimensional aquifer with 

10∞10∞10 cells requires a 1000∞1000 dimensional matrix to represent all the two-point 

covariances that theoretically must be propagated in time and heavily manipulated (see Chapter 

4) in order to include time in the network design problem. 

The methodology presented here is applied to a uniform one-dimensional aquifer in 

order to try to get some understanding of the network design problem, with the goal of easing 

the solution of more complex systems. It is based on the following hypotheses: i) the aquifer 

parameters are exactly known; ii) the external stresses, if any, are also perfectly known; iii) the 

initial state of the system is either completely unknown or known with a given estimation error 

covariance; and iv) measurement errors are allowed.  

Since the system is known with imprecision at the beginning of the simulation period, 

this imprecision will propagate in time. The objective of the network design problem for this 

study will be to find the sampling scheme that most reduces the mean estimation error variance 
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over time and space. Many other objectives can be chosen, as discussed elsewhere in this 

report.  

The procedure consists of the following steps: i) define a set of possible sampling 

locations and times; ii) set the total number of samples to be taken, iii) for each of the possible 

ways to take as many samples as stated in ii) among the locations set in i) propagate the error 

covariance from time zero until a measurement is made, propagate the new filtered error 

variance until another measurement is made, and so on until the end of the simulation period, 

iv) calculate the mean estimation error variance over space and time; v) the sampling scheme 

chosen will be the one with the smallest mean estimation error variance.  

The work is organized into five chapters. Chapter 2 reviews the work done so far in the 

field of network design. Chapter 3 derives the transfer matrix of the state-space models used in 

groundwater flow and mass transport. Chapter 4 presents the formulation of the linear Kalman 

filter. And Chapter 5 presents the results for a one-dimensional aquifer for both the flow and 

mass transport problems. 

2. LITERATURE REVIEW 

There are several ways to classify the studies that have been done in network design. Maybe 

the two most logical approaches are to classify them either according to the objective of the 

network or according to the procedure used to pursue that objective. In the following 

paragraphs a review of the most relevant work in network design will be presented using the 

latter approach. 

Since the late sixties considerable research has focused on the issue of network design. 

Optimal allocation of sampling points in both time and space has been the primary goal. The 

first major problem arises in the definition of optimal. Who defines it? What are the criteria 

used? In many instances a decision maker is needed to provide a subjective evaluation of such 

factors as the cost of a unit of estimation error variance, or the amount of risk that  users can af-

ford, or to set priorities in the case of multicriterion objectives, or to state social and economic 
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constraints on the optimization problem. Therefore, the network design problem can require 

inputs from a variety of fields, in many cases from outside the  hydrologic setting. This study 

does not take into account such a decision maker and  optimal is defined  in terms of the mean 

estimation error variance. However, there would not be any problem in extending the definition 

of optimal to include, for instance, the cost of sampling. Several definitions of optimal and the 

need for a decision maker's subjective evaluation will be seen in some of the scenarios 

presented hereafter. 

The different studies that will be reviewed can be divided into two groups depending on 

whether or not the dynamics of the phenomenon under study are included in the design of the 

network. When the phenomenon is constant in time or varies so slowly compared to the 

sampling frequency that it can be considered as time-invariant, the network design will be said 

to be static. When, on the other hand, the phenomenon varies in time at a rate similar to the 

expected sampling frequency, the dynamics of the system must be included in the design 

problem and the network design will be said to be dynamic.  

Many are the fields of application and many are the techniques that have been used to 

solve the design problem. Likewise, the objectives are countless, but in essence a network is 

designed to gather data at a number of points with the objective of obtaining local or global 

estimates of a given variable within a given region. Whether these estimates will be used to 

enforce a policy or to calibrate a numerical model will determine the final goal of the network. 

My major emphasis, in the review that follows, will be focused on applications that have been 

carried out in hydrology, spanning from surface hydrology to groundwater hydrology, for both 

static and dynamic network design. Some of the techniques used are geostatistics, sampling 

theory, linear systems, state estimation theory (mainly the Kalman filter), information theory 

and others. The presentation will be divided into two parts, one dealing with static network 

design and the other with dynamic network design. 
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2.1. Static network design 

All the work presented under this heading is characterized by regarding the phenomenon under 

study as time-invariant or slowly time—variant so that no temporal evolution is taken into 

account. 

Geostatistics has been the most used tool in static network design. The theory of 

regionalized variables and the method of kriging developed by Matheron [1971] have been 

successfully applied in hydrology and, in particular, in network design. Given a region, and a 

number of points where the values of the variable under study are known, kriging [Journel and 

Huijbregts, 1975] provides an estimate of the variable at unknown points as a linear 

combination of the known values. Spatial correlation is included through the variogram, which 

is a measure of the expected variability between points. The coefficients of the linear 

combination are computed such that the estimate is unbiased and minimizes the variance of the 

estimation. For this reason, kriging is called a best linear unbiased estimator, or BLUE. The 

fact that the kriging estimation variance as well as the coefficients of the linear combination are 

independent of the actual values at the sampling locations makes kriging particularly powerful 

in network design since no measurement must be done in order to know how the estimation 

variance will change by adding a new sampling location.  

In the geostatistical approach, the process is assumed to be second-order weakly 

stationary. This means that the expected value must be constant over all the domain (under 

certain circumstances this assumption can be relaxed [Delfiner, 1975]) and that the expected 

value of the square of the differences between two points must be dependent only on their 

relative position. 

Delhomme [1978] showed the potential of geostatistics to be used in network design for 

both global and local estimation. In the ouadi Kadjemeur basin (Chad), global estimation of 

mean areal rainfall was done from a set of 33 rain gages. The fictitious point method was used 

to determine where the 34th gage should be located. The fictitious method consists in the 

selection of that point that provides the maximum reduction on global estimation variance. The 
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name of fictitious comes from the fact that this reduction can be computed without actually 

installing the gage. This is possible because the kriging variance is independent of the data 

values themselves. In general a map of isoreduction of variance curves accompanies this kind 

of studies in order to detect not only the maximum reduction but also the zones that need to be 

reinforced.  

For local estimation, Delhomme presented the case of estimation of hydraulic heads in 

the Huveaunne aquifer in France. In this case there are as many kriging variances as points in 

which the hydraulic head is to be estimated (in the global case only one estimate of the mean 

areal value was wanted, therefore there was only a single estimation variance). Therefore, the 

inclusion of an additional gauge will influence the estimation variances at every other point. 

One may choose between selecting that point that provides the maximum reduction in the areal 

integral of estimation variances, or simply locate the new stations at the local maxima of the 

initial estimation variance map.  

Jones et al. [1979] used ordinary kriging for network design for estimation of rainfall 

totals during a particular time interval. A very sophisticated method was proposed to estimate 

the parameters of the covariance function from a number of data values. To obtain the kriging 

estimation variance (or mean square error as it is called in the study) the zone is divided into a 

square grid and a different covariance function is computed for each square using a 

surrounding square of larger dimensions. With the computed covariance and the gages within 

the outer square, the interpolation procedure is carried out for the inner square and the 

estimation variance is computed in the inner square. Repeating the process for each square, a 

map of estimation variances is obtained. The procedure to reinforce the existing network is 

simply to add gages where the estimation variance is below the accuracy required by the users. 

Villeneuve et al. [1979] used ordinary kriging to reinforce the Quebec streamflow 

recording network in Canada. After a first screening of the existing network in order to 

eliminate those clearly superfluous gages, the problem of network reinforcement was ad-

dressed for local and global estimation of two variables: maximal 1-day flow values with a 
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return period of 100 years and minimal 7-day flow values with a return period of 100 years. 

Although the mean areal values of these variables do not have much meaning, the fictitious 

point method was used to locate the gage that produces the maximum decrease in the 

estimation variance of these mean areal values. The local estimation problem was more 

interesting. With the objective of reducing the kriging estimation variance as much as possible 

in as many points as possible, a number of fictitious stations were included at once and the new 

map of kriging estimation variances was compared with the initial one. This process was 

repeated until those stations (among a set of 10) that produced the most significant variance 

reduction over all the area were found. Different sets of gages proved to be the best choice for 

the two variables studied (maximal flow and minimal flow), raising the problem of 

multicriterion network design. In order to finally decide which is the best set that 

simultaneously takes into account the two estimation problems, some sort of weighting of the 

estimation variances must be introduced by the decision maker.  

The initial work by Matheron [1971] was extended by Delfiner [1975] in order to deal 

with processes that are stationary only after an incrementing transformation. Such a process is 

called an intrinsic random function (IRF) and the correlation structure  is  represented by a 

generalized covariance that coincides with the process covariance if the process is stationary, 

but that can be interpreted only in connection with the incrementing process. This theory is 

used by Hughes and Lettenmaier [1981] for linear estimation and network design. The study 

was carried out in the Spokane Valley aquifer in Washington State and the variable of interest 

was nitrate concentration. Sixty-two wells that constituted the existing network were used to 

identify the underlying IRF. The criterion used to reinforce the network was to minimize the 

variance of an areal estimate of the nitrate concentration. The method proposed goes beyond 

the fictitious point method in that it tries to allocate a number of stations at once instead of only 

one at a time. For this purpose, the property that the kriging estimation variance depends only 

on the generalized covariance and on the relative geometry of the samples but not on the 

observations is used to write the kriging estimation variance as a function only of the sampling 

locations. A first-order Taylor's expansion of the kriging estimation variance as a function of 



 7 

the coordinates of the stations to be added was used as the objective function. The minimiza-

tion was carried out using a gradient method and the coordinates that allocate the stations with 

minimum kriging variance were obtained. 

McBratney et al. [1981a,b] used ordinary kriging to design a network for sampling of 

soil pH and soil thickness. Assuming that a semivariogram is known from a previous survey or 

from any other source, the authors devised a method to obtain the optimal sampling using a 

regular sampling pattern that minimizes the maximum point or block estimation variance. 

Since no preexisting sampling data were considered, it is straightforward to conclude that, for 

isotropic variation, the best sampling pattern corresponds to an equilateral triangular grid and 

the maximum point estimation variance happens at the center of the triangle. In the case of 

block kriging the maximum estimation variance can occur either when blocks are centered at 

the center of grid cells or when they are centered on observation points, so that both cases 

should be solved to identify the best sampling procedure. The kriging variance can then be 

computed and plotted for different distances between sampling points. From the resulting 

graph of network density versus precision, the density may be read if the precision is the 

decision variable, or viceversa. A transformation of coordinates is suggested to deal with 

anisotropy. Two examples are presented, one to design a network for measurement of the pH 

of topsoil at Suffolk, England, and the other to design a network for measurement of soil 

thickness at Lephinmore, Scotland.  

In the last work of McBratney et al. [1981a,b], as in the work cited in the following 

paragraphs,  the decision variables are not sample locations but just one or two variables 

characterizing a regular network. Besides the fact that the proposed methodologies do not take 

into account any preexisting stations, they cannot be applied to domains with  irregular 

boundaries or sizes of the order of magnitude of the sampling interdistance since the 

expression for the estimation variance is computed under the assumption of an infinite domain.  

A very similar method to that of McBratney et al. [1981a,b] was used by Sophocleus et 

al. [1982] and Sophocleus [1983]. In this case, the authors used universal kriging to solve a 
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network design problem in the Ogallala formation in northwestern Kansas for measurement of 

groundwater levels. The issue is not to reinforce a network but to find which uniform pattern 

and with which density the sampling should be done to reduce the kriging estimation variance 

at a reasonable cost. The only decision variables are the sampling pattern (i.e. square pattern, 

triangular pattern, etc.), the density (generally measured as the interdistance between adjacent 

samples) and the orientation. For the case study contemplated by Sophocleus, the square pat-

tern was chosen from political considerations.  Groundwater head variation, after a linear drift 

was removed, appeared  isotropic, so the orientation did not have any influence on the final 

solution. Thus, the only decision variable was the network density. To determine the optimal 

network density, the kriging estimation variance was evaluated at the center of the square for 

different density values. The trade-off between the reduction of kriging estimation variance and 

the cost of the stations needed for that purpose was left to be set by the decision maker. The 

results showed that a network consisting of a well every four miles yields regional groundwater 

maps with the same uncertainty as the current network. The results also showed that to reduce 

that error by 1/2 the sampling effort would have to be increased by 16 times.  

Carrera et al. [1984], also using a geostatistical approach, employed a branch method to 

obtain the optimal location of a number of measurement points from a discrete set of possible 

sampling points. Only Hughes and Lettenmaier [1981] have tried to find the optimal location 

of a number of sampling points at once, but since they needed to linearize the expression of the 

kriging estimation variance to apply their optimization algorithm, their solution was sub-

optimal. Thus, the work by Carrera et al. is the first one in which kriging is used to find the 

optimal location of a number of stations. It is applied to the optimal selection of measurement 

points in the San Pedro River basin in Arizona to estimate fluoride concentration of the 

groundwater. The optimization problem consists in selecting  wells among m possible 

candidates such that the estimation variance of the mean value of the fluoride concentration 

over the entire basin is minimum. A branch method is used. The algorithm starts computing the 

estimation variance as if a measurement were to be done at each and every possible point and 

proceeds discarding measurement points and recomputing the estimation variance until the 
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optimal solution is found. Some properties of the estimation variance make it unnecessary to 

perform an exhaustive search through all the branches and a procedure is given for an efficient 

update of the estimation variance when a point is dropped. A sensitivity analysis on the 

variogram parameters (range and nugget effect) was carried out showing that the results were 

very robust. The same optimal configuration was found in almost all cases and when it was 

not, the new configuration only differed in one station.  

Bogárdi et al. [1985] combined multicriterion decision-making and geostatistics to 

design a regular observation network for estimation of several parameters. The network pattern 

was rectangular, not necessarily square, thus accounting for possible anisotropy. An expression 

for the average point estimation variance over one of the rectangles, as a function of network 

density, orientation, average distance and variogram was obtained using the geostatistical 

formalism.  One such expression was obtained for each of the parameters to be estimated, the 

only difference between expressions being the particular variograms of each parameter. 

