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València, 46022, Valencia, Spain

Abstract

Hu et al. (2013) proposed an approach to update complex geological facies models gen-

erated by multiple-point geostatistical simulation while keeping geological and statistical

consistency. Their approach is based on mapping the facies realization onto the spatially

uncorrelated uniform random numbers used by the sequential multiple-point simulation to

generate the facies realization itself. The ensemble Kalman filter was then used to update

the uniform random number realizations, which were then used to generate a new facies

realization by multiple-point simulation. This approach has not a good performance that we

attribute to the fact that, being the probabilities random and spatially uncorrelated, their

correlation with the state variable (piezometric heads) is very weak, and the Kalman gain

is always small. The approach is reminiscent of the probability field simulation, which also

maps the conductivity realizations onto a field of uniform random numbers; although the

mapping now is done using the local conditional distribution functions built based on a prior

statistical model and the conditioning data. Contrary to Hu et al. (2013) approach, this field

of uniform random numbers, termed a probability field, displays spatial patterns related to

the conductivity spatial patterns, and, therefore, the correlation between probabilities and

state variable is as strong as the correlation between conductivities and state variable could
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be. Similarly to Hu et al. (2013), we propose to use the ensemble Kalman filter to update

the probability fields, and show that the existence of this correlation between probability

values and state variables provides better results.
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1. Introduction1

The ensemble Kalman filter (EnKF) Evensen (1994, 2003), is an effective and computa-2

tionally efficient data assimilation method, which has received much attention in the inverse3

modeling community, since it can be applied for the inversion of the parameters controlling a4

non-linear state-transfer function given some state observational data. The EnKF is optimal5

for the case in which the state-transfer function is linear and parameters and state variables6

are multiGaussian (Aanonsen et al., 2009); it has proven to work remarkably well for non-7

linear state-transfer functions; but it has failed when trying to deal with non-Gaussian fields8

(Simon and Bertino, 2009; Chen et al., 2009; Sun et al., 2009). Recently, several methods9

have been developed trying to handle non-Gaussianities in EnKF; for example, those com-10

bining the EnKF and a Gaussian mixture model (Franssen and Kinzelbach, 2008; Gu and11

Oliver, 2007), those using iterative EnKF (Franssen and Kinzelbach, 2008; Gu and Oliver,12

2007), those combining the EnKF with Gaussian anamorphosis (also referred as normal-score13

transform) (Bertino et al., 2003; Béal et al., 2010; Zhou et al., 2011; Xu et al., 2013b) and14

those combining the EnKF with multiple-point geostatistics (Hu et al., 2013).15

Considering that the strength of multiple-point geostatistics is dealing with non-Gaussian16

fields (Guardiano and Srivastava, 1993; Strébelle, 2000), Hu et al. (2013) proposed a method17

to use the EnKF with non-Gaussian reservoir models by mapping facies onto the uniform18

random numbers used to generate them. In multiple-point geostatistical simulation (MPS),19

realizations are generated using the sequential simulation principle (Gómez-Hernández and20

Journel, 1993), whereby each node of the grid is visited, a local conditional distribution is21

2



constructed, and then a uniform random number is generated that is used to draw a value22

from the conditional distribution. There is a unique relationship between the (independent)23

uniform random numbers and the attribute values; therefore, one can envision using the ran-24

dom numbers as the parameters to be updated by the EnKF algorithm, and thus preserving25

the non-Gaussian features that are built into the calculation of the conditional distributions.26

The idea is very clever because once you fix all other parameters in the MPS algorithm,27

that is, training image, size of search neighborhood to look for conditioning data, maximum28

number of conditioning data to retain, path for the sequence in which the nodes are visited,29

etc., you can modify locally or globally the field of uniform random numbers to generate a30

new reservoir model.31

The initial objective of the work by Hu et al. (2013) was to assimilate production data32

onto binary facies models; the mapping of the uniform probability realization onto a facies33

realization (a realization consisting of only two numbers) has the additional interest of finding34

a mapping of a discrete field onto a continuous one, since the latter will be amenable of35

treating by the EnKF. The method proposed by Hu et al. (2013) simply applies the standard36

