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X - 2 XU AND GÓMEZ-HERNÁNDEZ: IDENTIFICATION OF A CONTAMINANT SOURCE

Abstract. When a contaminant is detected in a drinking well, source lo-4

cation, initial contaminant release time and initial contaminant concentra-5

tion are, in many cases, unknown; the responsible party may have disappeared6

and the identification of when and where the contamination happened may7

become difficult. Although contaminant source identification has been stud-8

ied extensively in the last decades, we propose —to our knowledge, for the9

first time— the use of the ensemble Kalman filter (EnKF), which has proven10

to be a powerful algorithm for inverse modeling. The EnKF is tested in a11

two-dimensional synthetic deterministic aquifer, identifying, satisfactorily,12

the source location, the release time, and the release concentration, together13

with an assessment of the uncertainty associated with this identification.14
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1. Introduction

When, where and how much contaminant was introduced in an aquifer is a question15

many times asked once a pollutant is found in a drinking well. How to answer these16

three questions using the concentrations observed in monitoring wells downgradient of17

the contamination event has been subject of research for many years. Gorelick et al.18

[1983] used least-squares regression and linear programming combined with contaminant19

transport simulation to identify a pollutant source location by matching simulated and20

observed concentrations. Woodbury and Ulrych [1996] used minimum relative entropy to21

recover the release history of a plume in a one-dimensional system and then extended it22

to three dimensions [Woodbury et al., 1998]. Michalak and Kitanidis [2003] proposed a23

Bayesian stochastic inverse modeling framework to estimate contamination history and24

extended it to the estimation of the antecedent distribution of a contaminant at a given25

point back in time [Michalak and Kitanidis , 2004]. Neupauer and Wilson [1999] used26

a backward probability model to derive travel time probability density functions, and27

later extended this method by conditioning those backward probability density functions28

on measured concentrations [Neupauer and Lin, 2006]; however, none of these methods29

could identify simultaneously source location and release time—the premise was that one30

of them had to be known to identify the other one. Mahar and Datta [2000] developed a31

non-linear optimization model for the estimation of the magnitude, location and duration32

of a groundwater pollution event under transient flow, where the governing equations of33

flow and transport where included in the optimization model as binding constraints. Aral34

et al. [2001] proposed a progressive genetic algorithm to solve an iterative non-linear opti-35
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mization problem in which contaminant source locations and release histories were defined36

as explicit unknown variables. Yeh et al. [2007, 2014] developed an approach combining37

simulated annealing and tabu search with a three-dimensional groundwater flow and so-38

lute transport model to estimate the source location, release concentration and release39

period, where the source location was determined by tabu search within a suspect source40

area, and trials for release concentrations and release periods were generated by simu-41

lated annealing. Butera et al. [2013]; Cupola et al. [2015] proposed a stochastic procedure42

(simultaneous release function and source location identification, SRSI), which estimates43

the source location and the release history through a Bayesian geostatistical approach;44

the method starts with a preliminary delineation of a probable source area and ends with45

a sub-area where the pollutant injection has most likely originated. Gzyl et al. [2014]46

has developed a multi-step approach to identify the source and its release history; this47

approach consists of three steps: performing integral pumping tests, identifying sources,48

and recovering the release history by means of a geostatistical approach.49

In this paper, we will focus on the problem of simultaneously identifying the location50

of a continuous point source, its initial release time and its release concentration. The51

approach proposed uses the normal-score ensemble Kalman filter (NS-EnKF) [Zhou et al.,52

2011], a variant of the ensemble Kalman filter (EnKF) which has proven to be very effective53

for the identification of highly heterogeneous, non-Gaussian hydraulic conductivities or54

porosities ([e.g., Hendricks Franssen and Kinzelbach, 2009; Xu et al., 2013; Xu and Gómez-55

