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Abstract.4

Inverse sequential simulation (iSS) is a new inverse modeling approach for5

the characterization of hydraulic conductivity fields based on sequential sim-6

ulation. It is described and demonstrated in a synthetic aquifer with non-7

Gaussian spatial features, and compared against the normal-score ensemble8

Kalman filter (NS-EnKF). The new approach uses the sequential simulation9

paradigm to generate realizations borrowing from the ensemble Kalman fil-10

ter the idea of using the experimental non-stationary cross-covariance be-11

tween conductivities and piezometric heads computed on an ensemble of re-12

alizations. The resulting approach is fully capable of retrieving the non-Gaussian13

patterns of the reference field after conditioning on the piezometric heads14

with results comparable of those obtained by the NS-EnKF.15
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1. Introduction

The quality of a groundwater model, particularly when studying the fate and trans-16

port of contaminants, relies very much on the quality of the characterization of hydraulic17

conductivities. Many studies have shown that, unless the heterogeneity of hydraulic con-18

ductivity is well captured in the groundwater model, the resulting transport predictions19

could be totally wrong [Sudicky , 1986; Gómez-Hernández and Wen, 1994; Eggleston and20

Rojstaczer , 1998; Li et al., 2012]; for instance, Gómez-Hernández and Wen [1994] show the21

high impact that not properly accounting for heterogeneity has in transport predictions.22

But not only it is important to account for heterogeneity, as important is using the most23

adequate heterogeneity model. For many years, the only model considered for the spatial24

variability of hydraulic conductivity was the mutiGaussian model of log-conductivity, until25

it was recognized that the spatial patterns often observed in the subsurface (i.e., channels,26

permeability barriers, high conductivity streaks) were better modeled using alternatives to27

the multiGaussian model [Wen and Gómez-Hernández , 1998; Fu and Gómez-Hernández ,28

2009; Gómez-Hernández and Wen, 1998], and, in addition, many natural heterogeneity29

patterns are simply unsuitable for a multiGaussian modeling. Since then, there have30

been many attempts to define non-multiGaussian random functions capable of capturing31

the spatial features difficult to capture by the multiGaussian ones, and then, to build32

algorithms for the spatial representation of hydraulic conductivity according to these new33

random function models [Carle and Fogg , 1996; Strebelle, 2002; Mariethoz et al., 2010;34

Haslauer et al., 2012].35
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Probably the most successful approach for the generation of realistic hydraulic conduc-36

tivities is the one based on training images and multiple-point statistics [Guardiano and37

Srivastava, 1993; Strébelle, 2000; Strebelle, 2002]. The next challenge was how to use these38

random functions in inverse modeling, that is, how to generate realizations of hydraulic39

conductivity that not only are consistent with the training image and conditional to the40

local measurements, but also that are inverse conditioned onto observed measurements of41

the state variables, such as piezometric head or solute concentration. Inverse modeling in42

hydrogeology and petroleum engineering has a long tradition (see Zhou et al. [2014] for43

a review) but, again, most inverse models rely on the assumption that hydraulic conduc-44

tivity follows a multiGaussian model. Recent attempts to couple inverse approaches and45

non multiGaussian random functions have been attempted by Sun et al. [2009]; Sarma46

and Chen [2009]; Li et al. [2009]; Alcolea and Renard [2010]; Jafarpour and Khodabakhshi47

[2011]; Hu et al. [2013]; Zhou et al. [2011, 2012a]; Attia and Sandu [2014], among others,48

with different degrees of success. Most of these approaches are extensions of algorithms49

that work for multiGaussian fields.50

In this paper we propose a completely new algorithm that is the result of blending some51

of the ideas underlying multivariate Gaussian sequential simulation [Gómez-Hernández52

and Journel , 1993] and ensemble Kalman filtering [Evensen, 2003]. We have called this53

new algorithm inverse sequential simulation (iSS). The iSS algorithm aims at the char-54

acterization of hydraulic conductivity from observations of hydraulic conductivity and55

piezometric heads, and has been built to work for non-multiGaussian fields. As a bench-56

mark, the algorithm will be compared with the normal-score ensemble Kalman filter57

(NS-EnKF) [Zhou et al., 2011], which is one of the algorithms that best performs for non-58
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multiGaussian inverse modeling. The paper continues with a description of the algorithm,59

followed by the comparison between NS-EnKF and iSS on a synthetic example, and ends60

with some discussion and conclusions.61

2. Methodology

The new algorithm is a breed of sequential simulation and the normal-score ensemble62

