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Abstract

For good groundwater flow and solute transport numerical modeling, it is important to characterize the

formation properties. In this paper, we analyze the performance and important implementation details of

a new approach for stochastic inverse modeling called inverse sequential simulation (iSS). This approach

is capable of characterizing conductivity fields with heterogeneity patterns difficult to capture by standard

multiGaussian-based inverse approaches. The method is based on the multivariate sequential simulation

principle, but the covariances and cross-covariances used to compute the local conditional probability dis-

tributions are computed by simple co-kriging are derived from an ensemble of conductivity and piezometric

head fields, in a similar manner as the experimental covariances are computed in ensemble Kalman filtering.

A sensitivity analysis is performed on a synthetic aquifer regarding the number of members of the ensemble

of realizations, the number of conditioning data, the number of piezometers at which piezometric heads are

observed, and the number of nodes retained within the search neighborhood at the moment of computing

the local conditional probabilities. The results show the importance of having a sufficiently large number of

all of the mentioned parameters for the algorithm to characterize properly hydraulic conductivity fields with

clear non-multiGaussian features.

Keywords: Inverse modeling; normal-score transform; non-Gaussianity; simple co-kriging; data

assimilation; non-stationary covariance

1. Introduction1

In groundwater flow and mass transport the characterization of the formation properties is important if2

we wish predict the state of the aquifer, i.e., the spatiotemporal distributions of piezometric heads and solute3

concentrations. This characterization is generally made on the basis of a few direct (hard) measurements of4
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the parameters that control the aquifer state, such as hydraulic conductivities and porosities, some indirect5

(soft) measurements, such as those derived from geophysical surveys, and a few observation of the state of6

the aquifer, such as piezometric heads.7

Incorporating the state observations to characterize the parameters of the system is the object of inverse8

modeling, and it is a powerful but difficult task that has been the subject of extensive research during the9

last decades. See the work by Zhou et al. [1] for a recent review on inverse methods in hydrogeology.10

Many inverse modeling approaches have been developed. Just to name a few, there are the gradual11

deformation method, the sequential self-calibration, variants of the Markov chain Monte Carlo method, the12

representer method, the pilot points method, ... [e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].13

Besides the above mentioned methods, the ensemble Kalman filter (EnKF) [14] is the method that has14

attracted most attention recently. Although not an inverse method by conception, the inclusion of the15

parameters governing the state equation as part of an extended state vector, has turned the EnKF in the16

most favored inverse method nowadays [15, 16]. The EnKF is well known for its flexibility to be applied to17

virtually any inverse problem, for its simple implementation and usage, and for its efficiency in producing18

realizations of the geological parameters that are consistent with the observed state variable data.19

None of the above mentioned methods has been able to address the problem of characterizing conductivity20

fields with clear non-multiGaussian features, including the EnKF [e.g., 17, 18]. The main reason why the21

EnKF fails for non-multiGaussian fields is that it is optimal only for multiGaussian variates and linear state-22

transfer functions [19]. For this reason, nowadays, the main focus of inverse modeling, at least in the fields23

of hydrogeology and petroleum engineering, is on how to reproduce non-multiGaussian patterns.24

Outside of the inverse modeling realm, the development of the single normal-equation simulation [20, 21]25

has solved the problem of incorporating hard and soft data for the characterization of spatial patterns using26

statistics higher than order two, and thus, the inclusion of the spatial features that cannot be characterized27

simply by a covariance function. The algorithms that are capable to account for statistics higher-than-28

order-two are broadly termed as multiple-point statistics (MPS). They rely on the existence of a training29

image exhibiting the types of patterns to be present in the final models, from which to infer the higher-order30

statistics. Some available algorithms and codes are SNESIM [22], FILTERSIM [23], SIMPAT [24] , DS [25],31

EnPAT [26], and others [e.g., 27, 28, 29, 30, 31]. But these algorithms were not devised for inverse modeling;32

therefore, they cannot incorporate state variable information.33

There have been some attempts to combine MPS and inverse modeling: Hu et al. [32] used, with mod-34

erate success, the realizations of uncorrelated random numbers needed for the drawing of the conductivity35
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value from the local distribution function on the sequential simulation implementation of the single normal36

equations as the state variables to be updated during the analysis step if the EnKF; Zhou et al. [27], Li et al.37

[26] developed a new MPS algorithm (termed EnPAT) which blends direct simulation [25] and the EnKF to38

generate inverse conditional realizations of conductivity in channelized bimodal aquifers; EnPAT works well,39

but it is still very CPU-time consuming.40

Some authors are against the use of MPS arguing that MPS is too dependent on the choice of the41

parameters controlling the algorithm [33]. Other approaches to address the issue of non-multiGaussianity42

in inverse modeling include the works by Sun et al. [17], who combined the EnKF with a Gaussian mixture43

model, or by Liu and Oliver [34], Gu and Oliver [35], Franssen and Kinzelbach [36] who use an iterative44

EnKF; plus a set of works who combine the normal-score transform (sometimes referred as anamorphosis)45

and the EnKF [e.g., 18, 37, 38, 39, 40, 41, 42, 43, 44]. None of these methods can be considered as the46

definite solution of inverse modeling for conductivity fields that display non-multiGaussian features.47