EnKF to the uniform random numbers, instead of onto the facies values.37

We have tested the method by Hu et al. (2013) in the context of assimilating piezometric38

heads in an aquifer and we have found that the method does not perform as well as expected,39

at least for the case analyzed hereafter. We think that this underperformance is due to40

the very weak cross-correlation that there is between the uniform numbers and the state41

variables. Recall that the EnKF proceeds in two steps: forecast and analysis. The forecast42

step presents no problem, it is based in the solution of the numerical model appropriate43

to the process being studied. The analysis step is the one in which the approach by Hu44

et al. (2013) fails. In the analysis step, discrepancy between predicted and observed states45

at observation locations is used to update the parameters driving the state-equation. This46

update is proportional to the said discrepancy, but also to what is called the Kalman gain,47
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which is a function of the auto- and cross-covariances of parameters and state variables.48

When the parameters being updated are uniform random numbers that are uncorrelated in49

space, the auto-covariance of the parameters and the cross-covariance are very weak, resulting50

in a very small Kalman gain. The net effect is that during the analysis step the update of51

the uniform random field is small and limited to a very narrow area around observation52

locations.53

Mapping parameters onto probabilities reminded us of the probability field approach54

Froidevaux (1993) to generate conditional realizations of a given parameter using uncondi-55

tional (but correlated) realizations of a uniform random field. In this case, the mapping uses56

the local conditional distribution functions of the parameter. Given a set of conditional data,57

and a set of structural parameters, one can obtain the local conditional distribution functions58

by simple kriging, indicator kriging, numerically from a training image, or from an ensemble59

of realizations generated otherwise. Once the local conditional distribution functions are60

defined at each point within the domain, there is a unique mapping from a probabilty field61

onto a parameter field. The probability field does not have to be conditional to the parame-62

ter values since the conditioning will happen when reading back the (Heaviside) cumulative63

distribution function at conditioning locations; yet, it needs to be correlated, to preserve64

the correlation structure of the parameters. The interest of the probability field approach65

was the generation of conditional realizations (of the parameter) from unconditional realiza-66

tions (of probabilties), which were, at the time, much cheaper to generate than conditional67

ones. The method never had a wide acceptance for the difficulty of establishing, a priori,68

which the correlation structure of the probabilities should be. Yet, there are some interest-69

ing applications of probability fields for inverse modeling (Capilla et al., 1999; Capilla and70

Llopis-Albert, 2009).71

We have decided to revisit the concept of probability fields in the context of data assim-72

ilation by the EnKF. The spatial correlation of the probability fields will be determined a73
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posteriori, from the ensemble of parameter realizations, thus avoiding the main problem of74

the original idea. We have applied the EnKF on the probability fields and found that the75

method gives good results.76

The paper continues by presenting an extension to the algorithm by Hu et al. (2013) for77

the simulation of continuous variables, together with the implementation of the EnKF using78

probability fields. Next, both algorithms are tested in a synthetic channelized aquifer with79

a bimodal histogram of conductivities.80

2. Methodology81

In this section, we will describe the two algorithms. The algorithm based on Hu et al.82

(2013) work will be referred to as the Uncorrelated Probability Field (UPF) method, and83

the one based on Froidevaux (1993) approach will be referred as the Correlated Probability84

Field (CPF) method.85

In both methods, the parameter which is updated by the EnKF is probability (which86

should follow a uniform distribution between 0 and 1); however, given that the EnKF is87

optimal when the parameters follow a Gaussian distribution, we will convert the uniform88

probabilities into Gaussian deviates and apply the EnKF to the latter. The conversion89

simply amounts to replacing each uniform deviate onto the Gaussian deviate read from the90

standard N (0, 1) Gaussian cumulative distribution function.91

2.1. Uncorrelated probability field method92

Hu et al. (2013) approach only updated the facies distribution and then assumed homoge-93

neous parameters within each facies. We would like to have heterogeneous conductivities on94

top of the facies heterogeneity. For this reason, the generation of each conductivity realiza-95

tion is done in two steps, in the first step a facies realization is generated using MPS (we limit96

this analysis to two facies), and, in the second step, each facies is independently populated97
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with conductivity values using sequential Gaussian simulation (SGS) Gómez-Hernández and98