Kalman filter. First, we borrow, from the ensemble Kalman filter (EnKF) [van Loon et al.,63

2000; Evensen, 2003; Blöschl et al., 2008; Karri et al., 2014], the idea of using an ensemble64

of realizations to compute an experimental, non-stationary conditional cross-covariance65

between conductivities and piezometric heads, and also experimental non-stationary con-66

ditional auto-covariances of both conductivity and piezometric head. Second, we borrow,67

from the normal-score ensemble Kalman filter [Zhou et al., 2011], the idea of perform-68

ing a normal-score transformation and thus work with a marginally Gaussian multivari-69

ate random function. We are fully aware that a normal-score transformation only pro-70

duces marginally-distributed Gaussian variables, never multiGaussian ones; however, it71

has been shown in the NS-EnKF that this transformation is quite effective in capturing72

non-Gaussian patterns [Zhou et al., 2011, 2012b; Li et al., 2011; Xu et al., 2013]. We do73

not claim that higher-order moments, after the normal-score transform, will correspond74

to those of a multiGaussian distribution; what we claim, based on our experience working75

with the NS-EnKF, is that, when applying a method that is optimal for multiGaussian76

variables to non-multiGussian ones, the results are better if a normal-score transform is77

applied than if not. And third, we use standard multivariate sequential Gaussian con-78

ditional simulation [Gómez-Hernández and Journel , 1993; Friedel and Iwashita, 2013] to79

generate realizations of the normal scores of conductivity conditioned to the normal scores80
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of conductivity and to the piezometric head measurements. The state equation relating81

conductivity and piezometric heads, with its initial conditions, boundary conditions and82

forcing terms, is indirectly included in the sequential simulation through the experimental83

conditional auto- and cross-covariances that are computed on the ensemble of realizations.84

When and if new head measurements are taken, the generated ensemble of conductivity85

realizations are used to forecast an ensemble of head realizations, new experimental co-86

variances are computed, and a new ensemble of conductivity realizations is generated87

conditioned to the new head measurements.88

The iSS method has been developed for its application under transient conditions, with89

a regeneration of the ensemble of conductivity fields each time new piezometric heads are90

measured. Consider that piezometric heads are collected sequentially in time. The method91

starts with an ensemble of conductivity fields generated according to a given random92

function model —for the generation of this initial set no information about piezometric93

heads is used, this initial set should be conditional to conductivity measurements and94

other soft information such as geophysical data, when available. Then, for each time95

step for which piezometric heads are observed, the algorithm carries out the following:96

(i) an ensemble of piezometric head realizations are predicted on the basis of the last97

ensemble of conductivity fields by means of a numerical flow model, (ii) the conductivity98

and head auto- and cross-covariances are computed from the ensemble of realizations —99

these covariances will be non-stationary, (iii) using a sequential multivariate simulation100

algorithm, a new ensemble of conductivity fields conditioned to the conductivity data,101

if any, and to the measured piezometric heads is generated. A flowchart of the iSS is102

included in Figure 1 and its implementation details are explained next:103
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Consider that there are Ne realizations in the ensemble, and that each realization is104

discretized into N nodes.105

1. Initialization step. We need to start from an ensemble of conductivity fields. This106

ensemble should be generated with the algorithm that is most adequate for the type of107

heterogeneity that describes the conductivity spatial variability. This ensemble can be108

made conditional to hard measurements of conductivity, and also to soft measurements109

such as those derived from geophysics. Measurement errors are easily accounted for by110

simply adding a random error (drawn from the measurement error distribution function)111

to each hard measurement prior to using it for the generation of each realization of the112

ensemble. For the purpose of illustration, we choose a formation with channel-like features113

that introduce a high connectivity of the facies in the direction of flow. We select this type114

of heterogeneity because it is well known that it is difficult to capture by multiGaussian-115

based approaches. In our synthetic case, the initial ensemble of realizations is generated in116

two steps. In the first step, an ensemble of binary facies realizations is constructed using117

single normal equation simulation Strébelle [2000] —a very efficient implementation of se-118

quential normal-equation simulation, first developed by Guardiano and Srivastava [1993]119