Hernández , 2015]), but which has never been applied, to the best of our knowledge, for56

contaminant source identification.57
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The EnKF is an assimilation algorithm that sequentially refines the estimates of the58

parameters of interest as information about the state of the system is collected. Contrary59

to most of the methods described above, it is not an optimization approach.60

The paper proceeds with a description of the algorithm, followed by the analysis of the61

performance of the algorithm on a deterministic synthetic confined aquifer, and ends with62

the presentation and discussion of the results.63

2. Methodology

The objective of this paper is to explore the applicability of the ensemble Kalman filter64

(more precisely of its variant the NS-EnKF) for the simultaneous identification of the65

parameters that define a continuous point injection of a solute into a confined aquifer,66

i.e., the injection location, the injection time and the the injection concentration. For the67

purpose of this exploration, we will assume that all other information necessary to build68

a flow and transport model in the aquifer is deterministically known. We realize that this69

is an unrealistic situation, but, for now, we wish to explore the potential of the NS-EnKF70

to identify the parameters defining the source —parameters quite different from those71

generally considered in the application of the EnKF for inverse modeling in groundwater.72

As already mentioned above, the EnKF is an assimilation algorithm that re-estimates73

the parameters subject to identification as observations about the state of the system are74

collected. For this reason, the filter needs to know the relationship between parameters75

and state; in our case this relation is given by the groundwater flow and solute transport76

equations.77
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2.1. Groundwater flow and transport

In this work, and without loss of generality, we will assume that the flow field is at78

steady state; the governing equation is:79

∇ · (K∇H) + q = 0 (1)

where ∇· is the divergence operator; ∇ is the gradient operator; H is the hydraulic head;80

K is the hydraulic conductivity [LT−1], and q is the volumetric injection flow rate per81

unit volume of aquifer [LT−1].82

Also, we will assume, without loss of generality, that the solute travels in the aquifer83

subject to advection and dispersion; the governing equation is [Zheng , 2010]:84

∂(θC)

∂t
= ∇ · [θ(Dm + αv) · ∇C]−∇ · (θvC)− qsCs (2)

where C is the aqueous concentration [ML−3], t is time [T], θ is the effective porosity [-],85

Dm is the molecular diffusion coefficient [L2T−1], α is the dispersivity tensor [L], v is the86

flow velocity vector related to the hydraulic head through, v = (−K∇H)/θ [LT−1], qs is87

the volumetric flow rate per unit volume of the aquifer representing fluid sources or sinks88

[T−1], and Cs is the concentration of the source or sink flux [ML−3].89

Equation (1) is solved by finite differences using the numerical model MODFLOW90

[McDonald and Harbaugh, 1988] and the resulting piezometric heads are used to compute91

the flow velocities (v) in Eq. (2). The transport equation is solved with the numerical92

code MT3DMS [e.g., Zheng , 2010; Ma et al., 2012]; of the many options available in93

MT3D to solve the advective and dispersive components of 2, we have chosen the implicit94

finite-different method for both of them (Group D on page 36 of the manual).95
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2.2. The ensemble Kalman filter

The Kalman filter is optimal when parameters and state variables are multiGaussian96

distributed and linearly related [Aanonsen et al., 2009]. In our case, neither the param-97

eters (identifying the source locations and release history) nor the state variables (solute98

concentrations) are multiGaussian distributed or linearly related. The ensemble Kalman99

filter [Evensen, 2003] was developed precisely to circumvent the problem provoked by100

the non-linearity of the state-transfer function [e.g., Chen et al., 2009; Xu and Gómez-101

Hernández , 2015]. And later, the normal-score ensemble Kalman filter [Zhou et al., 2011]102

was developed to address the issue of non-Gaussianity. The main difference on the im-103

plementation of the NS-EnKF for the purpose of contaminant source identification with104

respect to more standard applications is the need to restart the simulation of the tran-105

sient evolution of the state variable from time zero after each assimilation step, given the106

very strong dependence of concentrations on the source location and release time, and the107

impossibility to introduce the updated source location into the state-transfer equation,108

once the simulated has started.109

The NS-EnKF algorithm for source identification is described next. Before state data110

observations are collected, an ensemble of Ne realizations of the parameters are generated.111