In this paper we describe a new method for inverse stochastic modeling applicable for non-multiGaussian48

fields. We have called this method inverse sequential simulation, and it is inspired on the standard multivari-49

ate sequential simulation algorithm [45, 46] with normal-score transforms [47] and the Monte Carlo concept50

of the EnKF. The paper describes the algorithm and its implementation, and then performs a sensitivity51

analysis of the key parameters controlling the algorithm; the paper ends with a post-audit of the generated52

ensemble of realizations to check how they would perform in a solute transport prediction exercise. The53

algorithm has been benchmarked against the normal-score ensemble Kalman filter, with excellent results, in54

the paper by Xu and Gómez-Hernández [48]; therefore, this paper will not focus on a comparison with other55

methods, but on the implementation and performance of the algorithm.56

2. Methodology57

The key idea of inverse sequential simulation (iSS) is to use multivariate multi-Gaussian sequential58

simulation [45] to generate realizations of normal scores of conductivity, conditioned on conductivity and59

observed head data. The main difference with standard sequential simulation is that the method does not60

use an analytical, stationary model for the auto- and cross-covariances, but rather, as in the EnKF, non-61

stationary auto- and cross-covariances are derived from an ensemble of conductivity realizations and their62

associated piezometric heads (obtained by solving a groundwater flow model).63

Before describing the whole algorithm, recall the main steps in any sequential simulation algorithm:64

1. Define a random path to visit all nodes of the grid on which the realization will be generated.65
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2. Visit the random path sequentially.66

(a) At each node, collect the conditioning data for all variables (in our case, we will have two variables:67

conductivity and piezometric heads) within a user-defined search neighborhood centered at the68

point to simulate (the size and orientation of the search neighborhood, and the number of data69

of each variable to keep within it are parameters that must be specified by the user).70

(b) Compute the local conditional distribution function. If we adopt a multivariate multiGaussian71

random function model, the local conditional distribution is a Gaussian distribution with mean72

and variance given by the simple co-kriging estimate and the simple co-kriging variance.73

(c) Draw, randomly, a value from the local conditional distribution function.74

(d) Include the simulated value in the set of conditioning data for the simulation of the next nodes75

and move to the next node.76

Our proposal is to use this algorithm to generate conductivity fields conditioned to piezometric heads.77

For this purpose we need the auto-covariances of both conductivity and head, and their cross-covariance.78

These covariances, particularly the ones involving the piezometric heads, but also the conductivity auto-79

covariance when there are conditioning conductivity data, are clearly non-stationary. Some authors have80

developed analytical expressions relating these covariances by approximating the solution of the groundwater81

flow equation [e.g., 49]. We propose to use experimentally-derived covariances obtained from an ensemble of82

realizations, much like it is done in the EnKF.83

At any time t, we could derive all necessary covariances experimentally as follows:84

1. Generate an ensemble of Ne realizations of conductivity. Each realization contains N nodes. Ki(j)85

refers to the conductivity value at realization i and node j.86

2. Given initial and boundary conditions, sources and sinks, solve the groundwater flow equation Eq.(1)[50]87

for each realization until time t and obtain an ensemble of piezometric heads.88

Ss
∂H

∂t
−∇ · (K∇H) = W, (1)

where Ss is specific storage coefficient [L−1], H is the hydraulic head [L], K is the hydraulic conductivity89

[LT−1], W denotes sources and sinks per unit volume [T−1]; t is the time [T ], ∇· is the divergence90

operator, and ∇ is the gradient operator.91

3. The cross-covariance between conductivity K at location j and piezometric head H at location l is92
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given by93

CK,H(j, l) =
1

Ne

Ne∑
i=1

(Ki(j)−K(j))(Hi(l)−H(l)), (2)

where the overbar indicates ensemble average, i.e.,94

K(j)) =
1

Ne

Ne∑
i=1

Ki(j). (3)

The auto-covariances for heads and conductivities are computed similarly.95

In addition, since we are planning to work with multiGaussian sequential simulation, it is more convenient96

to work with the normal-score transform [47] of the variable of interest, in our case conductivity. Therefore,97

the sequential simulation algorithm is performed on a new variable K̃ which is obtained by the normal-score98

transform of K according to the following expression:99

K̃i(j) = G−1(Fj(Ki(j))) (4)

where Fj(Ki(j)) is the local cumulative distribution at node j computed (numerically) from the Ne conduc-100

tivity values of all realizations at node j, and G(·) is the standard Gaussian cumulative distribution function.101

Auto-covariances and cross-covariances are computed, as described above, for the normal-score transformed102

conductivities, not for the untransformed ones as in the description. These covariances will be different from103

the ones corresponding to the untransformed conductivity.104

Once the normal-scores are generated, they are transformed back to conductivity space for the solution105

of the groundwater flow equation using the inverse expression:106

Ki(j) = F−1
j (G(K̃i(j))). (5)

Using the cross-covariances to generate normal-score transformed conductivities conditioned on piezomet-107

ric heads is equivalent to imposing the linear relationship between normal-score transformed conductivities108

and heads as given by the linear approximation of a Taylor expansion of the equation relating both variables109

[51]. (This equation will be a convolution of the groundwater flow equation and the direct and inverse110

normal-score transform functions, see [43].) The generated fields will honor the linear part of the Taylor111

expansion, but if the equation is highly non-linear, the resulting conductivity fields may not honor the full112

state equation, that is, the solution of the state equation using the conditioned conductivity fields may not113
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reproduce the conditioning piezometric heads. In order for the conductivity fields to be truly conditional114

to the piezometric heads, in the sense that the solution of the groundwater flow equation matches them,115

we must proceed iteratively and use piezometric head measurements at multiple time steps. This is an116

iterative approach akin the iterative approximation of the minimum of a non-linear function by successive117

linearizations.118

Under these considerations, the iSS algorithm consists of the following steps:119