and improved by Strébelle [2000]. Then, each facies (channel/sand and non-channel/shale)120

is independently populated with log-conductivity values using sequential Gaussian simu-121

lation; the conductivities of each facies have very distinct mean values, ensuring that each122

realization has a clearly bimodal distribution, with the highest-value mode in the channel123

elements and the lowest-value mode in the non-channel elements. The specific parameters124

used for the generation of the initial ensemble of log-conductivities are described in the125

next section. At the end of this step there is an ensemble of hydraulic conductivity fields126
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that will be denoted by K0, with K0
i,j being the conductivity for realization i at node127

j. The superindex is used for the time coordinate and zero indicates that these are the128

initial conductivity estimates. For notation purposes, we will use Ki,· to denote realization129

i of the ensemble, and K·,j to denote the set of Ne conductivity values collected from all130

realizations at node j. During the initialization step it is also necessary to specify the131

initial piezometric heads H0, as well as boundary conditions and forcing terms necessary132

to solve the transient groundwater flow equation.133

2. Forecasting step. In this step, the simulated piezometric heads (Ht+1) are calculated134

for the (t+1)th time step based on the piezometric heads and the hydraulic conductivity135

estimates from the tth time step using a transient flow model:136

H t+1
i,· = ψ(H t

i,·, K
t
i,·), i = 1, . . . , Ne. (1)

The groundwater flow equation, represented by ψ(·) has to be solved independently for137

each realization of the ensemble.138

3. Normal-score transformation step. A normal-score transformation will be applied to139

all the conductivity values of all the realizations:140

K̃t
i,j = G−1(Fj(K

t
i,j)), i = 1, . . . , Ne; j = 1, . . . , N. (2)

where K̃t and Kt are the normal-score transformed hydraulic conductivity vector and the141

hydraulic conductivity vector estimates at time step t, respectively; F (·) is a vectorial142

normal-score transform function, with N components, one for each location. The normal-143

score transform function is, generally, a non-parametric function that is built as described144

in Appendix A. After the normal-score transform of all the elements in all realizations,145
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the transformed ensemble of normal-score conductivity realizations will follow a marginal146

Gaussian distribution with zero mean and unit variance.147

4. Covariance calculation. As it will be explained later, for the updating step the148

normal-scored conductivity auto-covariance and the cross-covariances between normal-149

scored conductivity and piezometric heads will be needed. These covariances are non-150

stationary and need to be computed accounting for the locations of each variable. The151

procedure is described next. First consider the augmented variable vector152

S =

[
K̃
H

]
(3)

with Ne realizations of 2N variables, the covariance between any two variables S.,k and153

S.,l is given by154

Ck,l =
1

Ne

Ne∑
m=1

(Sm,k − ⟨S.,k⟩)(Sm,l − ⟨S.,l⟩) k = 1, . . . , 2N ; l = 1, . . . , 2N (4)

with

⟨S.,∗⟩ =
1

Ne

Ne∑
m=1

Sm,∗ (5)

Since piezometric heads change in time, and hydraulic conductivities are also updated in155

time, the covariance is recalculated at each time step and, therefore, it is time dependent.156

The covariance matrix C contains 2N × 2N elements; however, it will be explained later157

that not all elements have to be computed, and the effective number of elements that158

must be calculated is 2N × 2N ′, with N ′ being one or two orders of magnitude smaller159

than N .160

5. Sampling step. Piezometric heads are sampled at a few locations Nh at time step161

t+ 1162
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6. Update step. In this step, a new ensemble of K̃ is generated conditioned to the163

hard conductivity measurements and to the just sampled piezometric heads. Sequential164

multivariate Gaussian simulation is used as outlined next; the reader interested in know-165

ing all the implementation details of the algorithm is referred to [Gómez-Hernández and166