Although the average point estimation variance over a rectangle was used, the authors 

acknowledge that average point (or block) estimation variance over the whole area or maxi-

mum point estimation variance, could have been used. Afterwards, composite programming 

was used to minimize an objective function that included statistical criteria, observation effort 

criteria and their corresponding trade-offs. The statistical criteria are related to the estimation 

variance. The observation criteria are reduced to one criterion for which the network density 

acts as a surrogate. Trade-off coefficients are needed, both among statistical criteria (without 

directly measurable economic consequences) and between statistical criteria and the 

observation effort criterion. The objective function is finally minimized using a gradient 

optimization. The two major drawbacks of this method are: i) it assumes that the variograms 

for all the parameters to be estimated can be inferred from prior regional information or data 

from part of the area and ii) it is assumed that there are no operating stations already in the 

area. In addition, the subjective problem of assigning values to the trade-off coefficients 

appears here as it appears in any multicriterion decision problem. For the case in which stations 

are already operating in the area under study, a procedure to adjust the best network previously 
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obtained for the existing stations is suggested. In this procedure the network obtained by the 

unconstrained method (no preexisting stations) is superimposed to the existing network. This 

determines the number of stations that should be added and gives an initial location that will be 

used in a gradient optimization method with the coordinates of the new stations as decision 

variables. The method was applied to design a network to identify four aquifer parameters: 

thickness and porosity in a two-layer aquifer in western Hungary. The variograms were 

estimated from 37 samples taken in a small subarea of the aquifer (500 x 250 m) and an 

unconstrained network search was carried out. 

The last work approaching static network design from the geostatistical standpoint  that 

will be cited here is the one by Chou [1986]. In this work non-linear programming and 

geostatistics were used to select the optimal location of a number of stations at once. The 

decision variables are the sampling point coordinates. The statistical criterion used to compare 

different configurations is the variance of the mean estimate of one parameter over the whole 

domain. Therefore the network is designed for global estimation. An expression of the 

estimation variance is obtained in terms of the coordinates of the existing stations and in terms 

of the unknown coordinates of the additional stations, then an algorithm that uses a simplified 

version of the self-scaling gradient method, the steepest descent method and the PARTAN 

ridge following technique is used to obtain the optimal location of the additional stations. A 

synthetic case is used to study the feasibility of the method. The results for this example are 

compared to the results that would have been obtained by sequential application of the 

fictitious point method.  It is my judgment that neither the changes in sample locations nor the 

reduction in variance was large enough to justify the additional effort required by the proposed 

method. 

At this point, after the presentation of the most relevant papers in spatial design of 

networks for sampling time-invariant phenomena, it is worthwhile to point out one remark 

made by Switzer [1979] about optimal design of spatial networks. The minimization of the 

mean square error or kriging estimation is a very difficult exercise from the mathematical point 

of view. Optimization becomes wasteful since good judgment on the part of the designer will 
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produce a suboptimal configuration as good, for practical purposes, as the optimal solution.  

Good judgment means avoiding clusters of stations, taking into account anisotropy, trying to 

spread stations at a distance about the correlation length of the process, etc. By doing so and 

applying simple weighting schemes, the network can be used to obtain nearly optimal 

estimates.  

Geostatistics has been shown to be a very suitable tool for network design, especially 

for estimation of time-invariant processes. However, there have been  authors that have used 

other techniques for the same purposes. Among these techniques, that have not had a broad 

application, I will review three works. One work based on linear systems theory,  another work  

using a formalism essentially equal to the geostatistics approach, and finally a different method 

using information transmission theory are discussed below. 

 Eagleson [1967] used deterministic linear systems theory in the frequency domain 

[Bracewell, 1978] to determine the optimal density of rain gages required to accurately forecast 

discharge . The catchment was modeled as an infinite array of time—invariant independent 

linear subsystems. The peak discharge at the outlet was the variable to be estimated. A linear 

system related precipitation and discharge through an impulse-response function which 

represented the catchment itself. The discharge spectrum was computed for different types of 

storms, and  by using the sampling theorem, the truncation wave number and the network 

density could be related to each other. In the end, a relationship between the forecasting error 

and the number of stations is given for each type of storm. This methodology was applied to an 

Australian basin and the results show that the number of stations required by Eagleson's 

method was small for reasonable forecasting errors. Eagleson and Goodspeed [1973] used the 

same method in other Australian basins with similar conclusions.  

Bras and Rodríguez-Iturbe [1976] used linear, minimum variance estimation to study 

the network design problem to estimate an event areal mean. The estimator used was 

essentially a non-recursive static Kalman filter, which, in turn, ends up being essentially a 

kriging estimator. Two sources of error make the estimate imprecise: discretization, the spatial 
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integral of the event is approximated by a finite summation over a regular grid, and 

interpolation, only a small set of points in the grid are sampled, the remaining points must be 

estimated by interpolation from the sampled values. The mean square error is then calculated 

by decomposing it into three terms, i) the model error, that is, the error resulting from 

approximating a continuous integral by a discrete summation, ii) the estimation error, that is, 

the error resulting from the interpolation exercise and iii) a term that represents the dependence 

between the model error and the estimation error. The network design is, then, focused on the 

minimization of a linear objective function that takes into account network accuracy, station 

cost and the trade-off between accuracy and cost expressed by the cost that the user is willing 

to pay for each unit of accuracy. An imaginary case study is presented and several curves of 

objective function value versus number of stations for different trade-off coefficients are 

drawn.  

To end this review of static network design, the work by Caselton and Husain [1980], 

who used Shannon's information theory in hydrologic network design, is described. The 

network is viewed as a communication channel that transmits hydrologic information. The 

objective of the network design problem is the maximization of information transmission. If X  

is the random input to the communication channel (the hydrologic event) and Y  is the output 

(the estimate of the hydrologic event), then the information provided by yj  about xi  is related 

to the change in probability of xi  from the prior value P[xi ] to the posterior value P[xi |yj ] and 

the information transmission is measured by the difference between the logarithms of the two 

probabilities. An expression of the information transmitted by m stations used to interpolate the 

values at a total of n  points was obtained and an exhaustive search was used to devise a daily 

precipitation network when ten points were available for station location and only some of 

them were to be used. This method, as well as all the linear estimation methods presented in 

the preceding paragraphs, have the advantage that the measure of accuracy (in this case the 

amount of information transmitted) is independent of the measured values themselves, so that 

the design of the network can be made before any sample is taken. The major disadvantage of 

this method is the need to estimate all the prior and posterior probability distributions, which 
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means that the joint probability distribution of input and output to the transmission channel 

must be known. 

 All the non-deterministic methods presented in this section claim the advantage that 

the estimation variance is not dependent on the values of the phenomenon but on its covariance 

structure and the relative configuration of the sample locations. It is, indeed, an advantage 

since the network can be designed beforehand; no measurement must be done at the place 

where a new station is being considered. But, at the same time, it is a disadvantage, since the 

effectiveness of a station for estimation does not depend only on its  location but also on the 

real measurement. A station can be perfectly allocated with respect to the surrounding stations, 

but it may end up with a measurement that corresponds to a very improbable or erroneous 

value that cannot be used in the interpolation process. Some short of data condtioned 

estimation variance should be used instead.     

2.2. Dynamic network design 

When time is to be included in the network design problem, so that not only spatial location 

but sampling frequency is to be determined, then the problem is transformed into one of 

estimation of dynamic hydrologic processes. The network design problem will then be referred 

to as dynamic network design. 

This part of the literature review is organized in the following way: first, a review of the 

work done using state estimation theory, and second, a review of the studies that did not use 

state estimation theory but instead used Monte-Carlo simulations, probability theory, or 

geostatistics.   

State estimation theory provides a framework wherein uncertain dynamic equations can 

be incorporated into the estimation process. It takes explicit account of error in the model 

equations and error in the measurements. Only a subset of the state variables are sampled, the 

remaining are interpolated using the samples and the model predictions. The interpolation 

function is obtained with the objective of minimizing  the mean square error estimate of the 
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state vector. The Kalman filter is a special case of state estimation theory in which both model 

equations and measurements are linear in the state variables.  

The potential of the Kalman filter in network design was acknowledged in the 70's 

when it was used by several authors to solve simple cases. But the problem of dimensionality, 

as reported by Lettenmaier [1979], seems to have doomed its applicability in more recent 

times. In essence, the Kalman filter consists of two steps: a first step in which the uncertainty 

in the state variables is propagated into the future by means of the linear model that represents 

the dynamics of the system, and a second step in which a linear estimation method is used to 

combine measured and predicted values to obtain the best estimate of the unsampled state 

variables in the sense of minimum mean square error. Some of the advantages of the Kalman 

filter are: i) the predicted covariance matrix of the estimation errors is independent of the 

measurements themselves (as in kriging, this is a direct result from linear estimation theory); ii) 

measurement errors as well as model errors are accounted for; and iii) the state vector can 

contain several variables to be sampled in a multidimensional case (cokriging, a special type of 

kriging, can be used for this purpose, too). On the other hand, dimensionality is a major 

problem since inversion of very large matrices is involved in the solution.  

One of the first researchers to take advantage of the  possibilities of the Kalman filter 

was Moore [1971, 1973]. The objective of his research was “to apply filter theory to the design 

and improvement of monitoring programs for aquatic ecosystems.” the Kalman filter was 

applied to the measurement of four variables, temperature, zooplankton, phytoplankton and 

nitrates, in a 12-mile stretch of the American river near Sacramento. Since the dynamics of the 

variables were not linear, a linearization of the system equations about an operating point was 

required transforming the method into what is known as an extended Kalman filter. There are 

two  implications of the linearization: the solution obtained will only be suboptimal, and the 

estimation covariance matrix will depend on the value at the point about which the 

linearization is being done. Due to lack of experimental data, synthetic data had to be used to 

evaluate the proposed methodology. The objective was to decide among a set of measurement 

strategies both in space and time. Two constraints were used, one for the trace of the estimation 
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variance and another for the cost. The least cost configuration which did not violate any 

constraint was chosen as the best. As pointed out by Moore himself, computational difficulties 

and high computer costs were a problem at that time, even though he only looked at 48 state 

variables (4 variables at 12 locations). In reality both the number of variables to be sampled 

and the number of locations can be much larger. 

Lettenmaier [1975] used the extended Kalman filter for detection of trends in water 

quality variables. A one-dimensional river model which is steady state in both flow and water 

quality embodied the dynamics of eight water quality variables (temperature, fecal coliform, 

nitrate, nitrite, ammonia, orthophosphate, dissolved oxygen and BOD).  Only advective terms 

in the pollutant transport equation were considered. Locations of sampling stations were based 

on the criterion that the spatial integral over sampling points of the weighted sum (over all the 

constituents) of the estimation variance be constant. A constraint on the maximum number of 

samples per unit time was considered. Once the locations of the sampling points were obtained 

the maximum number of samples per unit time was used to determine the sampling frequency.  

Dandy [1976] utilized the Kalman filter in another stream water quality problem. The 

network design considered the two problems of abatement and prevention, that is, detection of 

water quality standards violations and determination of long-term changes, respectively. Only 

BOD and DO were contemplated as state variables. The model of the system was a one-

dimensional dynamic flow model incorporating the kinematic wave equation coupled with a 

transport equation including advective transport (but no dispersive transport) and external and 

internal sources. Markov processes represented both upstream boundary conditions and 

tributary and waste stream inflows. A dynamic program was used to search through all the 

possible design candidates including station location and sampling time. The objective was to 

maximize the difference between violations detected and cost. Dandy applied this technique to 

the Shenango-Beaver river in Pennsylvania.  

The problem of dimensionality is made worse in the case of groundwater hydrology 

due to the two- or three-dimensional nature of the problem that rapidly increases the number of 
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state variables. McLaughlin [1976] used the Kalman filter in estimation and prediction of 

groundwater levels, although he did not study the network design problem directly. He pointed 

out the dimensionality problems that lead to computational and numerical difficulties. 

The design of a network for runoff prediction was tackled by Bras and Rodríguez-

Iturbe [1976]. They suggest a procedure to propagate measurement and interpolation errors 

from rainfall to runoff through a deterministic rainfall-runoff model. Rainfall intensity was 

considered as an autoregressive model and was assumed to be observed at a number of discrete 

points in space. The Kalman filter was then used to obtain the best linear estimation of rainfall 

intensity and its corresponding estimation covariance matrix. Then, a non-linear state-space 

model was formulated for the runoff process using a finite difference solution to the kinematic 

wave equation. After linearization, runoff appears as a linear function of the immediately 

previous values of runoff and intensity. Using this latter expression a recursive expression for 

the  runoff estimation covariance was derived. This expression was used to evaluate several 

network configurations. The network configuration directly affected the estimation covariance 

of rainfall intensity and indirectly the runoff estimation covariance. The methodology was 

applied to a hypothetical 82-square mile basin schematized by eight overland flow segments 

and four stream segments. One station could be allocated at each one of the overland segments. 

Runoff estimation variance was computed as a function of time for several network alter-

natives.  

Kitanidis et al. [1978] shifted from the problem of network design to reduce uncertainty 

of concentration to the problem of network design to detect violations of water quality 

standards and proposed two new methodologies, one based on Monte-Carlo simulations and 

the other based on the Kalman filter. The simulation method consists of the generation of a 

sufficiently long state history of the system to produce a large statistical sample of violations. 

Histograms of violations and excursions (adjacent sets of violations) could be calculated at 

each discrete point in space and a criterion based on these histograms was used to sequentially 

allocate the sampling points. In the other approach, the Kalman filter formulation was used to 

compute the asymptotic values, as time tends towards infinity, of the mean and the estimation 
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covariance of the state variables.  Using the asymptotic first and second moments, the 

asymptotic probability of no violation at a given location at any given time was calculated. 

Stations should be located sequentially starting with that point with the smallest asymptotic 

probability of no violation. Once the locations were found using any of the previous 

approaches, the time interval between samples was computed using the percentage of detected 

excursions and the percentage of violation points in the detected excursions. The method was 

used to monitor violations of dissolved oxygen standards in a 54.4 mile stretch of the 

Shenango-Beaver River, Pennsylvania. The model dynamics were non-linear and a lineariza-

tion was needed in order to use the Kalman filter formulation. 