1. Define the parameters controlling the sequential simulation: search neighborhood, maximum number120

of conditioning points to retain within the search neighborhood, and number of realizations to generate.121

2. Define other variables controlling the groundwater flow simulation: initial conditions, boundary con-122

ditions, sources and sinks.123

3. Generate an initial ensemble of conductivity fields conditioned to measured conductivity data, if any.124

This ensemble contains Ne realizations discretized into N nodes. Any stochastic simulation technique125

can be used to initialize this ensemble, whether multiGaussian-based or not. (In the example be-126

low we will use a hybrid of multiple-point simulation and Gaussian sequential simulation to generate127

realizations with channel-like patterns of sand and shale.)128

4. Begin iteration in time.129

(a) Solve, for each conductivity realization, the transient groundwater flow equation from the previous130

time until time t. The result is an ensemble of piezometric heads H.131

(b) Normal-score transform the conductivity realizations.132

(c) Compute the auto- and cross-covariances of K̃ and H(t).133

(d) Collect measured piezometric heads at the observation locations. These values will be used as134

conditioning data.135

(e) Generate a new ensemble of normal-score conductivity fields by multivariate multiGaussian se-136

quential simulation using both normal-score transformed conductivity and piezometric head as137

conditioning data. (To account for either conductivity or piezometric head measurement errors,138

add some error to each measurement for each realization according to a specified (multi-)variate139

error distribution before using it for conditioning.)140

(f) Back-transform the normal-score conductivities into conductivities and move on to the next time141

step.142

After each time iteration, a new set of conductivity fields results, which is used to forecast the piezometric143

heads to the next time. It is important to notice that after each iteration, the new set of conductivity fields will144
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have a different statistical structure than the previous one, that is, different local cumulative distributions,145

different ensemble mean, different ensemble variance, different covariance, and different cross-covariance with146

the piezometric heads as a result of the conditioning effect in the sequential simulation step. For those readers147

familiar with the EnKF, there is a fundamental difference in that iSS builds from scratch the new ensemble148

of conductivities at each time step, whereas in the EnKF, each realization of the ensemble is updated, at149

each time step, by adding to it a smooth perturbation computed by simple co-kriging.150

This iterative refinement of the conductivity spatial random function (as given by the ensemble of realiza-151

tions) results in a final random function that characterizes much better the spatial patterns of conductivity152

than the initial one. The final random function is truly conditional to the piezometric heads, as it will be153

shown in the next example.154

3. Synthetic Example155

We wish to test the performance of the iSS algorithm in an aquifer with spatial heterogeneity that is not156

suited for modeling with a multiGaussian random function. The reference field must have bimodal marginal157

histogram of logconductivities, and conductivities must show strong connectivity for the high values. It is158

well known that these two aspects are difficult to handle by a multiGaussian random function model [52, 53].159

We use as reference a synthetic confined aquifer composed of sand and shale. The aquifer occupies an160

area of 50 m by 50 m by 5 m and it is discretized into a grid of 50 by 50 by 1 cells. The proportion of sand161

is 0.35, and thus the proportion of shale is 0.65. We impose that the facies spatial distribution be consistent162

with the channelized training image of Figure 1 taken from Strebelle [22]. (Note that the training image163

extends over a much larger area than the aquifer.)164

The synthetic aquifer is built in two steps. In the first step a binary sand/shale realization is generated165

using the training image in Figure 1 and eight conditioning points distributed as shown in Figure 2. The166

code used in this first step is SNESIM [22]. In the second step, the facies are populated with log-conductivity167

values generated, independently and unconditionally, by sequential Gaussian simulation. The code used in168

this second step is GCOSIM3D [45]. The parameters used for the generation within each facies are listed169

in Table 1. The resulting field is shown in Figure 3, where the channelized structure is clearly seen. The170

histogram of log-conductivities in the reference aquifer is shown in Figure 4, it displays two modes at 3.5171

ln(m/d) and -2.5 ln(m/d), its global mean is -0.9 ln(m/d) and its global standard deviation is 2.9 ln(m/d).172

Groundwater flow is solved in the aquifer assuming no flow boundary conditions, an initial head set at 8173

m everywhere, two injection wells (coinciding with the two facies data in the sand facies along the west side174
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of the aquifer) injecting 16 m3/d (top one) and 15 m3/d (bottom one), and three pumping wells (coinciding175

with the three facies data in the sand facies along the east side of the aquifer) pumping 7.5 m3/d, 7.5 m3/d176

(top two ones) and 14.5 m3/d (bottom one). The aquifer specific storage is homogeneous and equal to 0.03177

m−1. (See Figure 3 for the location of the facies conditioning data)178

The transient groundwater flow simulator MODFLOW [e.g., 54, 55] is used to solve the transient ground-179

water flow equation for a period of 500 days. The time span is discretized into 100 time steps whose length180

follows a geometric series of ratio 1.02. (The first time step results in 1.6 days.)181

The piezometric heads are sampled at each time step at the locations indicated below, these observa-182

tions will be used for conditioning during the first 50 time steps (135.4 days) and then used for validation183

afterwards. We assume an uncorrelated Gaussian measurement error with zero mean and 0.01 m standard184

deviation.185

We have designed six scenarios to make a sensitivity analysis to several parameters. These scenarios186

are described in Table 2. The scenarios differ between them in the number of conditioning facies data, in187

the number of realizations in the ensemble, in the maximum number of conditioning data retained in the188

sequential simulation step for the computation of the local conditional distribution function, and in the189

number of piezometers at which piezometric head is observed.190

The procedure to generate the initial set of realizations for all six scenarios is the same one used to191

generate the reference field. They only differ in the number of facies conditional data; please note that there192

are no conductivity conditioning data, only the facies is used to condition the realization, this amounts to193

assume that there is a conductivity observation error equivalent to the variance of the conductivity within194

each facies. Scenario S2 has no conditioning data, scenarios S1, S4, S5 and S6 use the same 8 conditioning195

data employed to generate the reference field (see Figure 2), and scenario S3 uses 8 additional conditioning196

data sampled from the reference field. The location and values of these 16 data can be seen in Figure 5.197