Journel , 1993; Deutsch and Journel , 1992; Delbari et al., 2009]. The steps of the sequen-167

tial simulation algorithm to generate realization K̃i,. (the superindex t+ 1 is omitted for168

clarity):169

(i) Assign the normal-score transformed values of the conditioning conductivity mea-170

surements to the closest nodes in the grid.171

(ii) Assign the observed piezometric heads to the closest nodes in the grid.172

(iii) Generate a random path through all N grid nodes to be simulated.173

(iv) Visit a node along the random path. At the node location, search, within a174

predefined search neighborhood, all K̃ values already in the grid, and all observed piezo-175

metric heads. Then, compute the conditional distribution function given the K̃ and H176

data found. Under the assumption of multivariate Gaussianity, this conditional distribu-177

tion function is Gaussian and its mean and variance are given by the solution of a set178

of simple kriging equations [e.g., Deutsch and Journel , 1992; Goovaerts , 1997]. Denoting179

the node for which the conditional distribution is to be computed by j, the row vector180

of n conditioning data (normal-scored conductivities and piezometric heads) by S(n), the181

covariance matrix between any two variables at the conditioning locations by Cα, and182

the covariance column vector between the conditioning locations and the location being183

estimated as Cj,β, the conditional mean at j is given by184
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mK̃i,j
= ⟨K̃i,j⟩+C−1

α Cj,β(S(n) − ⟨S(n)⟩), (6)

where ⟨·⟩ refers to the average value computed through the ensemble of realizations at a185

given location as in Eq. (5), and the conditional variance is given by186

σ2
K̃i,j

= Cj,j −CT
j,βC

−1
α Cj,β. (7)

where T denotes transpose. Note that the use of a search neighborhood limits the pairs187

of variables for which their covariance is needed while building Cα and Cj,β, it is for this188

reason that the number of covariance values that have to be precomputed at step 4 is189

limited to 2N ×N ′, with N ′ being the number of nodes within the search neighborhood190

(generally much smaller than N).191

(v) Draw a random number λ from a standard Gaussian distribution with zero mean192

and unit variance, and generate K̃i,j as193

K̃i,j = mK̃i,j
+ λ

√
σ2
K̃i,j

(8)

(vi) Assign K̃i,j to node j and return to step (d) to visit another node until all nodes194

in realization i have been visited.195

The update step is repeated for all realizations in the ensemble.196

7. Back transformation step. Back transform the just generated normal-score trans-197

formed conductivities into conductivities using the inverse of the previously computed198

normal-score transform functions:199

D R A F T January 6, 2015, 3:03am D R A F T



X - 12 XU ET AL.: INVERSE SEQUENTIAL SIMULATION

Ki,j = F−1
j (G(K̃i,j)), i = 1, . . . , Ne; j = 1, . . . , N. (9)

8. Go back to the step 2 and repeat the process for as many time steps as there are200

observed piezometric heads.201

The main difference between the iSS algorithm and the NS-EnKF algorithm is in the202

updating step. The updating step in the NS-EnKF (as in any other variant of the ensemble203

Kalman filter) is based on the premise that if there is a departure between forecasted204

piezometric heads and observed ones it is because there must be a departure between205

the conductivity estimates and their real values, and this departure can be computed by206

simple cokriging of the head departures. In the NS-EnKF, at each time step, there is a207

refinement of the conductivity fields according to the expression208

K̃t+1
i,j − K̃t

i,j = C−1
α Cj,β(S(n) − Sf

i,(n)), , i = 1, . . . , Ne; j = 1, . . . , N (10)

where S(n) is a vector with all the observed piezometric heads, Sf
i,(n) is a column vector209

containing the forecasted piezometric heads at observation locations for realization i, Cα210

is a matrix with the covariances of forecasted heads at observation locations, and Cj,β is211

a vector with the cross-covariances between normal-scored conductivity at location j and212

piezometric heads at observation locations.213

3. Synthetic Example

A synthetic bimodal confined aquifer composed of 35% high permeability sand and 65%214

low permeability shale is constructed on a 50 m by 50 m square discretized into a grid of215

50 by 50 by 1 cells. The thickness of the confined aquifer is assumed to be 5 m. (The216
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actual units are irrelevant for the purpose of the study, as long as consistency among them217

is kept.) The construction of the reference field is done in two steps. First, a two-facies218

field with 9 conditional data (Figure 2) is generated via the SNESIM code by Strebelle219

[2002] using the training image in [Strebelle, 2002] (see Figure 3). Second, this binary220

field is populated independently for each facies with log-conductivity values using the221

sequential Gaussian simulation code GCOSIM3D Gómez-Hernández and Journel [1993]222

with the parameters shown in Table 1. The resulting reference log-conductivity field and223

its histogram are shown in Figures 4 and 5. The two figures show that the distribution224

of log-conductivity is clearly non-Gaussian, the histogram has two modes (one for each225

facies) and the global mean and standard deviation are -0.9 ln(m/d), and 2.9 ln(m/d),226

respectively.227

The transient groundwater flow simulator MODFLOW [e.g., McDonald and Harbaugh,228