Pimentel [1975,1978] also focused on asymptotic behavior of the state estimation 

covariance matrix. Both surface and groundwater pollutant movement were examined for the 

case that sample spacing is large. Advective movement was not considered. As  is pointed out 

by Lettenmaier [1979],  such an assumption cannot be justified except in very particular 

conditions. 

 Bras and Colón [1978] used a Kalman filter approach to network design for estimation 

of long-term areal rainfall average. This problem had been already considered by Rodríguez-

Iturbe and Mejía [1974] (see below) using a probabilistic approach. Bras and Colón started 

from the result proved by Rodríguez-Iturbe and Mejía[1974] that for a stationary process in 

space and time the long-term space average of rainfall has zero variance and therefore is 

constant. The rainfall process was then expressed as a function of the residuals about the mean 

value.  Assuming that the residuals follow a multivariate autoregressive model,  the dynamics 

of the rainfall process can be expressed in a convenient way to be included in a discrete 

Kalman filter formulation (this assumption is equivalent to Rodríguez-Iturbe and Mejía's 

separable covariance structure). Measurement errors as well as errors in the dynamics of the 

model were considered. The mean square error matrix was then obtained and it was evaluated 

for uniform networks with different densities and over different areas. Several autocorrelation 

parameters of the residuals were tested and trade-off curves between number of stations and 

intervals of observation for a given value of uncertainty were obtained. 
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  The problem of dynamic network design has also been approached by other authors 

using other methods, such Grayman and Eagleson [1971], who were interested in network 

design for runoff prediction using precipitation measurements. The major difference from the 

work by Eagleson [1967] is the shift from a deterministic rainfall-runoff model to a stochastic 

one. The main goal of the study was to determine the efficiency of radar in recording rainfall 

for runoff prediction. A Monte Carlo approach was used that consisted of the following steps: 

i) generation of rainfall in time and space by means of a stochastic model based on storm 

characteristics; ii) simulation of the process of recording using radar and radar-rain gage 

combination; iii) the “recorded” rainfalls values are routed through a rainfall-runoff model 

based on a spatially distributed solution of the kinematic wave equation. This process was 

repeated for several sampling schemes focusing on the estimation of peak discharge. Radar 

errors were divided into large- and small-scale errors and models for both of them were 

proposed. Point measurement of rainfall was assumed to be fairly accurate. Two of the 

sampling parameters studied were the required averaging area of the radar signal and the 

required averaging time. Confidence intervals of predicted discharge for several radar-rain 

gage combinations were computed. As the number of gages increased the confidence intervals 

shrunk about the true discharge hydrograph.  

Sanders and Adrian [1978] used a probabilistic approach to design a network for 

detection of water quality trends in rivers. Using standard statistical procedures, the 

relationship between sampling frequency and the confidence interval of the random component 

of an annual mean concentration was calculated. River flow was used as a surrogate of water 

quality. After correlation and non-stationarity have been removed from the data, the remaining 

residuals can be assumed to be independent and identically distributed. Student's t  is used to 

compute the confidence interval of the theoretical residual mean. The confidence interval of 

the residual mean is found to be a function of the standard deviation of the observed residuals 

and of the square root of the number of samples. A plot of the confidence interval versus 

sampling frequency is proposed to be used to determine the sampling criterion. An example is 

presented on the Connecticut River near Montague City, Massachusetts. 
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 Bras and Rodríguez-Iturbe [1985, p. 333-358] devote a section of their book to 

sampling of hydrologic random fields and present a method developed by Rodríguez-Iturbe 

and Mejía [1974] for the design of precipitation networks. The variance of the long-term mean 

areal precipitation and mean areal rainfall of a storm event were computed and used to asses 

the precision associated with the network. For the long-term mean areal rainfall, rainfall is 

considered as an stationary multidimensional random field with separable covariance function 

in terms of its spatial and temporal structure. That is, the covariance can be written as a product 

of three terms, the point covariance, a function of the distance between points, which 

represents the spatial correlation structure, and a function of the time interval, which represents 

the temporal correlation structure. The “exact” long-term mean areal rainfall will be an integral 

over an infinite amount of time and over the whole spatial domain that would be estimated by a 

finite number of samples distributed in space and time. The variance of this estimate is used as 

a measure of its precision and it is easily calculable for the special correlation structure con-

sidered. The variance of the estimate can finally be expressed as  the product of three terms, the 

point estimation variance, a reduction factor due to the correlation in time, and another 

reduction factor due to the correlation in space. The time correlation reduction factor depends 

only on the time interval and not on the sampling location, whereas the space correlation 

reduction factor depends on space location and not on sampling interval. Three different 

sampling schemes are considered that lead to three different expressions of the spatial 

correlation reduction factor: i) random-sampling, in which each station is located randomly 

with a uniform probability distribution over the whole area, independently of the other stations, 

ii) stratified random-sampling, in which the whole area is divided into a number of non-

overlapping congruent strata and from each stratum k points are randomly selected and iii) 

systematic sampling, in which the stations are located in a regular geometric pattern. Values of 

the spatial correlation reduction factor for exponential covariance and for Bessel type 

covariance illustrated the method. The value of the combined variance reduction factor is 

studied for several network densities and sampling intervals in a central Venezuela example. 

Random sampling and Bessel type covariance are considered. The results, for this example, 
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show that it is more accurate for long-term estimations to take many samples in time over a 

small number of gages than to take many samples in space over a small time span.  

In the same work, Rodríguez-Iturbe and Mejía did a similar analysis of network design 

for estimation of areal mean of a rainfall event. No time integral is required in this case, so that 

sampling frequency is not an issue. The approach was exactly the same as the one explained in 

the previous paragraph only that the time covariance reduction factor did not appear. A most 

extensive study of possible storms was done.  

To end this review, the only application of which I am aware in which geostatistics is 

used to design a network for estimation of hydrologic dynamic processes will be described. 

Bastin et al. [1984] proposed a method for optimal estimation of the average areal rainfall and 

for optimal selection of rain gage locations. Rainfall was considered as a two-dimensional 

random field with both spatial and temporal variability. The average areal rainfall was 

computed using kriging, but since time was included in the averaging process, time, as well as 

space, had to be included in the variogram. Several experimental variograms were computed 

such as a global time-invariant variogram and monthly variograms. By comparison among 

them the authors concluded that the variogram model could be separated into a spatial 

correlation component and a temporal correlation component (very much as Rodríguez-Iturbe 

and Mejía [1974], did). This special covariance structure makes the estimation variance depend 

only on the geometry of the sampling location and on a seasonal index. The quotient of 

estimation variance and the seasonal index turned out to be a time-invariant coefficient that 

was used to asses the performance of the network. Then, the fictitious point method was 

applied as in the case of static network design. An example was presented with the objective of 

reinforcing a set of 17 existing stations in the Semois River basin, Belgium. 

3. THE STATE-TRANSITION REPRESENTATION OF A 
STOCHASTIC LINEAR DYNAMIC SYSTEM 

The Kalman filter technique requires a state-transition (also known as state-space) 

representation of the dynamic system under study. This representation can be obtained for 
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processes varying in space and time after a spatial discretization of the partial differential 

equation governing the system has been done. Finite differences or finite elements will yield 

the following set of ordinary differential equations for processes in which only the first time 

derivative of the state variables affects the evolution in time of the system (as in the case of 

flow and mass transport in aquifers), 

d t
dx (t )

i  + a
1i

(t )x
1
(t ) + a

2i
(t )x

2
(t ) + ⋅ ⋅ ⋅  + a

ni
(t )x

n
(t ) =L i (t )Ui  (t )

  = 1,...,ni      (3.1) 

where n is the number of discretization points, xi(t) are the state variables, Ui(t) is a time-

varying input or forcing term and Li(t) is a coefficient. The parameters a1, a2,...,an may be 

constant, in with case the result is time invariant. This does not mean that the solution is 

constant over time, but rather that, given some boundary conditions and some initial conditions 

at time t0, the solution at time t1 does not depend on the values of t0 and t1 but only on the 

difference t1-t0. 

In the case that the system evolution in time depends on higher-order time derivatives, 

an extension to the equations developed hereafter is possible and straightforward (see, for 

instance, Bras and Rodríguez-Iturbe, 1985). 

The set of n equations (3.1) can be written in matrix form 

 

 x
.
(t ) = F(t )x(t )  + L(t )u(t ) (3.2)

 

where x
.

(t) is an n×1 vector of the time derivatives of the state variables, F(t) is an n×n 

coefficient matrix and u(t) represents the external forcing term with dimensions such that the 

product L(t)u(t) is an n×1 vector.  
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It is recognized that the representation of the system given by (3.1) is not perfect; 

reasons for this include the spatial discretization of a continuously varying process, uncertainty 

in the boundary conditions, excessive simplification of reality (which behaves non-linearly), 

etc. As a result, an error term is introduced in equation (3.2) yielding the canonical form of the 

state-space representation of a dynamic linear system: 

 x
.
(t ) = F(t )x(t )  + L(t )u(t ) + G(t )w(t ) (3.3)

 

where w(t) is white noise, G(t) is such that G(t)w(t) has dimension n×1, and mean and 

covariance given by  

 G(t )w(t )E { } = 0

E {(G(t )w(t )) (G(τ)w(τ))T} = G(t )Q(t ) G(t )T
δ(t  − τ)

 

where δ(t− τ) is the Dirac delta function, Q(t) is called a spectral-density matrix, which 

becomes a covariance matrix when multiplied by the Dirac delta function. I will not enter here 

into a discussion of white noise processes (see, for instance, Hoel et al., 1972, section 5.4, or 

Schweepe, 1973, Appendix F), I just want to note that a continuous time stochastic white noise 

process does not have a physical sense, since it is a process with zero mean and infinite co-

variance matrix. A continuous stochastic white noise can be interpreted as the time derivative 

of a stochastic process with uncorrelated increments (i.e, a Wiener process). 

The discrete state-transition model is obtained by integration of (3.3) over a time 

interval Δt  

 x(t + Δt ) = Φ (t + Δt ,t )x(t )  + Λ (t )u(t ) + Γ (t )w(t ) (3.4)

 

where the matrices Φ , Λ , and Γare related to matrices F, L and G by (see, for example, Bras 

and Rodríguez-Iturbe, 1985) 
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Φ (t ,t  + Δt ) = e F
. Δt

Λ (t )u(t ) = ∫
t

t + Δt
Φ (t ,τ )L(τ)u(τ)d τ

Γ (t )w(t ) = ∫
t

t + Δt
Φ (t ,τ )G(τ)w(τ)d τ

 

The last integral does not have a Riemann interpretation due to the stochastic nature of the 

white process w(t). Itô calculus is necessary (see, for instance, Hoel et al. 1972). Equation (3.4) 

is generally rewritten as  

x(k  +1) = Φ (k )x(k ) + Λ (k )u(k ) + Γ (k )w (k ) (3.5)

 

with t=k.Δt and understanding that Φ(k) refers always to the transition over one time step. The 

vector w(k), k =1,...,n is called a discrete time white process, which is a process with mutually 

independent random vectors, with zero mean and covariance 

E {w (k
1
)w (k

2
)T } = 

Q(k
1
), k

1
 = k

2

0, k
1
 ≠  k

2

 

In the rest of this chapter the equation (3.5) will be derived for groundwater flow and mass 

transport. 

3.1. State-transition model for groundwater flow 

An equation equivalent to (3.5) will be obtained by discretization and further manipulation of 

the classical equation for vertically-averaged 2-dimensional horizontal flow in a vertically 

homogeneous, anisotropic aquifer with principal axes of the transmissivity in the x, y directions 
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∂ x 
∂  T

x
 
∂ x 
∂ h    + 

∂ y 
∂  T

y
 
∂ y 
∂ h   = S 

∂ t 
∂ h  + Q (3.6)

 

where x and y are the spatial coordinates (L), t is time (T), h is the piezometric head in the 

aquifer (L), Tx and Ty are transmissivities (L/T2) (respectively equal to the integral of the 

hydraulic conductivity Kx or Ky over the saturated thickness), S is the specific storage (L3/L3) 

and Q is the net external discharge per unit area (L3/T /L2).  

Finite differences or finite elements can be used (see Remson et al., 1971; Trescott et 

al., 1980 or Lapidus and Pinder, 1984) to spatially discretize equation (3.6) over a number of 

nodes or elements. The result is a set of simultaneous algebraic equations of the form 

Φ ′ ′ h + ϑ ′ ′ 
dt

d h  = Λ ′ ′ u (3.7)

 

where h is an n×1 vector, n being the number of internal nodes in the aquifer, Φ´´ is an n×n 

matrix function of the transmissivity values and the discretization (this matrix is also function 

of time in the case of an unconfined aquifer, or time-dependent head boundaries), ϑ´´ is an n×n 

matrix function of the storage, Λ´´ is a coefficient matrix of arbitrary dimensions and u is a 

vector with the net discharges at each node and the specified fluxes at the Neumann boundary 

nodes. The dimensions of Λ´´ and u must be such that the product is an n ×1 vector. 