It is debatable whether we should use the same random function model for the generation of the initial198

realizations that we used to generate the reference field (in this case the same training image for the facies and199

the same multivariate distributions for the sand and shale conductivities). However, for the purpose of this200

paper, which is to analyze the sensitivity of the iSS to different parameters that can affect its performance, to201

include uncertainty in the random function model would have masked the conclusions about the sensitivity202

of the algorithm to the parameters under consideration. It is left for another study to check the capability203

of the algorithm to correct and compensate the erroneous specification of the initial random function. (As204

already mentioned, the random function model of the ensemble of realizations evolves as new piezometric205
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head data are included, and therefore, it is possible that if enough piezometric head data are available the206

method may correct an initial misspecification of the random function model similarly as it happens with207

the NS-EnKF [56].)208

All scenarios use 25 piezometers for the observation of the piezometric head, except for scenario S5 that209

uses only 16. The location of these piezometers is shown in Figure 6. This figure also shows the locations of210

the two piezometers used to illustrate the performance of the method (labeled #6 and #7).211

4. Analysis212

We have generated six sets of conductivity realizations according to the parameters in Table 2, next we213

are going to analyze up to which point they are truly conditional on the piezometric heads in the sense that214

observations are matched by groundwater flow predictions. Then, we will analyze the different sets against215

the reference field to check how close these realizations fluctuate about the reference field and how large216

these fluctuations are. Finally, we will carry out a solute transport exercise to verify how the final fields217

perform in reproducing information that has not been used in the conditioning process.218

And finally, we will perform a post-audit analysis to check how these sets of realizations will perform219

under completely different conditions, more precisely, how these realizations will reproduce solute transport220

as observed in the reference field.221

4.1. Conditioning to heads222

Figure 7 shows the piezometric heads evolution at piezometers #6 and #7 of Figure 6 on the initial sets223

of realizations, that is, those realizations that have been generated only conditional on facies data, since no224

piezometric head information has been used yet. As expected, the scatter of the piezometric heads is very225

wide. Figure 8 shows the same results after having conditioned to piezometric heads in the first 50 time226

steps (up to the vertical dashed line). Recall that this means that for each scenario 50 sets of realizations227

have been generated, one for each time step based on the auto- and cross-covariances computed on the set228

of realizations from the previous time step. The results are quite convincing with regard to the objective229

of iSS: the generation of realizations that match the observed piezometric heads. Comparing with Figure 7,230

the reduction of the spread is remarkable. Comparing among the graphs in Figure 8 we can appreciate that231

the conditioning is not equally good for all scenarios or both piezometers. It is clear that the best results are232

obtained for the set of realizations with the largest ensemble size and the largest values for all parameters233

(S3). Using the results for scenario S1 as benchmark we can also conclude that reducing the number of234
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conditioning nodes to be retained within the search neighborhood during the sequential simulation step also235

reduces the quality of the conditioning to head observations. Finally, we can comment that the apparent236

improvement noticeable for the case with the smaller ensemble is at the cost of a large bias with respect to237

the reference field, as we will discuss later.238

As it has already been mentioned, the set of realizations improves as time passes and new piezometric239

head data are collected. This can be appreciated in Figure 9 where the piezometric heads predicted at240

piezometers #6 and #7 with the ensembles of realizations generated at time zero, those generated after 10241

time steps and those generated after 50 time steps are shown.242

4.2. Reproduction of conductivities243

From the previous section it is apparent that the final realizations are coherent, from a groundwater244

flow perspective, with the observed piezometric heads. The question now is how well they approximate the245

underlying hydraulic conductivity distribution.246

Figure 10 shows the ensemble mean and ensemble variance computed locally through the initial ensembles247

of realizations for the different scenarios. Recall that all sets of initial realizations are generated with the248

hybrid method used to generate the reference field, that is, it combines multipoint geostatistics and Gaussian249

sequential simulation. Scenario S2 is unconditional, as a consequence the ensemble mean and variance are250

uniform and equal to the global mean and variance: even if each realization displays channel patterns as251

in the training image, the fact that no realization has information about the channel locations renders252

realizations that, in average, are uninformative. Scenario S1 uses five conditioning points in sand close to253

the two vertical boundaries (where injection and production wells are placed) plus three more in shale in the254

center; we can notice the effect of conditioning locally in the vicinity of the conditioning points, but we are255

still far from identifying the continuous channels present in the reference field. Scenario S6 yields virtually256

the same results as S1 with an ensemble of only 100 realizations. Scenario S3 has double the number of257

conditioning points well spread over all the aquifer producing realizations that, in average, start to identify258

the channels present in the reference.259

Figure 11 shows the ensemble means and ensemble variances for all six scenarios after conditioning to260

piezometric heads for 50 time steps. As expected, the best results occur for scenario S3, the one with the261

largest amount of conditional information for both facies and piezometric head. It is the only scenario for262

which the ensemble mean captures the three channels and their geometry almost perfectly. Scenario S1 with263

a smaller number of facies conditional data does a good job, too, but introduces a conection between the264

bottom two channels that does not exist in the reference and the edges of the channels are not as well defined265
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as in S3. Scenario S6, which is the same as S1 but using only 100 realizations yields a channel distribution266

almost identical with S1 but it tends to overestimated the conductivity values, and the channels edges are267

even more noisy. The ensemble variance maps support the findings about the ensemble means. The variance268

for S3 indicates that there is some residual uncertainty in the edges of the channels, but otherwise the269

patterns are well captured in all realizations. This uncertainty about channel edges is larger in S1, for which270

there is also large uncertainty regarding the connection between the two bottom channels. Whereas scenario271