Cassiraga (1994); Gómez-Hernández and Journel (1993). This implies that the mapping99

between conductivities and probabilities requires not just one random field of uncorrelated100

uniform numbers, but three, one to generate the facies and two to generate the conductivities101

that will be associated with each facies. Conceptually the approach is the same as the orig-102

inal one: conductivities are mapped onto uncorrelated probabilities, and these probabilities103

are the parameters updated by the EnKF.104

Figure 1 shows the flowchart for this method, which can be described as follows:105

1. Generate an ensemble of uncorrelated standard Gaussian fields N (0, 1).106

2. Transform the uncorrelated Gaussian deviates into uniform probability fields.107

3. Use these uniform fields with MPS and SGS to generate an ensemble of conductivity108

fields.109

4. Feed the conductivity fields into the groundwater flow model, with appropriate ini-110

tial and boundary conditions, and given sinks and sources; as a result, we obtain an111

ensemble of piezometric heads.112

5. Compute the auto- and cross-covariances of the Gaussian deviates obtained in step 1113

and the piezometric heads of the previous step.114

6. Sample the piezometric heads at the observation points.115

7. Update the Gaussian deviates by the EnKF and return to step 1 (we use the standard116

implementation of the EnKF as proposed initially by Evensen (2003) and described,117

for instance by Chen and Zhang (2006); Xu et al. (2013a)).118

2.2. Correlated probability field method119

For the CPF method we need to establish first which are the local conditional probability120

distributions given the conditioning data. When the probability field method was developed,121

these probability distributions were obtained by kriging: simple kriging when the random122
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function model was multiGaussian, indicator kriging when the model was non-parametric and123

based on the indicator covariances. With the advent of multiple-point geostatistics, model124

statistics are not specified analytically but inferred from a training image; the training image125

can also be used to define the local conditional probability distributions. An alternative, used126

in this work, is to infer the conditional distributions from an ensemble of realizations that127

has been generated by whichever stochastic simulation approach.128

Before the CPF method starts, we have to generate an initial ensemble of conductivity129

realizations from which to compute the local conditional distribution function at each grid130

node. (When there are no conditioning data, the local conditional distribution coincides131

with the marginal one everywhere.)132

Considering that the map of local distribution functions has been already determined by133

one way or another, the flow chart of the CPF is shown in Figure 2, which can be described134

as follows:135

1. Transform the ensemble of conductivity fields into an ensemble of (correlated) proba-136

bility fields by replacing each conductivity value with the probability associated to its137

local conditional distribution.138

2. Transform the probabilities into Gaussian deviates using an inverse standard Gaussian139

cumulative distribution function N (0, 1).140

3. Feed the conductivity fields into the groundwater flow model, with appropriate ini-141

tial and boundary conditions, and given sinks and sources; as a result, we obtain an142

ensemble of piezometric heads.143

4. Compute the auto- and cross-covariances of the Gaussian deviates obtained in step 2144

and the piezometric heads of the previous step.145

5. Sample the piezometric heads at the observation points.146

6. Update the Gaussian deviates by the EnKF.147
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7. Transform the Gaussian deviates into updated probabilities using the standard Gaus-148

sian cumulative distribution function.149

8. Transform back the updated probability fields into updated conductivities through the150

inverse local conditional distribution and return to step 1.151

3. Synthetic Example152

The performance of the two methods will be evaluated on a synthetic confined aquifer153

of 50 m by 50 m by 5 m, discretized into 50 by 50 by 1 cells. The aquifer is composed154

of 35% high conductivity sand and 65% low conductivity shale. The spatial heterogeneity155

of the sand/shale distribution is characterized by the training image shown in Figure 3156