Multiplying by the left by the inverse of ϑ´´ (a diagonal matrix in the case of finite differences) 

a new matrix equation results 

dt
d h  = Φ  ́h  + Λ ú (3.8)

 

where now both Φ´ and Λ´ are also functions of the storage. In the case of second order central 

finite differences over a uniform rectangular grid, the matrix Φ´ is defined by the following 

algorithm 
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For each node i there will be the following nonzero elements in row i 

• in column i 

Φ
i ,i

 =  
S

i

-1  
Δx 2

T
x , i  +1/2

 + T
x , i  -1/2 + 

Δy 2
T

y , i  +1/2
 + T

y , i - 1/2´

 

• in the column corresponding to the nearest cell in the positive x  direction, (in general, 

cell i+1) 

Φ
i , i  +1

 = 
S

i
  Δx 2

T
x , i  +1/2´

 

• in the column corresponding to the nearest cell in the negative x direction (in general, 

cell i-1) 

Φ
i , i  -1

 = 
S

i
  Δx 2

T
x , i  -1/2´

 

• in the column corresponding to the nearest cell in the positive y direction (in general, 

cell i+k, k being the number of grid columns) 

Φ
i , i  +k

 = 
S

i
  Δy 2

T
y , i  +1/2´

 

• in the column corresponding to the nearest cell in the negative y  direction (in general, 

cell i -k) 

Φ
i , i  -k

 = 
S

i
  Δy 2

T
y , i  -1/2´

 

where, Δx and Δy are the cell dimensions in the x and y directions, Si is the storage coefficient 

at node i, Tx, i +1/2 is the transmissivity between node i and the nearest node in the positive x 
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direction, Tx,i-1/2 is the transmissivity between node i and the nearest node in the negative x 

direction and similarly for the transmissivities in the y direction. 

 Before proceeding, a number of assumptions and their consequences must be stated: 

i)Tx , Ty, S and Q, as well as the specified flux of the Neumann boundary conditions, are 

perfectly known, ii) the model is imperfect and such imperfection will be represented by an 

additive discrete white process, iii) the initial conditions are known with uncertainty given by 

an estimation covariance matrix at time zero, iv) the uncertainty in initial heads may extend to 

the constant head boundaries. Assumption i) means that Φ´ and Λ´ are deterministic, known 

coefficient matrices, and that u represents deterministic known net discharges. Assumption ii) 

introduces the term Γ´w´ in the equation to represent model error. Assumption iii) introduces 

uncertainty in the heads from time zero, and assumption iv) allows the inclusion of uncertain 

constant head boundaries. The introduction of model error in equation (3.8) yields 

dt
d h  = Φ  ́h  + Λ ú  + Γ ẃ ´

 

The discretization of the time derivative will finally lead to the desired state-transition equation  

h(k +1) = Φ (k )h(k ) + Λ (k )u(k ) + Γ (k )w (k ) (3.9)

 

with t=kΔt. The final form of the state-transition matrix as well as of the coefficient matrices 

will depend on the type of time discretization chosen. If an explicit approximation is preferred  

dt
d h(k ) ≈ 

Δt
h (k +1) − h (k )

 

then  



 27 

Φ (k ) = [ Δ t ⋅ Φ (́k ) + I ]

Λ (k ) = [Δ t ⋅ Λ (́k ) ]

Γ (k ) = [Δ t ⋅ Γ (́k ) ]

(3.10)

 

where I is the identity matrix. If the fully implicit method is chosen 

dt
d h(k ) ≈ 

Δt
h (k ) − h (k -1)

 

then  

Φ (k ) = [ I  −  Δ t ⋅ Φ (́k )]

Λ (k ) = Φ (k ) [Δ t ⋅ Λ (́k ) ]

Γ (k ) = Φ (k )  [Δ t ⋅ Γ (́k ) ]

- 1

(3.11)

 

3.2. State-transition model for mass transport  

Following the same steps as for the flow case, the equation for vertically integrated 2-

dimensional mass transport will be manipulated until a state transition equation is obtained. 

The equation used is 
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(3.12)

 

where x and y are the spatial coordinates (L), t is time (T), c is the vertical integral of the 

concentration (ML -2), vx and vy are the components of the fluid velocity in the x and y 
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directions (L /T), W is the net external efflux of contaminant concentration per unit area (M 

/L2T), φ is the porosity (L3/L3), Dxx , Dxy and Dyy are the components of the dispersion tensor 

D = 
D

x x
D

x y

D
x y

D
y y

 

(L 2/T). The dispersion coefficients are functions of the fourth order dispersivity tensor (aijkm) 

and of the velocity. In the case of on isotropic medium the dispersivity tensor is expressed in 

terms of two constants, aL the longitudinal dispersivity, and aT the transversal dispersivity (see, 

Bear, 1979) and in that case the dispersion coefficients are given by 

D
x x

 = (a
L
v 

x
2 + a

T
v

y
 2 )/v

D
x y

 = (a
L
 − a

T
 )v

x
v

y
 /v

D
y y

 = (a
L
v 

y
2 + a

T
v

x
 2 )/v

v   = v
x
 2 + v

y
 2

(3.13)

  

A finite difference or a finite element scheme can be used to spatially discretize equation (3.12) 

(see Pinder and Gray, 1977 or Lapidus and Pinder, 1982). The velocity field is computed using 

Darcy's law from the results of a previous solution of a groundwater flow model. 

v
i ,i  +1

 =  −  
φ

K
i ,i  +1 

Δ (i )
h

i  +1
  − h

i

 

where, given two adjacent nodes i and i+1, vi,i+1 is the flow velocity from node i to node i+1, 

Ki,i+1 is the hydraulic conductivity between nodes, φ is a representative value of the porosity 

along the path between both nodes (the average value of the porosities at both nodes is used), 
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hi and hi+1 are the respective piezometric heads, and Δ (i) is the distance between nodes. A 

major problem arises when central differences are used to discretize equation (3.12) since the 

components of D must be approximated at the center point between nodes and to compute 

them an approximation of the velocity vector is needed. Using Darcy's law and the head results 

from a previous groundwater model, it is possible to obtain the component of the velocity in 

the direction from node to node and assign it to the center point between nodes, but the 

velocity may have a nonzero orthogonal component. It is customary to assume that that 

unknown component can be obtained by bilinear interpolation of the four nearest between-

node velocities in its same direction. A similar problem happens with the concentrations, since 

they also need to be known at the center point between nodes; a linear interpolation of the two 

nearest concentration values is used. With all these interpolations in mind, and careful 

algebraic manipulations, an equation similar to (3.8) can be obtained for concentrations 

dt
d c = Φ  ́c + Λ ú (3.14)

 

where Φ´ is defined by the following algorithm for the case of finite differences and 

rectangular grid with constant column and row widths. 

• Each node in the grid is referred by its row i and column j .  

• Row numbers grow in the positive y direction and column numbers grow in the positive 

x direction.  

• There are l rows and m columns for a total of n=l ×m nodes  

• The node (i,j) corresponds to position k in the transfer matrix,  

k = (i-1)×m +j  

Φ  ́ = 
4Δx Δy 

1  (D
x y , i j -1/2

 + D
x y , i  -1/2j

 )
k ,k - m - 1
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Φ  ́ = 
4Δx Δy 

1  ( −D
x y , i j +1/2

 + D
x y , i j -1/2

 )
k ,k- m

 

+ 
(Δy )2

D
yy , i  -1/2j + 

2Δy
v

x , i - 1/2j

 

Φ  ́ = 
4Δx Δy 

1  (−D
x y , i j +1/2

 − D
x y , i  -1/2j

 )
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4Δx Δy 
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where the dispersion coefficients are defined according to (3.13) with the following velocities 
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v
y , i j +1/2

 = 
4
1 (v

y , i  -1/2j
 + v

y , i  -1/2j +1
 + v

y , i  +1/2j
 + v

y , i  +1/2j +1) 

v
y , i j -1/2

 = 
4
1 (v

y , i  -1/2j
 + v

y , i  -1/2j -1
 + v

y , i  +1/2j
 + v

y , i  +1/2j -1) 

v
x , i  +1/2j

 = 
4
1 (v

y , i j -1/2
 + v

y , i  +1j -1/2
 + v

y , i j +1/2
 + v

y , i  +1j +1/2) 

v
x , i  -1/2j

 = 
4
1 (v

y , i j -1/2
 + v

y , i  -1j -1/2
 + v

y , i j +1/2
 + v

y , i  - 1 j +1/2) 

The same sort of assumptions that were invoked for the flow model are invoked here, namely, 

perfect knowledge of all parameter values (including velocities) as well as of any specified 

mass fluxes at boundaries, uncertainty in initial conditions, including constant concentration 

boundaries, and the possibility of model error. Addition of a discrete white error to equation 

(3.14) results in 

dt
d c = Φ  ́c + Λ ú  + Γ ẃ ´

 

Discretization of the time derivative of concentration will lead to the state-transition equation  

c(k +1) = Φ (k )c(k ) + Λ (k )u(k ) + Γ (k )w (k ) (3.15)

 

with the same relationship between Φ , Λ  and Γ  and Φ´, Λ´ and Γ´ as in equations (3.10) and 

(3.11), depending on the time discretization scheme used. 

4. The Kalman filter 

The Kalman filter, also known as the Kalman-Bucy filter, was developed in the early sixties by 

Kalman [1960] and Kalman and Bucy [1961] with the objective of obtaining an optimal 

estimate, for a given loss function, of a random function that evolves in time according to a 

linear dynamic system. Model errors as well as measurement errors were also considered. The 

possibility of symmetric loss functions other than the square of the estimation error were 
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discussed in the paper by Kalman [1960], and there he pointed out that the optimal estimate 

obtained using the square of the estimation error is valid for several other symmetric loss 

functions. The square of the estimation error is most often used and is the one considered in 

this work.  

The basic idea in the development of the Kalman filter theory was to combine the state-

space representation of a stochastic linear dynamic system and linear estimation regarded as an 

orthogonal projection in Hilbert space. The details of the Kalman filter will be presented later 

using a different approach than the one used by Kalman [1960]. 

The work by Kalman soon found application in a variety of fields, ranging from circuits 

to ballistics to groundwater hydrology, just to give a few examples. Extensions to the original 

work have also been made to deal with non-linear systems or to include parameter uncertainty 

in the filtering process. Non-linear filters could be the next extension, but the difficulty and 

cost of non-linear filters used in static systems (such as disjunctive kriging or non-parametric 

geostatistics) might prevent them from being used with dynamic systems. All extensions rely 

on the original contribution by Kalman and Bucy of coupling the state-space representation 

with optimal estimation theory to approach dynamic systems.  

4.1. Estimation of static systems. 

The development of the Kalman equations in the original paper made extensive use of 

projection theory and Hilbert space. Here I will use the same approach as Schweppe [1973] 

and Bras and Rodríguez-Iturbe [1985]. This approach requires first the development of the 

optimum linear estimate of a static system from a set of measurements. The variables to be 

estimated are represented by the n dimensional state vector x, the observations by the m 

dimensional vector z and a mathematical model relates observations to measurements. The 

mathematical model consists of an observation equation and an uncertainty model: 

1. Observation equation 

z = Hx + v 

x is an n dimensional vector with the true, but unknown values of the system, 
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v is a m vector of measurement errors which are also unknown,  

H is a known m _×n  matrix called the observation matrix, and  

z is an m dimensional vector with the actual measurements. 

2. Two models will be considered for the uncertainty in x and v: 

a. Bayesian model. v is a random vector with known mean and variance, and x is a 

random vector for which a priori information is available, in particular its mean and 

variance. 

b. Fisher model. v is a random vector with known mean and variance, and x is a 

constant (not a random variable) that may vary in space and for which no a priori 

information is available. 

Since the true value of x is unknown, an estimate x̂  (the hat will be used to denote 

estimation) is to be found as a function of the observations and the mathematical model 

(namely, observation matrix H and uncertainty models for x and v). The usual way to approach 

this problem is to try to express the estimate x̂  as a function of the measurements z. The 

function will be determined by the mathematical model. In this work only linear estimates are 

used, so the estimation can be expressed in matrix form as: 

x̂  = Wz + W0 

 W is an n×m  matrix determined by the mathematical model and 

 W0 is an n×1 vector of coefficients. 

The criteria to determine W and W0 can be many but it is reasonable to look for W and 

W0 such that some loss function is minimized. Loss functions are in general a function of the 

estimation error x̂ -x. Here, the mean square estimation error will be used. Thus W and W0 will 

be computed in such a way that it minimizes the expected value of the square of the estimation 

error. It has been proven elsewhere, see for instance Papoulis [1984], that the function, linear 

or non-linear, that provides the best estimate of x according to the previous criterion is the 

mean of the conditional distribution of x given the set of observations. It has also been proven 
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that the linear estimation will yield the best estimation possible from the set of observations 

when x and v are jointly normally distributed (Papoulis, 1984). 

 

4.1.1. Bayesian model 

In the bayesian model x is assumed to be a random variable for which some a priori 

information is available. The uncertainty in the random variables x and v is characterized by 

the first two moments of their joint distribution, 

z = Hx +v

E {x} = m

E {(x - m)(x -  m)T } = Ψ

E {v} = 0

E {vv T} = R

E {x vT} = 0

(Observation eq.)

 

Hence, the measurement error is represented by a white noise that is uncorrelated with the state 

variable. The mean and the covariance matrices of both x and v are known.  

For this model, the unbiased linear estimator x̂  that minimizes the error covariance 

matrix is given by a linear function of the form 

x̂  = W z + W0 (4.1)

  

where W and W0 are given by 



 35 

W  = Σ HTR - 1

W
0
= Σ Ψ - 1 m

Σ = (HTR - 1H  + Ψ - 1)- 1

 

It can be shown that the unbiased condition is met 

E { x̂ } = m  

and that Σis the minimum error covariance matrix, 

Σ = E {(x - x̂ )(x -  x̂ )T} 

The error covariance matrix is minimum in the sense that if any other set W~ , W~0 is used to 

obtain another estimate 

x~ = W~ z + W~
0 

 

the error covariance matrix associated with this new estimate 

Σ = E {(x - x )(x -  x )T}~ ~ ~
  

 

is larger than Σin the sense that Σ~ - Σis non-negative definite [Golub,1983]. A detailed proof 

of this result can be found in Liebelt [1967, ch.5].  

After some matrix manipulation (described in detail in Liebelt[1967]), the optimal 

estimator can be rewritten as 

x̂  = m  + ΨHT[HΨ HT+ R]- 1[z - Hm ]

Σ = E {(x - x̂)(x -  x̂ )T}   

    = Ψ -  ΨHT[HΨ HT+ R]- 1HΨ
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These same results are found in many other fields with, apparently, different interpretations. To 

cite an example, linear geostatistics is another way to approach estimation of static systems and 

simple kriging ends up with exactly these same equations when the measurements are assumed 

noiseless.  