In this particular case, we have four independent parameters, X for the x-coordinate, Y112

for the y-coordinate, T , for the initial release time and P for the concentration at the113

source; their initial values are drawn from wide-enough uniform distributions, making up114

Ne quadruplets (X0, Y0, T0, P0), where the subindices indicate that these are the parameter115

estimates at time t = 0. Then, the algorithm enters in a loop of forecast and updating;116

during the forecast, state variables are predicted for a given time in the future; time117
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at which state data are measured and the discrepancy between the forecasted values at118

observation locations and the actually observed values is used to update the parameters119

(optionally, it could update the state of the system, but since each forecast step has to be120

run from time zero, the update of the state is of no use). The loop proceeds as follows:121

1. Forecast. With the last parameter update at observation time t− 1, rerun the flow

and transport code from time 0 until observation time t. As already mentioned above,

parameter update implies the changing of the source location coordinates, and the only

way to properly account for this coordinate change is by rerunning the code from the

beginning:

Ct = ψ(C0, Xt−1, Yt−1, Tt−1, Pt−1) (3)

where ψ represents the state transfer equation, in our case numerically approximated by

the MODFLOW and MT3D codes. Parameter values are also “forecasted” into time t by

simply keeping the updated values at time t− 1

(Xt, Yt, Tt, Pt) = (Xt−1, Yt−1, Tt−1, Pt−1) (4)

Contrary to the standard application of Kalman filtering, the state at t+1 is not obtained122

by forecasting an updated state computed at time t; because, when the source parameters123

are updated, the only way to account for this update is by rerunning the model from time124

0. For this reason, the mass balance problem that appears in the standard application of125

the Kalman filter disappears here.126

2. Observation. Concentrations are observed at sampling locations, Co
t . To simplify the127

formulation we will assume that observations occur at the nodes of the numerical code;128

otherwise, there is the need to introduce some kind of interpolation to map forecasted129

values onto observation locations.130
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3. Assimilation. Forecasted concentrations at sampling locations will not match the131

observed ones, parameter values are updated according to the NS-EnKF formulation:132

(i) Normal-score transform of parameters. Since the parameters are drawn from a

uniform distribution, and the EnKF works best if the parameters are multiGaussian dis-

tributed, the quadruplets St = (Xt, Yt, Tt, Pt) are transformed into Gaussian deviates by

their corresponding normal-score transform functions

S̃t =









X̃t

Ỹt
T̃t
P̃t









=









φX,t(Xt)
φY,t(Yt)
φT,t(Tt)
φP,t(Pt)









(5)

In the original formulation of the NS-EnKF, both parameters and state-variables are133

normal-score transformed, but our experience in this study as well as in previous studies134

shows that the method is equally capable of identifying non-Gaussian parameters if the135

state-variables remain untransformed. This is the reason why only parameters are normal-136

score transformed in this study.137

(ii) Covariance calculation. From the ensemble of normal-score transform of the pa-138

rameters and the ensemble of forecast values at observation locations, compute the cross-139

covariance between parameters and concentrations DS̃Cf,o , and the auto-covariance of140

concentrations DCf,oCf,o , where the superindices f, o are used to clarify that only the141

forecasted concentrations at observation locations are used for this computation.142

(iii) Update. Parameters are updated, for each quadruplet of the ensemble, according

to the equation

S̃a
t = S̃t +Gt(C

o
t + et − Cf,o

t ) (6)

where S̃a
t is the updated normal-scored parameter quadruplet, S̃t is the forecasted normal-

scored parameter quadruplet, Co
t is the observed concentration vector, Cf,o

t is the fore-

D R A F T January 3, 2017, 5:47pm D R A F T
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casted concentration vector at observation locations, et is an observation error vector