(replicated after (Strebelle, 2002)). Hydraulic log-conductivity within the sand follows a157

Gaussian distribution with mean of 2.3 ln(m/d) and a standard deviation of 1 ln(m/d),158

while in shale has a mean of -3.5 ln(m/d) and a standard deviation of 0.6 ln(m/d). The159

conductivity in sand has an anisotropic spatial correlation characterized by an exponential160

variogram with ranges of 48 m in the horizontal direction and 24 m in the vertical direction;161

while conductivity in shale displays an isotropic correlation characterized by an exponential162

variogram with range of 24 m. These parameters are summarized in Table 1.163

The log-conductivities in the synthetic aquifer are built in two steps. In the first step,164

using the code SNESIM Strebelle (2002), a binary sand/shale realization is generated co-165

herent with the training image in Figure 3. (Note that the training image extends over a166

much larger area than the aquifer.) In the second step, using the code GCOSIM3D Gómez-167

Hernández and Journel (1993), each facies is populated independently with log-conductivity168

values generated by sequential Gaussian simulation. The resulting field and its histogram are169

shown in Figure 4. The synthetic aquifer displays the channelized structure of the training170

image and has a bimodal distribution with global mean of -1.1 ln(m/d) and global standard171

deviation of 2.8 ln(m/d).172
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A transient groundwater flow problem is solved in the synthetic aquifer using MODFLOW173

(McDonald and Harbaugh, 1984; Harbaugh et al., 2000). The top and bottom boundaries are174

impermeable, the left boundary has a prescribed head equal to 8 m, and the right boundary175

has prescribed pumping at the segments coinciding with the sand channels with a total176

pumping of 190 m3/d distributed as shown in Figure 4. The initial head is uniform and177

equal to 8 m throughout. The specific storage is homogeneous en equal to 0.1 m−1. The178

total simulation time is 500 d, discretized into 100 time steps following a geometric sequence179

with ratio 1.05. (The first time step is 0.19 days.)180

After solving groundwater flow, the piezometric heads at the 25 points shown in Figure181

5 are recorded and saved for all time steps. The data from the first 60 time steps (67 days)182

will be used for assimilation by the EnKF. No facies data, or log-conductivity data are used.183

Both the UPF and the CPF begin with an ensemble of realizations that will be progres-184

sively updated by ensemble Kalman filtering after observations are taken at each time step.185

In this work, we generate 800 realizations, using the same two-step approach as for creating186

the synthetic aquifer, that is, we use the same training image for the facies realizations by187

MPS and the same parameters of Table 1 to fill in the facies with log-conductivities. These188

realizations are unconditional since no data on facies or log-conductivity are available.189

For the purpose of applying the UPF method, we have recorded the uniform random190

numbers used for the generation of the fields; then, these uniform random numbers are191

transformed into Gaussian deviates using the inverse of the standard Gaussian distribution.192

The UPF starts from this ensemble of realizations of Gaussian deviates (see Figure 1).193

For the purpose of applying the CPF method, we have computed, at each node, the local194

conditional distribution function, which, for this case, since the realizations are uncondi-195

tional, coincides with the one derived from the global histogram of the reference (see Figure196

4b).197

Next, we evaluate the ability of both methods to reproduce the patterns observed in the198
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synthetic aquifer after assimilating the piezometric heads for the first 60 time steps. We will199

also evaluate the ability of both methods to reproduce the observed piezometric heads.200

4. Reproducing log-conductivity201

Figure 6 shows the ensemble mean and the ensemble variance of the initial ensemble of202

log-conductivity realizations used in both approaches, together with the global histogram.203

The 800 realizations were generated unconditional and, consequently, their ensemble mean204

and ensemble variance are flat and equal to their marginal values.205

Figures 7 shows the ensemble mean, ensemble variance and global histograms computed206

for both methods after assimilating piezometric head data for 10 time steps. Figure 8207

shows similar results after 60 time steps. From these two figures it is evident that the208