 

4.1.2. Fisher model 

In the Fisher model, x is assumed to be a constant, not a random variable (although this 

constant may vary from one point to another in space). The observation equation remains the 

same but now there is no a priori information about the state variables, 

 

z = Hx +v

E {v} = 0
  E {vv T} = R

x i s completely unknow n

 

 

The measurement error is, again, a white noise of known covariance matrix.  

The unbiased linear estimation x̂  that minimizes the error covariance matrix is given by 

the function 

 

x̂  = W z + W0 (4.2)
 

where W, W0 are given by 

W  = Σ HTR - 1

W
0

= 0
 

if Σ  exists, 
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= E {(x - x̂ )(x -  x̂ )T}

= (HTR - 1H   )- 1

Σ

 

The necessary condition for Σto exist is that the dimension m of the observation vector z must 

not be smaller than the dimension n of the state vector x (see Liebelt[1967, ch. 5] for detailed 

proof). In this case the estimation is unbiased in the sense that,  

E {x̂ } = x  

4.1.3. Two observations of the same state 

Before proceeding to the linear estimation of a dynamic system, let us consider the case of 

estimation of a static system for which two sets of observations are available. Again, the cases 

of Bayesian and Fisher estimation will be considered.  

Assume that two observations of the same state vector are available 

z
1
 = H

1
x + v

1

z
2

 = H
2

x + v
2

(4.3)

(4.4)

 

These two observations can be viewed as a single observation by augmenting the observation 

vector 

z = Hx + v

 

where 

z = 

z
1

...
z

2

H  = 

H
1

...
H

2

v  = 

v
1

...
v

2
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and proceed as a single vector observation. However, it may be interesting to regard the 

problem as a two-step process: first, obtain separate estimates of x, one from z1 and the other 

from z2, and second, combine those estimates to obtain the final one. It will be shown how 

these two estimates must be made and how they must be combined to yield the same estimate 

as if the two observations were considered as a single one. Both the Fisher and the Bayesian 

model will be contemplated.  

First, consider the Fisher model where the state x is an unknown constant and the 

observation errors are zero mean, uncorrelated random vectors, 

 E {v1v1T }=R1 

E {v1v2T }=0 

E {v2v2T }=R2 

If z1 and z2 are combined in a single, augmented vector and equation (4.2) is used, the estimate 

and its estimation error are, 

x^  = Σ [H
1
TR

1
- 1z

1
+ H

2
TR

2
- 1z

2]

Σ = [H
1
TR

1
- 1H

1
+ H

2
TR

2
- 1H

2
]- 1 (4.5)

 

Consider now the Fisher estimates of x using z1 and z2 separately. These will be: 

x̂  
1
=Σ

1
H

1
TR

1
- 1z

1

Σ
1
=[H

1
TR

1
- 1H

1
] - 1

 

and 

x̂  
2
=Σ

2
H

2
TR

2
- 1z

2

Σ
2
=[H

2
TR

2
- 1H

2
] - 1
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These two estimates can be combined, to give the same result as (4.5), as follows, 

x̂ = [Σ
1
- 1+ Σ

2
- 1]- 1[Σ

1
- 1x̂

1
+ Σ

2
- 1x̂

2
]

Σ = [Σ
1
- 1+ Σ

2
- 1]- 1

 

Notice, that this estimate corresponds to the Fisher estimate of x using equation (4.5) when two 

observations x̂ 1 and x̂ 2 (instead of z1 and z2) are made according to the observation equations 

 

x^ = x + δ x
11

x^ = x + δ x
22  

where the matrices H1 and H2 are the identity matrix and the errors are δ x 1 and δ x 2 with 

covariance matrices 

E {δ x
1
δ x

1
T } = Σ

1

E {δ x
2
δ x

2
T } = Σ

2  

Therefore, the Fisher estimate of x can be obtained in either of two ways, 1) by combining the 

two observations (4.3) and (4.4) in one and then using equation (4.2), or 2) by the two-step 

process consisting in, first obtaining the Fisher estimates corresponding to each observation 

separately and second obtaining the Fisher estimate that would correspond to these two last 

estimates regarded as two observations of the system (see Figure 4.1). 
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Figure 4.1. Estimation from two different observations. 

Now consider the Bayesian model where x is a random vector with known mean and 

covariance and uncorrelated with v1 and v2, 

E {x} = m

E {(x - x̂ )(x - x̂ )T}= Ψ  

The combination of the two observations in one and the use of equation (4.1) yields the 

estimate: 

x̂  = Σ [H
1
TR

1
- 1z

1
+ H

2
TR

2
- 1z

2
+ Ψ - 1m ]

Σ  = [H
1
TR

1
- 1H

1
+ H

2
TR

2
- 1H

2
+ Ψ - 1]- 1 (4.6)

 

The kind of two-step estimation shown in Figure 4.1 still can be made if we assume that the a 

priori information (mean and covariance of x) is associated with one of the observations, say 
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z1, while the second observation is viewed as if x were a constant completely unknown rather 

than a random variable. 

Then, the Bayesian estimate associated with observation z1 using equation (4.1) would 

be,  

x̂  = Σ [H
1
TR

1
- 1Z

1
+ Ψ - 1m ]

Σ  = [H
1
TR

1
- 1H

1
+Ψ - 1]- 1

1

1

1

 

whereas the Fisher estimate associated with observation z2 using equation (4.2) would be, 

x̂  = Σ [H
2
TR

2
- 1z ]

2

Σ  = [H
2
TR

2
- 1H

2
]- 1

2

2

2

 

Now equation (4.6) can be rewritten in terms of these two estimates as 

x̂ = [Σ
1
- 1+ Σ

2
- 1]- 1[Σ

1
- 1x^

1
+ Σ

2
- 1x^

2
]

Σ = [Σ
1
- 1+ Σ

2
- 1]- 1

 

which again corresponds to the Fisher estimate of x using equation (4.5) when two 

observations x̂ 1 and x̂ 2 (instead of z1 and z2) are made according to the observation equations 

 

x^ = x + δ x
11

x^ = x + δ x
22  

with observation errors δ x 1 and δ x 2 with covariance matrices 

E {δ x
1
δ x

1
T } = Σ

1

E {δ x
2
δ x

2
T } = Σ

2  
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Therefore, the Bayesian estimate of x when two measurements are available, can be obtained 

in either of two ways: i) by combining the two observations (4.3) and (4.4) in one and then 

using equation (4.1), or ii) by the two-step process consisting of first obtaining the Bayesian 

estimate of x using one of the observations and the Fisher estimate of x using the other 

observation, and then considering these two estimations as new observations and obtaining the 

corresponding Fisher estimate. 

Notice that to be able to use the two-step approach in the Bayesian case, the state x is 

considered at the same time as a random variable (with a priori information available) and as 

an unknown constant. This is interpreted as that the a priori information is used only once 

while the Fisher model concepts are used for the rest of the estimation. Figure 4.2 depicts 

schematically the two cases.  

Combine and
Estimate
(Fisher)

x

Bayesian Estimate

z
1

Estimate
(Bayesian) x1

z
2

Estimate
(Fisher) x2

a priori
information

Combine and
Estimate
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x

Fisher Estimate

z
1

Estimate
(Fisher) x1

^

z
2

Estimate
(Fisher) x2

^

^

^

^

^

 

 

Figure 4.2. Estimation from two observations for the Fisher and Bayesian models.  
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The Kalman filter will be derived as a Bayesian estimate of the state x when two 

observations are available. These two observations will be the measurements themselves at 

time k+1 and the estimation of the state at time k+1 obtained by propagation of the last 

estimate at time k using a linear model that describes the dynamics of the system. It is this last 

observation, based on an estimate of the system at an earlier time, that will carry all the a priori 

information. 

 4.2. The Kalman filter 

Let x(k) be a dynamic system that can be represented by the state-transition model 

x(k  +1) = Φ (k )x(k ) + Γ (k )w(k ) (4.7)

 

where Φ (k ) is the transition matrix between time steps k and k+1 and Γ (k )w(k ) 

represents the model error with zero mean and covariance matrix Γ(k )Q(k )Γ T(k ). For the 

sake of simplicity, no deterministic forcing term is considered, although it would be 

straightforward to include it in the equations. In any case, it does not have any influence on the 

estimation error covariance matrix.  

Observations will be made according to the observation equation 

z(k ) = H(k )x(k ) + v (k )

 

The Kalman filter is made up of two basic procedures, one-step prediction of x(k +1) 

given the observations z(1), z(2), …, z(k) and filtering of this prediction by means of the 

observation z(k +1). 

If the conditional mean of x(k) given observations z(1), z(2), …, z(k ) is known and 

represented by x̂ (k |k), with error covariance  

Σ (k |k  ) = E {(x(k )-x̂ (k |k ))(x(k )-x̂ (k |k ))T} 
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the minimum variance one-step prediction, x̂ (k +1|k) can be obtained by taking conditional 

means in equation (4.7) 

x̂ (k +1|k ) = Φ (k )x(k |k )  ^
 

The term in w(k) vanishes as a consequence of the whiteness and zero mean property of w(k).  

The mean square forecasting error is given by 

 

      

Σ (k +1|k ) = E {(x(k +1) − x̂ (k +1|k ))(x(k +1) − x̂ (k +1|k ))T}

= E {[Φ (k )(x(k ) − x̂ (k |k )) + Γ (k )w (k )] ×

[Φ (k )(x(k ) − x̂ (k |k )) + Γ (k )w (k )]T}  

= Φ (k )E {(x(k ) − x̂ (k |k ))(x(k ) − x̂ (k |k ))T}Φ T(k )

+ Γ (k )E {w (k )w T(k )}Γ T(k )

= Φ (k )Σ (k |k )Φ T(k ) + Γ (k )Q(k )Γ T(k ) (4.9)(4.8) 

At this point (and after the observation z(k+1) has been made), we have an estimate 

x̂ (k+1|k) of the state vector at step k+1 that has been made using all the a priori information 

available (it is, in fact, the conditional mean of the state at k+1 given all the observations at 

previous instants) and an observation at time k+1. Recalling the results from the two-step 

estimation, the Bayesian estimation from two observations can be regarded as a Fisher 

estimation of two “observations” (estimations), one of them made using the a priori 

information, and the other one without assuming any information. This is the case here, the 

estimate x̂ (k+1|k) carries all the a priori information and the observation z(k+1) is considered 

as the observation of an unknown constant. Therefore, the minimum variance linear unbiased 

estimate, x̂ (k+1|k+1), of x(k+1) can be obtained as the Fisher estimate of the two 

“observations”:  
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x̂ (k +1|k ) = x(k  +1) − δ x(k  +1|k )

z(k +1) = H(k +1)x(k +1) + v(k +1)
(4.9)

 

Augmenting the observation vector, 

z(k +1) = H(k +1)x(k +1) + v(k +1)~ ~ ~

 

with 

z~(k +1) = 
x (k +1|k )
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

z(k +1)

H~(k +1) = 
I

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
H(k +1)

v~(k +1) = 
 − δ x(k  +1|k )
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

v (k +1) (4.10)

^

 

     

R~ (k +1) = E {v~(k +1)v~
T
(k +1)}

 = 
Σ (k +1|k ) 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 R(k  +1)

.

.

.

.

.

.

.
 

a Fisher estimation yields the estimate 

k +1|k +1) 

  [H~
T
(k +1)R~ - 1(k +1)H(k +1)]- 1

x (  = Σ (k +1|k +1)H~
T
(k +1)R~ - 1(k +1)z~(k +1)

Σ (k +1|k +1)  =  
~

~

 

Substitution of equations (4.10) transforms the estimate into the dynamic Kalman filter 
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x̂ (k +1|k +1) = Σ (k +1|k +1)[HT(k +1)R- 1(k +1)z(k +1)

 + Σ - 1(k +1|k )Φ (k )x̂ (k |k )]

x̂ (k +1|k ) = Φ (k )x̂ (k |k )

Σ (k +1|k ) = Φ (k )Σ (k |k )Φ T(k ) + Γ (k )Q(k )Γ T(k )

Σ (k +1|k +1) = [HT(k +1)R- 1(k +1)H(k +1)

 + Σ - 1(k +1|k )]- 1

(4.11)

 

As it is formulated, the Kalman filter is a set of recursive equations that cannot be 

solved without a set of initial conditions. The initial conditions needed are i) the best estimate 

of the state variable at time zero and before any measurement has been performed, which is the 

expected value, and ii) the mean square error of this estimate, that, when the estimate is the 

(known) expected value, turns out to be the covariance function of the process at time zero. 

^ (0|0) = m

Σ (0|0) = Ψ

x

 

Before proceeding, it is important to notice that the estimation error covariance matrix 

obtained in equation (4.11) is independent of the observations. This means that the 

observations not need to be made in order to know the covariance of the estimation error of the 

system. The estimation error covariance matrix depends only on the geometric location of the 

observations but not on the actual values of these observations. This fact is particularly 

interesting in network design when some measure of the estimation error covariance matrix is 

used to assess the performance of the network, for the network not need to be operative in 

order to infer its performance. The network can be designed without the need of taking one 

sample! On the other hand this means that the estimations obtained using the Kalman filter do 

not take into account the reliability of the observations. It would be interesting if the estimation 

error covariance were dependent on the observations, such that if one of the measurements has 

a large measurement error or comes from one tail of the probability distribution of x then the 
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estimation error should be larger than if the measurement comes from the center of the 

distribution or the measurement error is very small. 

After some algebraic manipulations the Kalman filter can be rewritten in several other 

forms that may be more convenient in certain cases. For instance, in the case of perfect 

measurements, the matrix R is a zero-matrix and the estimation covariance cannot be 

calculated using the previous formulations. In such a case, the following equation is more 

convenient 

Σ (k +1|k +1) = Σ (k +1|k ) − Σ (k +1|k )HT(k +1)

 × [R(k  +1) + H(k +1)Σ (k +1|k )HT(k +1)]- 1

 × H(k +1)Σ (k +1|k ) (4.12)

 

Besides the fact that equation (4.12) allows perfect measurements, it may be computationally 

more efficient, since it involves the inversion of an m×m matrix whereas equation (4.11) 

requires the inversion of an n×n matrix, which in general is much larger; on the other hand 

equation (4.12) requires a larger number of n×n matrix multiplications. Equation (4.12) shows 

that the estimation error covariance is equal to the forecasting error covariance less a positive 

definite matrix which is function of the measurement errors and the sample locations. 