S6 shows an overconfident ensemble variance, with values close to zero almost everywhere. This extreme272

reduction of the ensemble variance is due to an underestimation of the experimental covariance caused by273

the use of a relatively small number of realizations. (This phenomenon is similar to the filter inbreeding274

observable in ensemble Kalman filtering when the ensemble size is small [36].)275

The ensemble means and variances for scenarios S2 and S5 yield the same conclusions, after 50 time276

steps, the smaller number of conditioning data than in S1 (whether facies or piezometers) produces sets of277

realizations that start to delineate loosely the channels but that still display a lot of uncertainty.278

Finally, for implementation purposes, it is very important to retain a sufficiently large number of condi-279

tioning points within the search neighborhood for the algorithm to work. Reducing this number from 24 (for280

S1) to 8 (for S4) results in a mean map that misses the connectivity and a variance map with large values281

everywhere.282

Figure 12 shows the evolution of the ensemble mean and ensemble variance maps for S1 for the initial283

realizations, for those obtained after 10 time steps, and for those obtained after 50 time steps. We can284

appreciate how the channels become better delineated as times passes, and how the ensemble variance285

reduces in the areas in which the mean map coincides with the reference.286

The normal-score transform that is applied to transform the conductivities into Gaussian variates before287

the sequential simulation step of the algorithm is applied ensures that the final sets of conductivities have288

the bimodal characteristics of the reference field, as can be corroborated with the histograms of the final289

realizations displayed in Figure 13. Overall all scenarios show the two modes, with means ranging from290

-0.6 ln(m/s) to 0.8 ln(m/s) (reference -0.9 ln(m/s)) and standard deviations from 2.7 ln(m/s) to 2.9 ln(m/s)291

(reference 2.9 ln(m/s)) with the best reproduction of the reference histograms for those scenarios that we292

have already seen that perform best.293

The normal-score transform is, particularly in this case, a non-linear transformation which not only294

changes explicitly the marginal histograms of the variables involved, but in this case, it also affects, indirectly,295

the connectivity, as it can be seen in Figure 14. It is quite astonishing to compare the two columns of this296
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figure; the mean of the normal-score transforms hardly displays any hint of channeling, and its variance is297

also quite distant in relative values and patterns from the variance map of the transformed log-conductivities.298

This can be explained because the local cumulative distribution functions are different from point to point,299

and because of the conditioning effect of the piezometric heads.300

We can quantify the goodness of the final sets of realizations by computing a single scalar measuring the301

accuracy with which the ensemble average matches the reference field and its precision as measured by the302

ensemble standard deviation. For this purpose, we define two metrics, the root mean square error (RMSE)303

and the average ensemble spread (ES) as:304

RMSE =

√√√√ 1

N

N∑
j=1

(
ln(Kref (j))− ln(K(j))

)2

, (6)

305

ES =

√√√√ 1

N

N∑
j=1

σ2
j , (7)

where N is the number of model elements; ln(K)ref (j) is the value of logconductivity in the reference field306

at node j, ln(K(j)) is the logconductivity ensemble mean at node j; σi is the ensemble variance at node i.307

Figure 15 shows the evolution with time step of both the RMSE and the ES. Regarding the RMSE we308

can notice that, at the 50th time step, the best scenario is S3, as it was appreciated previously, and the309

worst scenario is S4, pinpointing the importance of a good choice of the parameters controlling the sequential310

simulation step. As the number of facies conditioning data reduces, the RMSE increases (see the progression311

from S3 to S1 to S2). The second worst scenario is the one with the reduced number of piezometers used312

for the simulation, indicating the importance of having enough transient piezometric information for the313

algorithm to work. (Something that was also observed by Xu et al. [56] in the context of the normal-score314

ensemble Kalman filter.) Regarding the ensemble spread we notice how it decreases steadily in time for all315

scenarios, indicating a progressively less uncertain set of realizations; although, scenario S6, the one with316

only 100 realizations, shows a too dramatic decrease of the ES, which, in this case, indicates overconfidence317

associated with a high bias, noticeable for the high value of the RMSE. This behavior of S6 is due to an318

underestimation of the experimental covariances, which are computed on a small number of realizations.319

4.3. Postaudit320

We have seen how the iSS is capable of generating ensembles of realizations which are conditioned to both321

conductivity data and piezometric head data. As a final check on the performance of the algorithm we carry322
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out a post-audit of all realizations and solve a solute transport problem, whose information had not been323

used for the generation of the realizations. For this purpose, keeping the same groundwater flow conditions324

as in the rest of the study, we model the release of solute at time zero from the vertical segment labeled325

“particle injection” in Figure 3 and located at x = 2.5 m, and we monitor its arrival at the two control planes326

displayed in the same figure, located at x = 15 m and x = 45 m. The total solute is distributed in 1000327

particles, which are uniformly distributed along the segment and whose movement is tracked in the aquifer328

using the random-walk particle-tracking code RW3D by Fernàndez-Garcia et al. [57]. The solute is assumed329

to be inert, and the porosity of the aquifer is assumed to be uniform and equal to 0.3.330