(different for each member of the ensemble and drawn from a normal distribution with

mean zero and covariance matrix Rt), and Gt is the Kalman gain matrix, given by

Gt = DS̃Cf,o(DCf,oCf,o +Rt)
−1 (7)

Concentrations are not updated, since the forecast for time t with the updated parameter143

values Sa
t has to be done from time t = 0.144

(iv) Backtransform. The updated parameter quadruplets are back transformed into

parameter space for each member of the ensemble using the inverse of the transformation

function used in (i)








Xa
t

Y a
t

T a
t

P a
t









=











φ−1

X,t(X̃
a
t )

φ−1

Y,t(Ỹ
a
t )

φ−1

T,t(T̃
a
t )

φ−1

P,t(P̃
a
t )











(8)

4. Go back to step 1 and repeat until all concentration observations have been assimi-145

lated.146

3. Application

The algorithm is demonstrated in a two-dimensional aquifer of 50 m by 50 m by 5147

m, discretized into 50 by 50 by 1 cells. Hydraulic conductivities are heterogeneous in148

space; their logarithm follows a multiGaussian distribution of mean 2.5 ln(m/s), standard149

deviation 1.5 ln(m/s), and isotropic exponential variogram with a range of 20 m (see150

Figure 1). The four boundaries of the aquifer are impermeable, and there are 2 injection151

wells with an injection rate of 2 m3/d at coordinates (4.5 m, 9.5 m) and (4.5 m, 39.5152

m), and 2 pumping wells with a pumping rate of 2 m3/d at coordinates (44.5 m, 9.5153

m) and (44.5 m, 39.5 m) (see Figure 2). The rest of the parameters are homogeneous,154

D R A F T January 3, 2017, 5:47pm D R A F T
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porosity is 0.3, longitudinal dispersivity is 1 m, and transversal dispersivity is 0.01 m.155

Steady-state flow is solved, and then contaminant transport for a continuous punctual156

release from location (11.5 m, 19.5 m) at time t= 80 days and with a concentration of157

60 mg/l is modeled for 1000 days. The simulation time is discretized into 100 time steps.158

Observations are taken at the end of each time step at 25 observation locations, and they159

will be assimilated by the NS-EnKF. The locations of the observation locations is shown160

in Figure 2, and their coordinates are listed in Table ??161

3.1. Analysis

An initial ensemble of 1000 parameter quadruplets are generated from uniform distribu-162

tions with a wide range around the truth; more precisely, X ∼ U [5, 15] m, Y ∼ U [15, 25]163

m, T ∼ U [50, 150] d, and P ∼ U [10, 180] mg/l. Figure 3 shows the histograms of the164

initial distributions of each parameter. For each quadruplet, flow and transport are sim-165

ulated with the rest of the parameters exactly equal to those of the reference case; then,166

during the next 50 time steps (up to 623 days) concentrations are observed in the refer-167

ence and are assimilated by the NS-EnKF producing, at each time step, a new ensemble168

of parameter quadruplets. These quadruplets will converge, as shown below, to the true169

release location, time and concentration we wish to identify.170

We have produced a number of figures to illustrate the time evolution of the source171

identification and how, eventually, the source is correctly identified within the resolution172

allowed by the transport simulation code. Figure 4 shows the histograms of the updated173

quadruplets at the end of time step 50; considering that for the specific parameters used174

to simulated transport by MT3DMS we can only specify the cell at which the solute is175

introduced into the aquifer, the identification of the source location is exact up to the176
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cell discretization. Similarly happens with the identification of the time release, which is177

found to be in the interval [79.5, 80.5] d. Finally, the release concentration is identified178

to be in the interval [59.5, 61.0] mg/l, which is a very good approximation of the initial179

release value of 60 mg/l.180

Figure 5 shows the time evolution of the means and variances of the four parameters as181

new observations are assimilated. Around time step 15, the mean values of location and182

time get very close to the final estimates and stay there, whereas the concentration needs183