Consequently, observations help to reduce forecasting error. 

After some more matrix manipulation the filter may be rewritten in its most popular 

form: 
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x̂ (k +1|k +1) = x̂ (k +1|k ) + K(k +1)[z(k +1)

 − H(k +1)x̂ (k +1|k )]

x̂ (k +1|k ) =  Φ (k )x̂ (k |k ) + Λ (k )U(k )

K(k +1) = Σ (k +1|k )HT(k +1)[R(k  +1)

 + H(k +1)Σ (k +1|k )HT(k +1)]- 1

 = Σ (k +1|k +1)HT(k +1)R- 1(k +1)

(4.13)

 

Σ (k +1|k +1) = [I  − K(k +1)H(k +1)]Σ (k  +1|k )  

This is a very intuitive form where the filtered estimate is expressed as the forecasted estimate 

plus a linear combination of the departures of the observations from their predicted values. The 

coefficients of this linear combination are the Kalman gain matrix K(k). Notice that the 

possibility of a nonzero deterministic forcing term Λ(k)U(k) has been included in equation 

(4.13). The only effect of this term is in the forecasting estimate. The difference z(k+1)-

H(k+1)x̂ (k+1|k) is called the innovation sequence in the sense that it expresses the discrepancy 

(innovation) between prediction and observation. 

As a final comment, one must realize that no assumption on the probability distribution 

of the state variable has been made. In particular, normality is not required. Only the mean 

estimate and the initial estimation covariance are needed. If x and v are jointly normal then the 

linear estimation provided by the Kalman filter is optimal. 

5. AN EXAMPLE OF DYNAMIC NETWORK DESIGN 

Dimensionality problems and computational cost restricted me to a focus on one-dimensional 

problems. However, the methodology presented here is applicable to any dimension of 

problem, with the only difference coming from the building of matrix Φ´ in equations (3.8) 

and (3.14). This is, as a matter of fact, the only difference in the application of this 

methodology to any other linear model for which a state-transition model of the form of (3.5) 

can be written. 
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There are other reasons for me to choose one-dimensional theoretical case studies. They 

can provide some understanding of how Kalman filters work in the process of forecasting and 

filtering. At the same time, many different simple cases can be solved to study the role of 

changes in aquifer parameters. The results for such simple cases might be extrapolated to 

higher dimensional problems and might help to find a more efficient way than the one used 

here to deal with real areal two-dimensional cases. 

5.1. Statement of the network design problem 

The objective of all network design problems is to somehow minimize the uncertainty that the 

hydrologist has about something in the system. There are many ways of interpreting this 

sentence and some of them were mentioned in the literature review: 

• uncertainty about piezometric heads, solute concentration or any other state variable 

at each and every point of the system, 

• same as above but only at a certain region of the system, 

• uncertainty about the amount of contaminant within the system or within a portion of 

it, 

• uncertainty about the shape of a contaminant plume, 

• uncertainty about peak values,  

• uncertainty about the parameters governing the system, 

• uncertainty about the detection of violations of standards, 

• uncertainty about the necessary cost to clean up an aquifer, 

 

and as many others as one can imagine based on the facts that real systems vary continuously 

in space in a way that is impossible to reproduce, that only a few values of the state variables 



 50 

and/or the parameters are available, and that even those few values are imprecise due to 

measurement errors.   

In this study, the network design problem will focus on what I will call the global error 

or global uncertainty over space and time of the system. Based on the fact that the Kalman 

filter provides a way to obtain an estimation error covariance matrix at each point in space and 

at each moment in time, before and after any measurement is made, independently of the actual 

measurements, all the sampling schemes will be compared over the same time period and the 

mean value of the estimation error variance over space and time will be computed. This mean 

global estimation error will be used as an index to evaluate the performance of the scheme. 

This index is more appropriate when the objective of the study depends on a global evaluation 

of the phenomenon under study, for instance, to monitor contaminats from a regional source 

(as it is the case of nitrite contamination from fertilizers used in agriculture). 

The only constraints in the design are a finite set of spatial locations where samples 

may be gathered and the total number of samples that will be gathered at all those locations. 

Both must be known a priori. 

It is assumed that an estimation of the state of the system as well as its estimation error 

is known at time zero. The parameters are perfectly known and the model of the system is also 

perfect. Measurement errors are allowed.  

To illustrate the meaning of the global error associated with a given sampling scheme, 

an example is given. The flow model, which is described in detail in the following section, is 

used. In this case the network is used to obtain measurements of piezometric head in an 

unidimensional aquifer with constant heads at both ends. This example refers to the evaluation 

of the global uncertainty in head associated with a design consisting of taking a single 

measurement at time t=0.5T and location x =0.5L . 

At time zero the error covariance matrix is known, and in particular the error variance 

at each location. In Figure 5.1, the spatial distribution of error variances at time zero is shown. 
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The same uncertainty is assigned to every point and it is assumed that there is no spatial 

correlation between initial estimation errors. The objective is to evaluate the mean estimation 

error variance over a given period of time T , and over the length of the aquifer L , provided 

that a measurement is made at t=0.5T and at location x=0.5L. For this purpose the error 

variance must be known at each time step and at each location from t=0 until t =1.0T. This is 

done by propagating the error covariance at t=0 until before a measurement is made (t=0.5T -) 

using the third equation in (4.11).  
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Figure 5.1. Variance distribution at time zero (both axis are normalized, L is the total length and σ0 is the initial error 

variance) 

 

At times t=0.3 T and t=0.5 T - the variance distribution has evolved as shown in Figure 5.2. At 

this time a measurement is taken and the forecasted (prior) variance distribution is updated 

using the fourth equation in (4.11) to come out with the filtered (posterior) variance 

distribution shown in Figure 5.3. This filtered variance is finally propagated in time until 

t=1.0T , since no other measurement is to be made. 

For each time step the mean variance can be calculated by integration of curves similar 

to those shown in Figures 5.1—5.3 and a final curve is obtained that reflects the evolution in 

time of the mean estimation error variance (Figure 5.4). The integral over time of the curve in 

Figure 5.4 will provide a measurement of the mean estimation error variance with which the 



 52 

system has been known over the entire period T. This value will be used as an indicator of the 

performance of the sampling scheme. 
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Figure 5.2. Forecasted error variances at times 0.3 T and 0.5 T 

 
Figure 5.3. Change in variance after a measurement is done at x/L=0.5 

In particular, for the example shown in Figure 5.4, the integral of this curve evaluates to 0.30, 

which may be interpreted as meaning that the state of the system has been known at each point 

and at each time step, with an estimation error, on average, of 30% of the initial estimation 

error. 
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Figure 5.4. Evolution in time of the spatially averaged error variance when a measurement is made at t= 0.5 T at location x= 

0.5L . (Refer to next section for a better understanding of the meaning of this figure). 

 

The analytical formalism that gives the global error over a period of time and over a 

certain region of the aquifer is 

σ2 = 
T ⋅ A

1 ∫
t 0

t 1
-

∫
Ω

Σ (t ;x )dΩ dt  + ∫
t 1

t 2
-

∫
Ω

Σ (t ;x )dΩ dt + ⋅ ⋅ ⋅ ⋅

∫
t n -1

t n

∫
Ω

Σ (t ;x )dΩ dt 

+

+  (5.1)

 

where Σ(t; x) is the estimation variance at time t and location x, A is the area (or length) of the 

domain of interest (it may be the entire aquifer or just part of it), T is the interval of time in 

which the sampling scheme is evaluated, Ω is the domain, t0 is the initial time and tn=T ; t1, …, 

tn-1 are sampling times on which the error estimation variance is not a continuous function. The 

superscripts - and + indicate before and after a sampling has been made, respectively. 

 5.2. One-dimensional groundwater flow model 

The Kalman filter technique has been evaluated in a one-dimensional aquifer, with constant 

transmissivity, constant heads at both ends, and no sinks or sources. The initial value of the 
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estimation error covariance matrix Σ(0|0) was assumed to be of the form σ20I where I is the 

identity matrix and σ20 is a large number. Therefore, no spatial correlation between the initial 

errors was assumed. (This lack of correlation in the initial estimation error covariance matrix 

produces a distinctive behavior at the early stage of the forecasting process, as will be seen 

later). The best estimate of the initial piezometric heads x(0|0) was assumed to be zero 

everywhere except at the constant head boundary at x=0 where the piezometric head is 

estimated to be one.  

Since neither the forecasted estimation covariance matrix nor the filtered estimation 

covariance matrix are dependent on the observed head values or on the head values predicted 

by the model, and since the measure of uncertainty associated with each sampling scheme 

depends only on the estimation covariance matrices, the initial heads and the evolution of 

heads in time do not have any influence on the decision-making process. They are given as a 

point of reference but it should be noted that any other set of initial head values would have 

given these same results, provided that the initial estimation covariance matrix was the same.   

Although a numerical model was built and tested to deal with two-dimensional 

problems, the simplifications introduced in this one-dimensional case permit building matrix 

Φ´ in equation (3.8) in a very straightforward way as a function of only one coefficient. 

Φ =́ 

0 0 0 0 ⋅ ⋅ ⋅ 0
 ξ

1  −2ξ
1

 ξ
1 0 ⋅ ⋅ ⋅ 0

0  ξ
1  −2ξ

1
 ξ

1 ⋅ ⋅ ⋅ 0

 :  :  :  :    :

0 0 0 0 ⋅ ⋅ ⋅ 0

; ξ
1
=

S (Δx )2
T (5.2)

  

where T is the transmissivity, S is the specific storage and Δx is the discretization size. Notice 

that the first and last rows are zeroes since they correspond to a constant head boundaries for 

which dh/dt is zero. An implicit scheme is used to approximate the time derivative, so that 

equation (3.11) is used to obtain the final transition matrix 
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Φ  = 

1 0 0 0 ⋅ ⋅ ⋅ 0
-ξ

 1+2ξ
 

-ξ
 0 ⋅ ⋅ ⋅ 0

0 -ξ
 1+2ξ

 
-ξ

 ⋅ ⋅ ⋅ 0

 :  :  :  :    :

0 0 0 0 ⋅ ⋅ ⋅ 1

; ξ
 
=

S (Δx )2
T Δt (5.3)

 

The aquifer was discretized into 30 cells and the time interval was chosen such that the 

final head distribution was 99% of the steady state distribution. The value for the coefficient ξ1 

was 36, although, as is explained later, the results are applicable for any other value. 

Before proceeding to the network design itself, it is worthwhile to take a look at how 

the model will propagate the initial estimation covariance through time without considering 

any measurement. Again, recall that the actual values of the piezometric heads do not have any 

influence at all on the estimation covariance results. They do have influence on the estimation 

of the piezometric heads themselves, though. For this reason the choice of the length of the 

simulation period is somewhat arbitrary since it is based on a particular set of initial conditions. 

The same results, regarding the estimation covariance matrices, would have been obtained had 

steady state already been achieved at time zero.  

Figure (5.5) shows the state of the system at different moments in time just as a 

reference as to how the system evolves as times goes by.  
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Figure 5.5. Evolution of heads in time when the initial heads are zero except at x=0 where the head is 1. (Both ends are 

constant head boundaries). 

The next figures show several possible views of the estimation covariance matrix as it 

changes in time. Remember that the estimation covariance at time zero is the identity matrix 

multiplied by a coefficient and that there is no spatial correlation between errors at different 

locations. Figure 5.6 shows how correlation is built into the estimation covariance matrix as 

time passes.  
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Figure 5.6. Evolution in time of the spatial correlation between estimation errors at x=0.16L and x=0.5L and the rest of the 

aquifer.  

For x=0.16L the estimation error soon becomes totally dependent on the errors in an area 

around it. The correlation with errors in the heads at the other end of the system increases, 

although it seems that a certain degree of independence will remain even when steady state has 
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been reached. For x=0.5L something similar happens, but the degree of correlation achieved 

with the surrounding points is not as large as it is at x=0.16L . The results for x=0.83L , 

although not shown, are the mirror image of the x=0.16L case. This can be explained from the 

fact that in steady state the heads are dependent only on the constant head boundary values and 

therefore so are the estimation errors. Thus, since the estimation errors at the boundaries 

determine the estimation error everywhere, the closer to a boundary, the higher the effect of 

that boundary on the estimation error, and consequently the higher the correlation. At the 

middle point, the estimation error depends equally on the estimation error at both ends but not 

totally on either of them. It is also important to note the big change in the correlation structure 

that is introduced just after the first time step and the smoother variation later in time. 

In Figures 5.7 the change in correlation after a measurement has been made at the end 

of the simulation period is depicted. 
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Figure 5.7. Spatial correlation between the estimation errors at x=0.16L and x=0.5L and the estimation errors at the rest of the 

aquifer after a measurement has been done at x=0.5L and steady state has been achieved.  

The results of these Figures have again a clear physical interpretation. After steady state has 

been achieved and an almost exact measurement is made at x=0.5L (a measurement error of 

only 2% of the initial estimation error was considered) the correlation between the estimation 

error at x=0.16L and the errors at locations between 0.5L and 1.0L must be negative. The 

reason is that the system state must be a constant head gradient between both ends. Therefore, 

if an exact measurement has been made at x=0.5L and the estimation at x=0.16L is above the 
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real value, the estimate of the gradient would be higher than the real one and the estimation 

error at x=0.83L must be of the same order of magnitude but with opposite sign (and almost 

completely correlated). The correlation with the estimation error at x=0.5L would have been 

zero if no measurement error had been introduced. In any case, the variance itself at that point 

is very small, as can be seen in Figure 5.8, so the correlation does not have much meaning in 

this case.  