Figure 16 shows a summary of the breakthrough curves (BTC) at the two control planes as computed in331

the initial sets of realizations used for the different scenarios; it shows, in red, the BTC for the reference field,332

in green the median of the BTCs computed timewise, and in black the 90% confidence interval as delimited333

by the 5% and 95% percentiles. The reference BTC has a very long tail, associated with all those particles334

which are introduced in the shale part of the release segment. Overall the BTCs show a large spread for335

the 90% confidence interval, which, in all cases, encloses the reference BTC. The spread is the smallest for336

scenario S3, what is coherent with the largest number of conditioning facies data used.337

Figure 17 shows a summary of the same BTCs as the previous figure but now computed in the ensembles of338

realizations generated for all scenarios after 50 time steps. The spread of the BTCs has reduced considerably,339

although now some of the scenarios do not produce a 90% confidence interval fully enclosing the reference340

BTC.341

At control plane 1, the one closest to the release segment, scenarios S1, S2, S3 and S4 behave similarly.342

Scenario S5 fails to capture the fast breakthrough of the first 75% of particles, what is related to the low343

conductivity values simulated in the upper right corner (see Figure 11), and which is due to the lowest344

number of conditioning piezometric head data overall, and specifically in the upper part of the aquifer. The345

results for S6 show the overconfident prediction already observed for conductivities (see Figure 11) and the346

bias associated to the highest departure from the reference field as measured by the RMSE.347

At control plane 2 we can see that scenarios S1 and S2 behave similarly and with a good reproduction348

of the reference BTC. It is somehow surprising that scenario S3, which has been the best so far, produces349

BTCs that depart from the reference with a clear arrival in two bursts, a first one, which is faster than the350

reference, and a second one, slower than the reference. At this time we do not have an explanation for this351

behavior in relation with the proposed method. Scenarios S4 and S5 behave similarly (with slower travel352

times for S5) and display a larger spread. Finally, scenario S6 shows again its overconfidence and bias.353

13



Figure 18 shows the evolution of the BTCs for scenario S1 in the initial realizations, in those generated354

after 10 time steps, and in those generated after 50 time steps. As before, we can see the reduction in their355

spread with time as a result of the conditioning to the observed piezometric heads.356

4.4. Discussion357

From the analysis of the results for the different scenarios we can conclude that the iSS is a method358

that can generate non-multiGaussian realizations of conductivity inverse conditioned on piezometric heads,359

that is, to generate conductivity realizations that when used in a groundwater flow model will reproduce the360

observed heads. The method is not based in any optimization but rather in a covariance-based sequential361

simulation paradigm.362

From the different scenarios analyzed we can reach several conclusions, some affect parameters that can363

be decided by the user, and some parameters that are given. The first parameter that the user must define is364

how many realizations to generate: it is important to use a sufficiently large set of realizations to avoid the365

underestimation of the experimental covariances and cross-covariances. In this example 600 realizations were366

enough; 100 realizations resulted in the collapse of the final ensemble about a single realization. The problem367

of underestimation of the experimental covariances is also present in the implementation of the EnKF, and368

there it is solved using techniques of covariance inflation [e.g., 58, 59, 60, 61], those techniques could be a369

solution here, too. The need to compute the non-stationary covariances from an ensemble of realizations370

implies that iSS cannot be used to generate a single conditional realization (as it can be done with standard371

sequential simulation algorithms that use user-defined analytical expressions for the covariances), there is372

always the need to generate a sufficiently large ensemble of realizations.373

The standard sequential simulation algorithm has three key aspects that must be decided by the user,374

which are of importance for the iSS, too: the size and shape of the search neighborhood used for the375

building of the local conditional probability distribution, the maximum number of points (and their spatial376

distribution) to retain within the search neighborhood, and the variables to simulate. Regarding the size377

and shape of the search neighborhood, this is related with the correlation structure of the parameter field,378

in our example, the overall horizontal correlation of conductivity is much larger than the size of the aquifer379

due to the presence of the horizontal channels, while the vertical correlation is smaller. We chose a large380

search neighborhood, of 25 m radius, so that, if centered in the aquifer it covers most of it. Regarding381

the maximum number of points to retain within the search neighborhood, the results show that a large382

number is necessary for a good reproduction of the conductivity patters. We have not restricted their spatial383

disposition and we have chosen always the closest points, but it would be interesting to analyze the impact384
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of distributing these data by quadrants, or by type of conditioning variable. And regarding the variables to385

simulate, we can choose to generate only conductivities conditioned on both conductivities and piezometric386

heads, or to generate both conductivities and piezometric heads simultaneously. If we choose to generate387

only one variable (conductivity) then as the grid is being generated and the number of simulated nodes388

increases, the conditioning data retained within the search neighborhood contains less and less number of389

piezometric heads (since the number of conditioning piezometric heads is only 16 or 25 at all times, while the390

number of conditioning conductivity values reaches 2499 for the simulation of the last node); whereas if we391

generate both variables simultaneously we can argue that the cross-correlation between conductivities and392

piezometric heads are persistent throughout all the simulation since until the simulation of the last nodes393

there will always be data within the search neighborhood of both variables. In this study, we have generated394

only conductivities; however, we have tried the alternative of generating both variables at the same time,395

and although the results are not shown here we can say that they are very similar. Therefore, it is preferable396

to generate only the variable of interest since it is faster.397

There are other inputs that cannot be controlled by the user, such as the number of conductivity and398