25 time steps to reach a similar stabilization; the variances decrease with time and remain184

close to zero around time step 25. A behavior that we have not been able to explain is185

the oscillation of the variance of the release concentration after time step 30, the mean186

estimate is stable around 60 mg/l, but the variance oscillates. The final mean values can187

be read in the histograms of Figure 4, and provide an estimate of the release quadruplet188

of (11.4 m, 19.6 m, 80 d, 60.4 mg/l), with an uncertainty characterized by a standard189

deviation of (0.3 m, 0.3 m, 0.7 d, 2.7 mg/l).190

To appreciate the evolution in time of the identification of the source location, Figure 6191

shows the identified locations before assimilation, and at the end of times steps 8, 20 and192

50. The time evolution of the plume in the reference is shown in Figure 7, the observations193

used in the assimilation phase are sampled from these maps. We can appreciate how194

during the first 8 time steps virtually no improvement is produced on the identification195

of the source location, this is because the plume has no migrated much downstream from196

the source, and therefore, the plume has not been detected in the observation wells yet.197

At time step 20, the cell where the solute enters the aquifer starts to be noticed, and at198

time step 50 virtually all 1000 estimated source locations are within the release cell. To199
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complement this figure, Figure 8a shows the evolution of the source location estimate in200

one of the ensemble members; here, we can observe how the source location is updated201

as a function of time and Figure 8b shows how the ensemble mean of all 1000 locations202

move in time from the center of the suspect release area to the center of the real release203

cell.204

4. Summary and discussion

With this work, we have proven the ability of the NS-EnKF to identify a contaminant205

source location, release time and concentration. The conditions under which this identifi-206

cation has been performed are still unrealistic from a practical point of view. The perfect207

knowledge of aquifer parameters, stresses and boundary and initial conditions will never208

happen; but our interest was to show the potential of this assimilation algorithm that209

has been successfully applied in hydrogeology for hydraulic conductivity characterization.210

The results are very satisfactory, and open a new avenue of research aimed at using this211

approach for source identification in more realistic cases. Our purpose is to continue re-212

search in this avenue, including, next, the simultaneous identification of a heterogeneous213

conductivity field.214
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injection wells (near the west boundary) and pumping wells (near the east boundary). The black

circle is the contaminant source location.
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Figure 3. Histogram of initial realizations of contaminant source parameters: X and Y

coordinates, release time T and release concentration P .

D R A F T January 3, 2017, 5:47pm D R A F T
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Figure 4. Histogram of the contaminant source parameters at the end of the assimilation

period (50 time steps).
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Figure 5. Top row, ensemble mean. Bottom row, ensemble variance. Time evolution of the

ensemble mean and variance of the four parameters under identification.
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Figure 6. Ensemble source location spatial coordinates estimates at the initial time step, and

at the end of time steps 8, 20 and 50.
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Figure 7. Solute plume evolution in time in the reference aquifer. Data are observed at well

locations and assimilated via Kalman filter to update the source parameters
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Figure 8. Evolution in time of the estimate of the source spatial coordinates in ensemble

quadruplet number 439 (left) and of the ensemble mean (right)
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Table 1. Coordinates in m of the observation wells.
x y x y x y

4.5 2.5 4.5 22.5 4.5 42.5
14.5 2.5 14.5 22.5 14.5 42.5
24.5 2.5 24.5 22.5 24.5 42.5
34.5 2.5 34.5 22.5 34.5 42.5
44.5 2.5 44.5 22.5 44.5 42.5
4.5 12.5 4.5 32.5
14.5 12.5 14.5 32.5
24.5 12.5 24.5 32.5
34.5 12.5 34.5 32.5
44.5 12.5 44.5 32.5
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