CPF outperforms the UPF. The ensemble mean of the log-conductivities obtained by the209

CPF already delineates the channels observed in the synthetic aquifer, and the ensemble210

variance highlights that there is some residual uncertainty at the channel edges. Whereas211

the ensemble mean and variance of the log-conductivities obtained by the UPF are a little212

bit more informative than the mean and variance for the initial ensemble, yet, they are quite213

far from the results achieved by the CPF.214

Notice that the bimodal histogram of the log-conductivities is respected by the ensemble215

of updated realizations in both methods. In the case of the UPF this happens by construc-216

tion, since, independently of the updated probabilities resulting from the application of the217

EnKF, the associated log-conductivities are fully consistent with the prior statistical model218

since they are obtained by MPS followed by SGS with fixed training image and statistical219

parameters. In the case of the CPF it depends on the histogram of the probabilities, when220

this histogram remains uniform; then, sampling back the local conditional distributions will221

result in a global histogram respecting the prior one.222

To try to explain why the dramatic difference in performance we will show the evolution223
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of realizations number 400 and 800 at different times during the assimilation process. Figures224

9 and 10 show these two realizations at the beginning (same realization for both approaches)225

and after time steps 9, 10, 59 and 60. The objective of this display is to show the changes226

that can occur in a single update step (between time steps 9 and 10 or between time steps 59227

and 60) and the overall evolution. In the UPF, the changes between consecutive time steps228

can be quite drastic, given the nature of the sequential simulation algorithms, in which each229

node is simulated based on the previously simulated nodes; however, since each realization230

is obtained by MPS and SGS, the delineation of the facies (as in the training image) is231

quite clear at all steps. In the CPF, the changes between consecutive time steps are quite232

smooth, the EnKF updates smoothly the probabilities, and when reading back the updated233

probabilities through the local distribution functions the changes are smooth, too; however,234

the controls that generated the facies in the initial realizations disappear, and the delineation235

of the facies becomes fuzzier than in the UPF, yet the look of the final updated realizations236

obtained with the CPF is closer to the reference than with the UPF.237

It is interesting to analyze how the update in the log-conductivity field relates to the238

update of the underlying probability fields. Figure 11 shows the update of the underlying239

Gaussian deviates at time steps 10 and 60 as computed by the EnKF in realization 400240

for both methods. In the case of the UPF, there are three Gaussian deviate fields, we241

are showing only the field that is used to update the facies distribution. Similar results are242

shown for realization 800 in Figure 12. The update is the result of the product of the Kalman243

gain by the discrepancy between predicted and observed piezometric heads. In the UPF,244

the updates of the Gaussian deviates are very local and short correlated, as a result of the245

very weak correlation between the uncorrelated probability fields and the piezometric heads;246

however, this local, random looking update of the probabilities produces quite important247

changes in the facies. Figure 13 shows the facies change in realizations 400 and 800 at time248

steps 10 and 60. Apparently, similar random updates of the Gaussian deviates induce quite249
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different updates in the facies realization for realizations 400 and 800. This “discrepancy”250

between the Gaussian update and the facies update is due to the nature of the MPS and251

SGS sequential simulation algorithms, which can be regarded as chaotic. On the contrary,252

in the CPF, the updates in the Gaussian deviates are smoother than in the previous method253

and their magnitude reduce significantly as time proceeds. This reduction in the magnitude254

of the updates is the result of the piezometric head assimilation which in turn reduces the255

ensemble variance.256

To illustrate what we mean by chaotic behavior in the sequential simulation algorithms257

consider two probability fields that are identical except for one pixel. Each probability258

field will have a conductivity realization associated. If this pixel is at the beginning of the259

random path used to generate the realizations, the change in hydraulic conductivity at that260

location will induce changes in the nearby locations, since all conditional probabilities will be261

influenced by this initial change. However, if the pixel at which the probability fields differ262