1984; Harbaugh et al., 2000] is used to solve the transient groundwater equation. The229

model boundary is impermeable (see Figure 4). Figure 6 shows the locations of wells,230

including 25 observation wells, 2 injection wells and 3 pumping wells. Observation wells #6231

and #7 will be used as calibration wells (post audit) and will not be used for conditioning.232

The injection rates at the two injection wells #1 and #2 are 16 m3/d, and 15 m3/d,233

respectively. The pumping rates at the three pumping wells #3, #4, and #5 are 7.5234

m3/d, 7.5 m3/d and 14.5 m3/d, respectively. The initial head is set to 8 m throughout235

the study domain. Specific storage is set to 0.03 m−1. The total simulation time is 500236

days, discretized into 100 time steps of increasing size following a geometric series with237

ratio 1.02 (the length of the first time step results in 1.60 days). The piezometric heads238
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simulated in the reference field are sampled at the observation wells for each time step239

and used as input data for both algorithms.240

As already mentioned, the performance of the iSS will be compared to that of the241

NS-EnKF. We will analyze two scenarios, scenario S0 with the results obtained applying242

the NS-EnKF, and scenario S1 with the results of the iSS. The data supplied to both243

algorithms are the same. Both algorithms use the same initial ensemble of 600 conductivity244

realizations. The initial ensemble of conductivity realizations is generated in a manner245

similar to which the reference field was generated: first an ensemble of facies realizations,246

conditional to the same 9 facies values as the reference, is built using SNESIM; then, each247

facies is independently (and unconditionally) populated using GCOSIM3D with the same248

parameters in Table 1. We acknowledge that, in practice, we will never have access to the249

underlying statistics of the conductivity field; however, we choose to use the same random250

function model to generate the reference field and the initial fields of the ensemble to test251

the method, making sure that whatever departures there are between the reference and252

the simulations are due to the implementation of the algorithm and not to uncertainty in253

the underlying random function model.254

4. Analysis

Both the NS-EnKF and the iSS have been used to incorporate the observed piezometric255

heads during the first 50 time steps (135.4 days) for the generation of an ensemble of256

conductivity realizations. These realizations are analyzed by looking at several aspects:257

1. Histogram of the ensemble. Figure 7a shows the log-conductivity histogram for258

the initial ensemble. Figure 7b,c display the log-conductivity histograms of the updated259

ensemble after the 50th time step for scenario S0, and scenario S1, respectively. We can260
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see from Figure 7b,c that the histogram of log-conductivity with its bimodality is retained261

after 50 time steps in both scenarios.262

2. Ensemble mean and ensemble variance. Figure 8a,b shows the ensemble mean and263

variance for the initial ensemble. The only conditioning data used for the generation of the264

initial ensemble is the facies type at 9 locations. This limited information is not enough265

to control the spatial heterogeneity of each realization; therefore, the ensemble mean266

only shows some localized high and low values and the ensemble variance is quite high267

everywhere, with only some small values around the facies conditioning locations. Figures268

9 and 10 show the ensemble mean and ensemble variance, after 10 and 50 time steps,269

respectively. As time passes, and more piezometric heads are used to characterize the270

ensemble, the realizations of the ensemble are more alike, resulting in ensemble means that271

delineate the locations of the channels much better than in the initial set, and ensemble272

variances with zones of virtually no variance and small variances elsewhere. The areas273

with the highest ensemble variances are those areas with conductivity values which are274

not as sensitive to the piezometric heads at observation locations as the rest of the aquifer;275

in a practical case, one could propose the sampling of conductivities at those locations.276

Both methods perform equally well, with the highest variance reductions for the longer277

times. The only significative difference is that the ensemble means obtained with the iSS278

algorithm appear to have a slightly larger short scale variability than the ensemble means279

obtained with the NS-EnKF.280

3. Root mean square error (RMSE) and ensemble spreading (ES) of log-conductivity.

In synthetic examples like this one, we can calculate the deviation of the realizations

from the “truth”, since we have access to the underlying conductivity distribution from
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which the piezometric heads have been observed. The RMSE measures the accuracy of

the algorithm in reproducing the reference field, and the ES measures the precision of the

ensemble of realizations. The RMSE and ES are given by

RMSE =

√√√√ 1

N

N∑
j=1

(lnKref
j − ⟨lnKj⟩)2, (11)