piezometric head conditioning data. The previous analysis gives the obvious result that the larger the number399

of conditioning data of either variable, the better the final outcome.400

The method is still in its early development stages and the code used to test it is a suboptimal research401

code; for this reason, it does not make much sense to report CPU times. However, we can make an analysis402

of the algorithm to detect those parts in which iSS will be slower than the EnKF. Both methods are very403

similar in their implementation: an initial ensemble of realizations is generated, heads are forecasted in404

time, and, after observing new piezometric heads, the ensemble of conductivities is modified, in the EnKF405

by updating the fields with a smooth perturbation computed by simple co-kriging, and in the iSS new406

fields are generated conditioned on the newly observed piezometric heads by sequential simulation. In this407

respect, the initial generation of the ensemble of conductivities and the forecast step takes the same time408

for both algorithms. The difference lies in the updating. The EnKF relies in co-kriging, whereas iSS relies409

on sequential simulation. For co-kriging, the only non-stationary cross-covariances needed are between the410

piezometric head observation locations and the conductivities/piezometric heads at all nodes; if there are Nh411

piezometers and N discretization cells, the number of cross-covariance values to computes is 2Nh ×N . For412

sequential simulation, at each node we have to solve a co-kriging equation in which all nodes (and all variables)413

within the search neighborhood may be involved; therefore, for sequential simulation we have to precompute414

the auto- and cross-covariances between each node and all nodes within the search neighborhood; if the search415
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neighborhood contains Nsearch nodes, the number of covariance values to calculate are Nsearch × N , with416

Nsearch generally much larger than Nh. (Do not confuse the number of cells within the search neighborhood417

with the maximum number of conditioning points to be retained to perform kriging, which is always limited418

to a small number.) Therefore, in precomputing the covariances, iSS can be one-order of magnitude slower419

than the EnKF. Then, kriging is always faster than sequential simulation; therefore, the EnKF will be faster420

than iSS in the same proportion as the kriging algorithm chosen is faster than the sequential simulation421

algorithm used.422

Finally, from an implementation point of view, there is a critical parameter that we have not mentioned423

before but which controls the feasibility of the method, which is the variance of an uncorrelated error that424

must be added to the experimental covariances and cross-covariances. It is well known that the experimental425

covariances are not positive definite and, therefore, its direct use in the simple kriging equations to compute426

the kriging mean and kriging variance during the sequential simulation algorithm could yield singular kriging427

matrices or, if the kriging matrix is not singular and the kriging equations can be solved, the resulting kriging428

variance may be negative. To solve this problem we must first yield the experimental covariances positive429

definite. Yao and Journel [62] propose a method based in fast Fourier transforms to solve this problem. A430

less elegant, but simpler approach, is to add a nugget effect (the variance of an uncorrelated error) to the431

computed experimental covariances. In our study we had to add a nugget effect equal to 1% of the total432

variance to the diagonal of the experimental covariance matrices to render them positive definite. This is a433

parameter that must be fine-tuned, searching for the smallest value that will make the sequential simulation434

possible.435
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A., editor. Geostatistics Tróia ’92; vol. 1. Dordrecht: Kluwer Academic Publishers; 1993, p. 85–94.540
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Table 1: Parameters of the random functions describing the spatial continuity of the sand and shale log-conductivities

Facies Proportion Mean Std.dev Variogram λx λy sill
[ln [m/d]] [ln [m/d]] type [m] [m]

Sand 0.35 3.5 1.0 exponential 20 20 1
Shale 0.65 -2.5 0.6 exponential 20 20 0.35

Table 2: Definition of scenarios

Scenario S1 S2 S3 S4 S5 S6
Number of observation piezometers 25 25 25 25 16 25
Number of maximum search nodes 24 24 24 8 24 24
Size of the ensemble of realizations 600 600 600 600 600 100
Number of conditional facies data 8 0 16 8 8 8

Training Image

Easting

N
o
rt
h
in
g

.0 750
.0

750

Shale

Sand

Figure 1: Training image used to generate the ensemble of binary facies realizations
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Figure 7: Evolution of piezometric head at piezometers #6 (top row) and #7 (bottom row) on the initial sets of realizations for
the different scenarios. Scenarios S1, S4 and S5 share the same set of initial realizations (first column), scenarios S2, S3 and S6
are shown in the second, third and fourth columns, respectively. The gray lines correspond to the evolution in each realization.
The red line is the piezometric evolution in the reference, and the green line is the time average of all gray lines. The vertical
dashed lines indicate the end of the conditioning data.
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Figure 8: Evolution of piezometric head at piezometers #6 (top two rows) and #7 (bottom two rows) on the sets of realizations
generated by iSS after conditioning to piezometric heads during the first 50 time steps (vertical dashed line) for the different
scenarios. Meaning of lines is the same as previous figure.
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Figure 9: Evolution of piezometric head at piezometers #6 (top row) and #7 (bottom row) on the sets of realizations generated
by iSS for scenario S1 at three different times: initial, after 10 time steps, and after 50 time steps. Meaning of lines is the same
as previous figure.
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Figure 10: Ensemble mean (top row) and ensemble variance (bottom row) of logconductivity for the sets of initial realizations
for the different scenarios. First column is for scenarios S1, S4 and S5, second column for S2, third column for S3, and fourth
column for S6.
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Figure 11: Ensemble mean (top two rows) and ensemble variance (bottom two rows) of logconductivity for the sets of realizations
for the different scenarios obtained after 50 time steps.