is the last in the simulation path, only the conductivity at that location will be different263

between the two conductivity fields. This is shown in Figure 14264

5. Reproducing piezometric head265

Figure 15 shows the piezometric head evolution at piezometers #1 and #2 of Figure 5266

computed on the initial set of realizations. As expected, and given that the initial realizations267

are unconditional, their response to the groundwater flow conditions in the synthetic aquifer268

is quite variable among the realizations.269

Figure 16 shows the piezometric head evolution at the same piezometers for the two270

methods after 60 assimilation time steps. The UPF shows a minor improvement with respect271

to the initial realizations, whereas the CPF is able to generate log-conductivity realizations272

capable of matching almost perfectly the observed piezometric heads.273

Again, the behavior of the UPF must be attributed to the weak correlation between the274
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Gaussian deviates and the piezometric heads in the UPF, plus the chaotic behavior of the275

sequential simulation algorithms: a small change in a single probability value could induce276

a very large change in the final log-conductivity map, particularly if this change happens in277

a node that is generated early in the path that visits all nodes being simulated.278

6. Discussion279

The idea of mapping the conductivities onto probabilities was not new, but choosing as280

probabilities the ones used in the sequential simulation algorithm to draw from the local281

distribution functions conditioned to all previously simulated values was certainly a new282

idea. By modifying these probability fields and using them in a multiple-point geostatistical283

simulation, we can assure that the final realizations will always be coherent with the training284

image chosen. Therefore, it seemed a good idea to try to update the probability fields, instead285

of the conductivities directly in the context of the EnKF, in order to apply the EnKF to the286

generation of clearly non-Gaussian realizations. However, as it has been shown, the method287

has definite flaws linked precisely to the mapping procedure: on one hand, the probabilities288

are spatially uncorrelated and display a weak correlation with the state variables, on the289

other hand, the transformation of the perturbation of the probabilities onto perturbations of290

conductivities is chaotic, with small probability perturbations possibly inducing very large291

and widespread perturbations in conductivity.292

Revisiting the probability field approach, which is based also in the mapping of conduc-293

tivities onto probabilities, and formulating the EnKF method in terms of these probabilities,294

proves to be a powerful approach to generate conductivity realizations which display features295

difficult to model with multiGaussian-based approaches. This is an approach that should be296

reconsidered for data assimilation in hydrogeology and petroleum engineering.297
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Capilla, J.E., Rodrigo, J., Gómez-Hernández, J.J., 1999. Simulation of non-Gaussian trans-313

missivity fields honoring piezometric data and integrating soft and secondary information.314

Mathematical Geology 31, 907–927.315

Chen, Y., Oliver, D., Zhang, D., 2009. Data assimilation for nonlinear problems by ensemble316

kalman filter with reparameterization. Journal of Petroleum Science and Engineering 66,317

1–14.318

Chen, Y., Zhang, D., 2006. Data assimilation for transient flow in geologic formations via319

ensemble kalman filter. Advances in Water Resources 29, 1107–1122.320

14



Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model321

using monte carlo methods to forecast error statistics. J. Geophys. Res 99, 143–10.322

Evensen, G., 2003. The ensemble kalman filter: Theoretical formulation and practical im-323

plementation. Ocean dynamics 53, 343–367.324

Franssen, H., Kinzelbach, W., 2008. Real-time groundwater flow modeling with the ensemble325

kalman filter: Joint estimation of states and parameters and the filter inbreeding problem.326

Water Resources Research 44, W09408.327

Froidevaux, R., 1993. Probability field simulation, in: Geostatistics Troia 92. Springer, pp.328

73–83.329
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Table 1: Parameters of the random functions describing the spatial continuity of the sand and shale log-
conductivities

Facies Proportion Mean Std.dev Variogram λx λy sill
[ln [m/d]] [ln [m/d]] type [m] [m]