Whereas the evolution of the spatial correlation seems to have a clear physical 

interpretation, it is not so in the case of the evolution of the absolute value of the variances 

themselves (Figure 5.8). 
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Figure 5.8. Evolution of estimation variance in time relative to the estimation variance at time zero. (The last two curves in the 

legend refer to the variance before and after an almost exact measurement has been done at x=0.5L.) 

The estimation variance at steady state will depend only on the estimation variance at both 

ends and it is easy to find its analytical expression. The head distribution at steady state is 

given by 

h (x ) = h
0
(1-

L
x ) + h

L L
x

 

where h0 and hL are the heads at both ends and L is the length of the aquifer. The estimate and 

the estimation variance, assuming that there is no correlation between h0 and hL will be given 

by 
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h (x ) = h
0
(1-

L
x ) + h

L L
x^ ^ ^

σ
h
2(x ) = σ

h0

2 (1- 
L
x  )  + σ

hL

22
(
L
x  )2

 

The parabolic shape of the final estimation variance is indeed obtained by the forecasting 

model (Figure 5.8). But the intermediate states are more difficult to interpret. Notice that the 

estimation variance after the first time step reduces dramatically from the horizontal line that 

represents the initial state. This is to say that no matter how bad the estimate of the initial state 

the predicted results will be very accurate in the early stages of the simulation. This behavior 

stems from the form of the initial correlation matrix and the fact that no spatial correlation was 

considered. Indeed, if an exponential correlation is considered in the initial estimation errors, 

with integral scale equal to one third of the length of the aquifer, the variance does not decrease 

so much at the early stages. (Figure 5.9) See also Figures 5.12 and 5.13 discussed below. 

Notice that the correlation introduced is such that the errors in the estimation of the constant 

head boundaries remain uncorrelated.  

In both Figures 5.8 and 5.9 the results for steady state are the same but the transient 

results are completely different. This points out the large role that the initial estimation error 

covariance matrix has on the results for the transient situation. For the extreme case, with an 

infinite integral scale in the initial estimation covariance matrix , that is, perfect correlation 

between any two points in the aquifer, the initial estimation covariance matrix remains constant 

in time since all the errors depend on the error committed in one of the head boundaries and the 

model cannot improve its estimation unless a measurement is done. However, I think that the 

initial estimation error covariance that best represents a lack of knowledge at time zero is the 

diagonal matrix with a large determinant, although it has been seen that this covariance matrix 

produces some non-intuitive results at the beginning of the simulation until some spatial 

correlation is built into the estimation errors by the model. On the other hand, we may have a 

total lack of knoweledge about the state of the system but the fact that we know the physics 
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underlying the phenomenon should be enough information to build a different initial 

covariance matrix.    
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Figure 5.9. Evolution of estimation variance in time relative to the estimation variance at time zero. The initial error estimation 
variance had an exponential spatial correlation with integral scale equal to one third of the length of the aquifer. (The last two 

curves in the legend refer to the variance before and after an almost exact measurement has been done at x=0.5L.) 

The reduction provided by the measurement at x =0.5L can be explained in the 

following way: the steady state depends only on the values of the constant head boundaries, 

what can be interpreted as if the system had two degrees of freedom. If an almost exact 

measurement is made, the degrees of freedom reduce to one and the estimation error at the 

boundaries reduces by one half. 

Next, a simple case of network design to determine which are the best time and location 

to take one measurement is addressed. The measure of uncertainty given by (5.1) is used to 

discriminate between the possible choices. The modeling problem is fully determined by two 

parameters ξ 1 in (5.2) and the length of the simulation period. The first one was chosen to be 

ξ1=36 (units of time)-1 and the second one was chosen such that the piezometric heads at the 

end of the simulation were 99% of the steady state heads. This value happened to be equal to 1 

unit of time. The number of time steps for which the simulation was carried out is 100. The 

results obtained are valid for any other situation where the product ξ1×(simulation time) is the 

same and the constraints in number of samples and frequency of sampling are the same, as can 

be concluded from the form of the matrix Φ  in (5.3).  
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The objective was to find the sample that provides the least global uncertainty to be 

taken among locations 0.066L, 0.16L, 0.33L, 0.5L, 0.66L, 0.83L or 0.93L and times 0.0T, 0.1T, 

0.2T, 0.3T, 0.4T, 0.5T, 0.6T, 0.7T, 0.8T, 0.9T or 1.0T, (T being the total simulation time). This 

gives a total of 7 locations × 11 instants, that is, 77 possible sampling schemes. Remember that 

for each of these sampling schemes a complete simulation must be performed in order to 

compute the uncertainty associated with it. This is only to locate the best “one sample”, if the 

best “two samples” were to be found the number of possible schemes to be analyzed rises to 

2926. The procedure used in this work to find the best scheme is an exhaustive search. This can 

be carried out for small systems and for not too many possible sampling choices. A way to 

eliminate possible candidates without having to perform the simulation needs to be found in 

order to make this methodology feasible in practice. 

The results for this network design problem are spatially symmetric, as might be 

expected from the conjunction of a number of factors: the matrix Φ  in (5.3) is symmetric, the 

initial estimation variances are constant and the forecasted and filtered covariance matrices do 

not depend on the heads. This means that the same uncertainty is associated with 

measurements at time t at any two points equally distant from the ends. 

The uncertainty corresponding to each sample location and each sample instant 

computed using equation (5.1) is shown in Figures 5.10 and 5.11. 
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Figure 5.10 (Continued on next page) 
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Figure 5.10. Each dot in the plots represents the mean uncertainty in the knowledge of the system during the total duration of 

the simulation when a sample is taken at the time and location indicated. 
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Figure 5.11. For each location the best sampling time is chosen from Figure 5.10. (The time relative to the total simulation 

time is shown in italics) 

From these results it is concluded that the best location to take a sample is at x=0.5L and at 

t=0.3T . Sampling at this time and place results in a mean estimation error of 31% of the initial 

estimation error whereas sampling at x=0.16L will give, at the best, a mean estimation error of 

almost 34% of the initial estimation error. This 10% difference between the sampling schemes 

may not be enough to justify the computational effort, since a good practitioner would 

probably have chosen to sample at the centerpoint and at some early time, given the expected 

transient behavior.  
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Given that for a particular groundwater flow model the results depend only on the 

initial estimation covariance matrix, and given the unusual behavior observed in the evolution 

of the variance over time, the same network design problem was solved for an initial 

estimation covariance matrix with a spatial correlation structure of the exponential type with 

integral scale equal to one third of the length of the aquifer. The results for this new problem 

are shown in Figures 5.12 and 5.13 
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Figure 5.12. (Continued on next page)  
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Figure 5.12. Global uncertainty at each point and each location when the initial estimation covariance matrix includes spatial 

correlation. 
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Figure 5.13. For each location in Figure 5.12 the best sample has been chosen (shown in italics). 

There are some differences between the results for the two different initial conditions, but no 

major ones. The best sampling again happens to be at x=0.5L and at t=0.3T although in the 

latter case the mean estimation error is larger, 35.6% of the initial error, and the differences in 

global uncertainty between the best samples at different locations are in a smaller range.  

The location of the best sampling was expected and could have been predicted in 

advance, but not so the time for the best sampling at any of the locations. I cannot find a clear 

physical explanation for why near the boundaries it is best to take the measurement early in 

time, and why the best time increases with the distance to the boundaries. I cannot find any 

relationship between those best sampling times and some characteristic time of the system. 

The problem of multiple samples at multiple locations has been also considered for 

three simple cases. The sampling times are the same as in the previous case, that is, any time 

between 0 and T at intervals of 0.1T and the initial estimation covariance matrix is the diagonal 

one without spatial correlation. The first new case is the choice of two measurements at the 

location x=0.5T (55 possible sampling schemes) to see how a second measurement can 

improve the optimum result obtained with only one. The second case is the choice of two 

measurements at two different places x=0.5T and x=0.66T (232 possible sampling schemes) 

since it is not very reasonable to take a second measurement where the estimation error has 

been lowered by the first measurement. And the third case is again the choice of two samples 
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at two locations but in this case both locations are near one of the boundaries, x=0.16T and 

x=0.33T . 

The optimal design for the first case can be obtained from Figure 5.14. 
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Figure 5.14. Mean estimation error when two measurements are taken at location x=0.5L. The time of the first measurement 
appears in the legend and the time of the second measurement is indicated in the x axis The horizontal bold line indicates the 

minimum value of uncertainty obtained with only one measurement. 

There are 12 possible schemes that significantly improve upon the best result obtained with 

only one measurement and all of them include some measurement at times t=0.2T or t=0.3T, 

the best one being that which includes both of them. A reduction from 31% to 27% is obtained 

by the second measurement, which would probably not be justified by cost. Again, notice that 

there is something about t =0.3T that makes it optimum. The fact that the two measurements 

must be taken early in time in consecutive intervals is explained by the fact that it is more 

useful to take them during the transient state than in steady state, when a second measurement 

at the same place would be worth little. 
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Figure 5.15. Ordered results of the 232 possible sampling schemes resulting from two samples at locations x=0.50L and/or 
x=0.66L 
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Figure 5.16. Blow-up of Figure 5.15 to show the best 10 possible sampling schemes. On top of each point it is written the time 

at which the sample must be taken. The location is represented by the typeface: plain face corresponds to x=0.5L and bold 
italic face to x=0.66L 
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Figure 5.17. Ordered results of the 232 possible sampling schemes resulting from two samples at locations x=0.16L and/or 
x=0.33L 
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Figure 5.18. Blow-up of Figure 5.17 to show the best 10 possible sampling schemes. On top of each point it is written the time 
at which the sample must be taken. The location is represented by the typeface: plain face corresponds to x=0.16L and cursive 

bold face to x=0.33L 

Figures 5.15 and 5.16 show the results for the second case. Three other possible sampling 

schemes give the same uncertainty as the optimum found in the previous case. About 90 

schemes provides a mean error below 31% of the initial estimation error. The only conclusion 

that may be drawn from these results is that as the sampling moves closer to the boundaries the 

more effective samples are those taken at the beginning. 

Figures 5.17 and 5.18 show that spatially uncentered samples do not give as good 

results as samples with one at the center. The number of sampling schemes that give errors 

below 31% are about 50 (half the number of the previous case). The optimum has a slightly 

larger uncertainty. It may be worthwhile to notice that in this case the four sampling schemes 

with the smallest uncertainty tend to sample early near the boundary (at x=0.16L) and later as 

the sample moves away from the boundary. 

5.3. One-dimensional mass transport model 

The same sort of network design problems addressed in the previous section will be presented 

here. The mechanics of the procedure are the same but the transition matrix changes 

substantially leading to completely different results.  
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The one-dimensional aquifer considered here has constant head gradient, constant 

hydraulic conductivity and constant dispersivity, which implies constant fluid velocity and 

constant dispersion coefficient. The aquifer is discretized in 30 segments of equal size and the 

simulation extends for a period equal to the mean advective travel time. The total simulation 

period is discretized into 1000 time steps. The presence of the advective term in equation 

(3.13) makes the solution of the problem more interesting and more difficult. On the one hand, 

the system has embedded in it an intrinsic time, which is related to the fluid velocity and the 

length of the aquifer, that could explain the timing of the samplings. On the other hand, 

numerical dispersion introduces a relatively large error in the state-transition model.  

Both ends of the aquifer are constant concentration boundaries. The initial 

concentrations are zero all over the aquifer, except at x=0 where the concentration is one. The 

same comments made in the flow problem about the absence of the concentrations in the 

computation of the estimation covariance matrices can be made here, but in this case they will 

be presented together with the network design results because they give a feeling of how the 

travel time can determine the sampling timing. The boundary conditions are not very realistic 

for times larger than the breakthrough time since there is no sink for the solute that is 

constantly entering the system from the boundary at x=0. 

The simplifications introduced for the one-dimensional aquifer and the choice of the 

implicit method to approximate the time derivative of concentration leads to the following 

transition matrix: 

Φ=

1 0 0 0 ⋅ ⋅ ⋅ 0
−ξ

1
−ξ

2
1+2ξ

1
−ξ

1
+ξ

2 0 ⋅ ⋅ ⋅ 0

0 −ξ
1
−ξ

2
1+2ξ

1
−ξ

1
+ξ

2 ⋅ ⋅ ⋅ 0

: : : :  :
0 0 0 0 ⋅ ⋅ ⋅ 1

ξ
1
=

(Δx )2
D Δt

ξ
2
=

2(Δx )
v  Δt
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where D is the dispersion coefficient (equal to the dispersivity times the velocity) and v is the 

fluid velocity (equal to the hydraulic conductivity times the hydraulic gradient over porosity). 

This transition matrix is no longer symmetric due to the fact that velocity has a clear 

directional component.  

The state of the system as it is simulated by the model is shown in Figure 5.19, which 

gives a feeling for the timing of the advance of the front, the physical dispersion, and the nu-

merical dispersion (the latter can be observed in the oscillations in the tail of the front as it 

advances). 
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Figure 5.19. Four views of the state of the system at four different instants. The convective term is clearly dominant and the 

numerical dispersion is not very high until late in the simulation. 
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The initial value of the mean estimation error covariance matrix Σ(0|0) is again a diagonal 

matrix of the form σ20I where I is the identity matrix and σ20 is a large number. How this 

variance propagates in time, without considering sampling yet, is depicted in Figures 5.21—

5.24 for the system I will call basic, which is characterized by ξ1=0.3 and ξ2=1.5 (Δt=1/10th of 

the travel time). One possible set of parameters that yields these values is v=1 m/d, Δx=10 m, 

Δt=30 d (total length L=300 m and travel time T=300 days), and longitudinal dispersivity, aL=1 

m (D=1 m2/d). In terms of the Peclet number, the basic system is characterized by a Peclet 

number, ν=(vL/D)=300.  
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Figure 5.20. Evolution of the spatial correlation between errors at points x=0.16L and x=0.5L, and the estimation errors at the 

rest of the aquifer. (The legend applies to both plots) 

The numerical model closely reproduces the behavior of the real system, with small numerical 

dispersion, except for times close to the travel time and for the locations next to the right end 

where the concentration is constant and equal to zero.  