29



S1, S4, S5: mean_t0

Easting

N
or

th
in

g

.0 50.000
.0

50.000

-5.000

-4.000

-3.000

-2.000

-1.000

.0

1.000

2.000

3.000

4.000

5.000

S1: mean_t10

Easting

N
or

th
in

g

.0 50.000
.0

50.000

-5.000

-4.000

-3.000

-2.000

-1.000

.0

1.000

2.000

3.000

4.000

5.000

S1: mean_t50

Easting

N
or

th
in

g

.0 50.000
.0

50.000

-5.000

-4.000

-3.000

-2.000

-1.000

.0

1.000

2.000

3.000

4.000

5.000

S1, S4, S5: variance_t0

Easting

N
or

th
in

g

.0 50.000
.0

50.000

.0

1.000

2.000

3.000

4.000

5.000

S1: variance_t10

Easting

N
or

th
in

g

.0 50.000
.0

50.000

.0

1.000

2.000

3.000

4.000

5.000

S1: variance_t50

Easting

N
or

th
in

g

.0 50.000
.0

50.000

.0

1.000

2.000

3.000

4.000

5.000

Figure 12: Ensemble mean (top row) and ensemble variance (bottom row) of logconductivity for the sets of realizations generated
by iSS for scenario S1 at three different times: initial, after 10 time steps, and after 50 time steps.

F
re

qu
en

cy

attr

-10.0 -5.0 0.0 5.0 10.0

0.000

0.050

0.100

0.150

0.200
S1: t50

Number of Data 1500000

mean 0.3
std. dev. 2.7

coef. of var undefined

maximum 6.5
upper quartile 3.1

median -1.4
lower quartile -2.2

minimum -4.6

F
re

qu
en

cy

attr

-10.0 -5.0 0.0 5.0 10.0

0.000

0.040

0.080

0.120

0.160

S2: t50
Number of Data 1500000

mean 0.4
std. dev. 2.7

coef. of var undefined

maximum 6.4
upper quartile 3.1

median -0.9
lower quartile -2.1

minimum -4.4

F
re

qu
en

cy

attr

-10.0 -5.0 0.0 5.0 10.0

0.000

0.050

0.100

0.150

0.200

S3: t50
Number of Data 1500000

mean -0.6
std. dev. 2.7

coef. of var undefined

maximum 6.2
upper quartile 2.7

median -2.1
lower quartile -2.6

minimum -4.9

F
re

qu
en

cy

attr

-10.0 -5.0 0.0 5.0 10.0

0.000

0.040

0.080

0.120

0.160
S4: t50

Number of Data 1500000

mean 0.8
std. dev. 2.9

coef. of var undefined

maximum 6.8
upper quartile 3.6

median 2.0
lower quartile -2.1

minimum -4.6

F
re

qu
en

cy

attr

-10.0 -5.0 0.0 5.0 10.0

0.000

0.040

0.080

0.120

0.160

S5: t50
Number of Data 1500000

mean 0.0
std. dev. 2.8

coef. of var undefined

maximum 6.3
upper quartile 3.1

median -1.7
lower quartile -2.4

minimum -4.6

F
re

qu
en

cy

attr

-10.0 -5.0 0.0 5.0 10.0

0.000

0.050

0.100

0.150

0.200 S6: t50
Number of Data 250000

mean 0.0
std. dev. 2.7

coef. of var undefined

maximum 5.9
upper quartile 3.0

median -1.7
lower quartile -2.4

minimum -4.5

Figure 13: Histograms of logconductivity for the sets of realizations for the different scenarios obtained after 50 time steps.
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Figure 14: Ensemble mean (top row) and ensemble variance (bottom row) of the ensemble of normal scores of logconductivity as
generated by the sequential simulation algorithm for scenario S1 after 50 time steps, and of the corresponding log-conductivity
fields after backtransforming the normal-scores.
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Figure 15: RMSE and ES of all the scenarios.
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Figure 16: Solute breakthrough curves (BTC) at control planes 1 (top row) and 2 (bottom row) on the initial sets of realizations
used in the different scenarios. The red line is the BTC in the reference, the green line is the median (computed timewise) of
the BTCs from the different realizations, and the two black lines mark the 90% confidence interval bounded by the 5% and
95% percentiles.
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Figure 17: Solute breakthrough curves (BTC) at control planes 1 (top two rows) and 2 (bottom two rows) on the sets of
realizations obtained for the different scenarios generated after 50 time steps. Meaning of lines is the same as in previous figure.

33



Time [day]

N
o

rm
al

iz
ed

C
on

ce
n

tr
at

io
n

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1 S1, S4, S5: t0 (control plane 1)

Time [day]

N
o

rm
al

iz
ed

C
on

ce
n

tr
at

io
n

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1 S1: t10 (control plane 1)

Time [day]

N
o

rm
al

iz
ed

C
on

ce
n

tr
at

io
n

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1 S1: t50 (control plane 1)

Time [day]

N
o

rm
al

iz
ed

C
on

ce
n

tr
at

io
n

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1 S1, S4, S5: t0 (control plane 2)

Time [day]

N
o

rm
al

iz
ed

C
on

ce
n

tr
at

io
n

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1 S1: t10 (control plane 2)

Time [day]

N
o

rm
al

iz
ed

C
on

ce
n

tr
at

io
n

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1 S1: t50 (control plane 2)

Figure 18: Solute breakthrough curves (BTC) at control planes 1 (top row) and 2 (bottom row) for scenario S1 on the initial
set of realizations, those generated after 10 time steps, and those generated after 50 time steps. Meaning of lines is the same
as in previous figure.
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