Sand 0.35 2.3 1.0 exponential 48 24 1
Shale 0.65 -3.5 0.6 exponential 24 24 0.35

Figure 1: Work flow for the Unconditional Probability Field method. The starting step is highlighted in
bold.
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Figure 2: Work flow for the Conditional Probability Field method. The starting step is highlighted in bold.
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Figure 4: Synthetic aquifer and log-conductivity histogram

18



#1

#2

 Easting

N
o

rt
h

in
g

0
0

50.00

5
0

.0
0

Distribution of wells

Figure 5: Distribution of observation piezometers

a

mean_t0 (lnK)

Easting

N
or

th
in

g

.0 50.000
.0

50.000

-5.000

-4.000

-3.000

-2.000

-1.000

.0

1.000

2.000

3.000

4.000

5.000

b

variance_t0 (lnK)

Easting

N
or

th
in

g

.0 50.000
.0

50.000

.0

1.000

2.000

3.000

4.000

5.000

c

F
re

qu
en

cy

attr

-10.0 -5.0 0.0 5.0 10.0

0.000

0.050

0.100

0.150

0.200 t0
Number of Data 2000000

mean -1.5
std. dev. 2.9

coef. of var undefined

maximum 6.9
upper quartile 1.8

median -3.1
lower quartile -3.7

minimum -6.7

Figure 6: Ensemble mean, ensemble variance and ensemble histogram of the initial ensemble of log-
conductivity realizations.
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Figure 7: Ensemble mean, ensemble variance and ensemble histogram of the log-conductivity realizations
obtained after 10 assimilation time steps. Left column, uncorrelated probability fields (S1). Right column,
correlated ones (S2).
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Figure 8: Ensemble mean, ensemble variance and ensemble histogram of the log-conductivity realizations
obtained after 60 assimilation time steps. Left column, uncorrelated probability fields (S1). Right column,
correlated ones (S2).
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Figure 9: Evolution of the 400th realization in both methods. Top row, uncorrelated probabilities (S1);
bottom row, correlated probabilities (S2). Columnwise from left to right, initial realization (same for both
approaches), after time step 9, 10, 59 and 60.
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Figure 10: Evolution of the 800th realization in both methods. Top row, uncorrelated probabilities (S1);
bottom row, correlated probabilities (S2). Columnwise from left to right, initial realization (same for both
approaches), after time step 9, 10, 59 and 60.
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Figure 11: Increment of Gaussian deviates in realization 400. Top row, uncorrelated probabilities (S1);
bottom row, correlated probabilities (S2). Left column, update at the 10th step; right column, update at
the 60th step.
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Figure 12: Increment of Gaussian deviates in realization 800. Top row, uncorrelated probabilities (S1);
bottom row, correlated probabilities (S2). Left column, update at the 10th step; right column, update at
the 60th step.
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Figure 13: Faces changes induced by updating the probabilities in the uncorrelated probability field method.
Blue means change from sand to shale, red means change from shale to sand, and green means no change.
Right column for the updates at time step 10, left column for the updates at time step 60, top row for
realization 400, bottom row for realization 800.
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Figure 14: Change in lnK between two realizations generated by sequential Gaussian simulation using
exactly the same parameters except for one of the probabilities used to draw from the local conditional
distributions. Left: when the probability changes at the first node of the random path. Right: when the
probability changes at the last node of the random path.
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Figure 15: Reproduction of the observed piezometric head at the piezometers #1 and #2 of Figure 5 by
the log-conductivity fields obtained after 60 time steps. Left, piezometer #1; right, piezometer #2. The red
squares correspond to the head evolution in the synthetic aquifer, the gray lines are the head evolution in
the individual realizations, and the green triangles correspond to the ensemble mean.
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Figure 16: Reproduction of the observed piezometric head at the piezometers #1 and #2 of Figure 5 by the
log-conductivity fields obtained after 60 time steps for both methods. Top row, uncorrelated probability field
method (S1); bottom row, correlated probability field method (S2). Left, piezometer #1; right, piezometer
#2. Meaning of lines same as previous figure.
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