The evolution of the correlation between estimation errors has a clear physical signifi-

cance (Figure 5.20). Initially the estimation errors are uncorrelated and at each point they 

remain nearly uncorrelated with the rest of the estimation errors until the front passes that 

point. From that moment on, the estimation errors at that point are fully correlated with the 

estimation errors of any "upstream" point and full correlation with "downstream" points keeps 

building up as the front moves on. The explanation is clear since each point remains at its 

initial state (no correlation) until the front reaches it. After a short time the concentration 
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becomes equal to the concentration at the left end and therefore fully correlated with this and 

with all the points in between. The behavior of the variance can be seen in Figures 5.21—5.23 

and, as was the case for flow, is not as clearly explained.  
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Figure 5.21. Variation in time of the estimation variance when no measurements are considered. Time and distance along the 

x-axis are relative to the total length and total travel time.  
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Figure 5.22. Estimation error variance at time= travel time after a measurement has been made at location x=0.5L.  
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Figure 5.23. Evolution of estimation error variance at locations x=0.5L and x=0.83L 

It is difficult to find a clear explanation why the estimation error variance decreases from its 

initial value to about 20% of its initial value until the front reaches the point. . The behavior 

before the front gets to the location means that our initial estimate of the state at that location 

gets better and better as time passes. To illustrate this, let us assume that the estimation errors 

are Gaussian so that the 95% confidence interval is four estimation standard deviations wide 

centered at the mean estimation. Figure 5.24 shows the evolution of the estimates predicted by 

the model and their corresponding confidence intervals. If the estimation covariance matrix at 

the end of the simulation period is filtered by an almost exact measurement at x=0.5L (in fact, 

the location does not matter) the variance reduces almost to zero.  

The explanation for the reduction of variance shown in Figure 5.22 is clear since it was 

shown that total spatial correlation in the errors occurs after the front passes. Therefore, any 

measurement at time t=T will reduce the variance everywhere.  
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Figure 5.24. Assuming normality in the estimation errors the curves above represent the predicted concentration values at 

location 0.83L plus/minus two estimation error standard deviations. Notice how the confidence interval narrows around the 
estimates until the front reaches the point, then, the confidence interval widens. 

The explanation for the behavior of the transient states must be looked for in the initial 

estimation covariance. The same network design problem was carried out for an initial 

estimation covariance with exponential spatial correlation of integral scale equal to one third of 

the aquifer length. The results are shown in Figure 5.25. This figure shows that when the initial 

estimation covariance matrix contains spatial correlation (in this case large enough to affect 

any two points and maintain uncorrelated the estimation errors at both ends) the evolution of 

estimation variance in time has a better physical explanation. The variance slightly decreases 

before the front gets to the point but remains around the same initial value and after the front 

has passed, the variance remains equal to the left end variance.  
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Figure 5.25. Propagation of variance in time at locations x=0.5L and x=0.83L when the initial estimation covariance matrix 

has an exponential correlation with integral scale equal to one third of the length of the aquifer.  

It seems that an initial exponential covariance gives results for the transient states with 

a heuristic explanation. This means that although we do not have any knowledge about the 

state of the system the fact that the physics of the phenomenon controlling the system behavior 

are known, is enough to introduce some correlation between intial errors.  

A simple problem of network design is presented in the next paragraphs. The aquifer 

has the characteristics of the aforementioned basic problem. These can be summarized in a 

Peclet number of 300, and the initial estimation error covariance matrix is a diagonal matrix 

with a large constant variance at all points. The interest here will be to check the effect of the 

Peclet number. Notice that the basic problem has been chosen with a large Peclet number, so 

that the convective term is highly dominant over the dispersive term Low Peclet numbers 

would provide the same results as for the previously discussed flow problem, which is 

equivalent to a completely dispersive mass transport problem.  

The first case is to study the selection of the single point in time and space that provides 

the sample that most reduces the global uncertainty. The search is constrained to the same set 

of 77 points defined by the cartesian product (x ,t)={0.066L, 0.16L, 0.33L, 0.5L, 0.66L, 0.83L, 

0.93L }×{0.0T, 0.1T, 0.2T, 0.3T, 0.4T, 0.5T, 0.6T, 0.7T, 0.8T, 0.9T }. In all these results the 

breakthrough curve simulated by the numerical model from initial conditions corresponding to 

zero concentration everywhere except at the left end is plotted along with the uncertainty, to 



 75 

see how the travel time affects the possible choices. At the risk of being repetitive, let me 

reiterate that the actual values of the initial concentrations or the concentrations at any time 

have no effect at all on the computation of the estimation covariance matrix and that the results 

would have been the same for any other initial concentration distribution as long as the initial 

covariance matrix and the boundary conditions are the same. But, in the case of mass transport, 

the travel time is built in to the transfer matrix Φ(through the velocity and the discretization of 

x). Therefore, the concentrations simulated by the model, which correspond to quite a sharp 

front moving from left to right, will reflect how the travel time affects the solutions. 

Figure 5.26 shows, for each sampling point, the global uncertainty associated with each 

sampling time as well as the breakthrough curve at that point. 
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Figure 5.26. Continued on next page. 
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Figure 5.26. Each curve shows: in white, the mean uncertainty over time and space if a sample had been taken at the time and 

location specified; in black the breakthrough curve at the location indicated. 

From these Figures a number of comments can be made. It seems that there is an uncertainty 

value around 0.7 that is filtered by the model no matter when or where the sample is done. This 

can only be explained in terms of the initial estimation error covariance matrix and corresponds 

to the decrease of the variance at any point in the first time steps of the simulation (see Figures 

5.21—5.24). The question that remains unanswered is the reason for that decrease. A sort of 

bulge appears below the 0.7 uncertainty line that moves from left to right as the sampling 

location does. The minimum uncertainty happens shortly after or at the breakthrough time and 

it is smaller the closer to the left end the sampling point is. That is, the sooner the front is 

detected the better.  
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From Figure 5.27 is clear that the best sampling time increases as the sampling point 

approaches the right end and that the reduction in uncertainty is larger if the sample is taken 

near the left end. 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1.0

1.2

unc
sample time

sa
m

pl
e 

tim
e

gl
ob

al
 u

nc
er

ta
in

ty

x/L

ν=300

uncertainty

 
Figure 5.27. For each sampling point the best time to make the sample and its associated uncertainty are displayed.  

Due to the behavior observed for the variance propagation for uncorrelated initial errors 

the same exercise was done in the case of correlated initial errors with an exponential 

covariance of integral scale equal to one third of the length of the aquifer. The results are 

shown in Figures 5.28—5.29. 
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Figure 5.28. Continued on next page. 
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Figure 5.28. Each curve shows: in white, the mean uncertainty over time and space if a sample had been taken at the time and 
location specified; in black the breakthrough curve at the location indicated. An initial exponential correlation in the errors has 

been included.    
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Figure 5.29. For each sampling point in Figure 5.28, the best time to take the sample and its associated uncertainty are 

displayed. 

Some changes can be observed from the results without initial correlation. The sill that 

appeared at about 0.7 moves to 0.95, meaning that in this case the model is not able to filter as 
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much uncertainty without the help of some measurements. The uncertainty values are larger 

but the sample locations and timing are almost the same. The optimum is achieved early in 

time and close to the left end.  

A second exercise will take a look at the effect of the Peclet number in the selection of 

the best time to take a sample at x=0.5L. The uncorrelated initial estimation covariance matrix 

is used. The Peclet number will take the values 30, 75, 150, 300, 600, 1200, 3000 and 30000. 

These values are obtained by changing the longitudinal dispersivity and maintaining the gradi-

ent. A change in the gradient would have affect both velocity and dispersion so that the Peclet 

number would have remained unchanged and so would the transfer matrix. The breakthrough 

curves are displayed to show the amount of physical dispersion and the effect of numerical 

dispersion. The results are displayed in Figures 5.30 and 5.31. 
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Figure 5.30. (Continued on next page). 
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Figure 5.30. Each curve shows, for several Peclet numbers: in white, the mean uncertainty over time and space if a sample had 

been taken at location x=0.5L and at the time indicated; in black the breakthrough curve. 
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Figure 5.31. Uncertainty corresponding to the best sample in time at location x=0.5L, for several Peclet numbers. The time 

was either 0.5T or 0.6T as shown in the graphic. 

The results for the largest values of the Peclet number should be discarded due to the large 

numerical dispersion presented by the model. The breakthrough curves show large oscillations 

after the front has reached x=0.5L. Two important conclusions can be drawn from these 

Figures: i) the timing of the samples does not seem to depend on the Peclet number but rather 

on the travel time and ii) the dispersion (or the Peclet number) plays an important role in the 

level of uncertainty that can be removed from the system by sampling, and it is clear that the 

larger the dispersion (smaller Peclet number) the better the system can be known. The 

explanation can be seen in the fact that in a pure convective system a measurement only can 

give information about the system in one direction, “upstream” if the front already passed the 

sampling point, or “downstream” if the front is yet to pass, whereas in a pure dispersive system 

the information obtained at a point will travel in both directions. 

Some other results that are not plotted here are the following: A case of multiple 

measurement at multiple locations was studied. The improvement due to the second sample 

was small and to my understanding the decrease in uncertainty would not justify the cost of it. 

The timing for the best scheme in the two cases studied was the union of the timings for the 

best sample when each point was considered alone.  
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The only effect of big measurement errors (50% of the initial variance) in the solution 

of the network design problem was an increase in uncertainty but no effect on the location or 

timing of the optimal sample.  

6. CONCLUSIONS AND FUTURE RESEARCH 

It is clear  that this study is limited in its scope and that a large number of avenues of research 

remain open. But, in any case, I would like to point out the conclusions to which this work has 

led me and some goals for future research. 

The Kalman filter is a tool suitable to be used in network design for any dynamic 

phenomenon that can be represented by a linear state-transition model and for which an 

estimate of the initial system as well as the  error covariance matrix of that estimate are known. 

Notice that no assumption of normality or of any other probabilistic kind was needed to 

develop the method. The only two requirements are the knowledge of the initial estimate and 

its estimation variance. 

The choice of the initial estimation error covariance matrix is of major influence in the 

way variance is propagated. In particular, the differences between starting with and without 

spatial correlation were studied and found significant, especially in reference to the final value 

of the global uncertainty, although not so much in the network design results.  

An optimal design in the way done here, i.e., combinatorial search, is infeasible for 

practical purposes due to the dimensions of the problem. The discretization in time is what 

increases very much the dimensions. If the time for the samples were fixed the selection of the 

best sampling locations at given times would be much faster. Together with the dimensionality 

problem, the mass transport case requires a very fine time discretization in order to obtain 

accurate results using a finite difference approach. 

In the flow problem, the location of the samples depends mainly on the geometry of the 

system and on the initial estimation error covariance. The timing of the samples is more 

difficult to relate to a property of the system. 
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In the mass transport problem, the location of the samples seems to depend on the 

boundary and initial conditions whereas the timing depends on the travel time. The only 

influence of the Peclet number is on the amount of uncertainty but not on the network design 

itself.  

I find three important weak points in this work that must be carefully studied.  

First, the way the optimization has been approached. A better way to perform it must be 

found. Branch and bound methods could be good candidates if some algorithm to discard 

schemes before computing them can be found.  

Second, the fact that  the design procedure is independent of the data values 

themselves. I have emphasized this point throughout this work,  especially when actual head or 

concentration values were displayed  for the sake of clarity,  I would like to point out that this 

property, which has been regarded by many researchers as an advantage since it allows the 

posterior estimation variance to be known prior to the actual measurement, is a weak point. 

The information provided by the data as it is collected must be used not only to predict the 

state of the system but also to asses its estimation error. Nonlinear filters, such as disjunctive 

kriging or indicator kriging, that provide data- conditioned estimation variances could be the 

tool to use.  

And third, parameter uncertainty was not considered. All the parameters defining the 

system, as well as the external actions, were considered exactly known. But parameters vary in 

such a way that  even in the event of perfect measurements this variability could not be 

modeled from a few samples in the field, making it impossible to know them with accuracy. 

The introduction of parameter uncertainty is the first big step that must be done in the 

continuation of this work and it should be included in such a way that the objective of the 

network design problem is not only to minimize the uncertainly about the system but also the 

uncertainty about the parameters.   
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And finally,  other points that require further research are: the objective function (in this 

case, minimization of the uncertainty about the system) should be written in terms of the 

eventual decision variables (risk of contamination, amount of insurance to buy, etc.) including 

economic costs, social costs and anything that relates to the effect of the system uncertainty on 

the final decision making-process; the model error, i.e., the error coming from a model that is a 

simplification of reality, an error that is on top of the error induced by parameter uncertainty, 

should be considered, and, of course, some real two-dimensional cases should be studied. 
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APPENDIX A. MATRIX INVERSION LEMMA. 

We want to prove the following inversion identity: 

(I
n

+ A B)- 1 = I
n
 − A (I

m
+ BA)- 1B

where 

A is an arbitrary n ∞m  matrix 

B is an arbitrary m ∞n  matrix 

In is the n ∞n  identity matrix 

Im is the m ∞m  identity matrix 

If (Im + AB) is not singular, then 

- A B = -A (I
m
+ BA)(I

m
+ BA)- 1B

 

adding (In + AB) to both sides,  

I
n
= (I

n
+ AB) − A(I

m
+ BA)(I

m
+ BA)- 1B
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or,  

I
n
= (I

n
+ AB) − (A + A B A)(I

m
+ BA)- 1B

 

or, 

I
n
= (I

n
+ AB) − (I

n
+ A B) A (I

m
+ BA)- 1B

 

or, 

I
n
= (I

n
+ AB)( I

n
− A (I

m
+ BA)- 1B)

 

then, if In + AB is not singular, premultiplication of both sides by (In + AB)-1 completes the 

proof. 

The significance of this matrix inversion identity is that (if n > m ) then the inverse of a 

large matrix can be obtained from the inversion of a smaller one. 

 
 