ES =

√√√√ 1

N

N∑
j=1

σ2
lnKj

, (12)

where lnKref
j is the lnK value at node j in the reference field, ⟨lnKj⟩ is the ensemble281

mean, and σ2
lnKj

is the ensemble variance. As discussed by Chen and Zhang [2006] when282

the RMSE and the ES have a similar magnitude, the resulting ensemble variance provides283

a realistic measure of the uncertainty associated to the ensemble mean estimate.284

Figure 11 shows the evolution in time of the RMSE, ES, and the ratio of RMSE to ES for285

both methods. We can see that the RMSE corresponding to the NS-EnKF is smaller than286

that for the iSS, indicating that, on average, the realizations obtained with the NS-EnKF287

are closer to the reference than those obtained by iSS. The ES is similar in both cases. And288

the ratio RMSE/ES remains closer to 1 for the NS-EnKF than for the iSS, indicating a289

better characterization of the uncertainty with the former approach. Yet, these differences290

are small, and the absolute values of RMSE and ES sustain the conclusions derived from291

the visual analysis of the ensemble means and variances discussed before.292

4. Reproduction of the piezometric heads at the two calibration wells. Figure 12 shows293

the evolution of the piezometric heads for the initial ensemble of conductivity realizations294

at the two calibration wells #6 and #7 —these wells were not used for conditioning. Since,295

no piezometric information was used to generate the initial conductivity ensembles, the296

D R A F T January 6, 2015, 3:03am D R A F T



XU ET AL.: INVERSE SEQUENTIAL SIMULATION X - 17

spread among the individual responses of each realization is quite large. Figure 13 shows297

the evolution of the piezometric heads in the updated ensembles for both approaches.298

The vertical dashed line indicates the end of the use of the observed piezometric heads as299

conditioning data. Comparing Figures 12 and 13, the effect of conditioning on piezometric300

heads is patent, with a significant reduction of the spread of the piezometric head curves301

in all realizations about the reference one for both approaches.302

5. Solute breakthrough curves (BTCs). A transport prediction experiment of an inert303

solute is carried out to further evaluate the goodness of the characterization of conductivity304

by the updated conductivity realizations. For this purpose, 10 000 conservative particles305

are released along a vertical line at x = 2.5 m and the arrival times are recorded at two306

control planes, located at x = 15 m and x = 45 m (see Fig. 4). The random walk particle307

tracking program RW3D [Fernàndez-Garcia et al., 2005] is used to solve the transport308

equation. Porosity is assumed constant and equal to 0.3. Figure 14 shows the BTCs at309

the two control planes for the initial ensemble. Figure 15 shows the BTCs at the two310

control planes using the conductivity fields updated after 50 times steps. We can see that311

the uncertainty about the BTC predictions is significantly reduced after conditioning to312

the piezometric head data. Comparing Figure 15b,d with Figure 15a,c, we can find that313

the iSS performs a little better than the NS-EnKF, since the spread of the BTC predictions314

is smaller, and the median BTCs is closer to the reference BTCs. The reproduction of the315

BTCs is not as good as the reproduction of the piezometric heads, since concentration316

data were not used for conditioning, this explains that although the spread of the BTCs317

is significantly reduced, there is a larger bias in the estimation of the reference BTC by318

the median of the BTCs computed in the upated conductivity fields than in the initial319
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fields, which we do not attribute to the goodness of any of the two approaches. The next320

step would be to include some concentration data as conditioning data and check how321

well either method is able to produce conductivity fields that are conditional to BTC322

information.323

5. Discussion

From the above analysis we can conclude that the quality of the ensemble of realizations324

generated by iSS is comparable to that of the ensemble generated by the NS-EnKF. The325

main difference between the two approaches is that iSS is a stochastic simulation approach,326

whereas the NS-EnKF works by progressively refining an initial ensemble of realizations327

on the basis of the discrepancy between forecasted and predicted piezometric heads. In the328

iSS, at each time step, a new ensemble of realizations is generated using as conditioning329

data the last set of observed piezometric heads; the ensemble of realizations keeps improv-330

ing as time progresses, through the updating of the experimental ensemble non-stationary331

covariances. We start with an initial unconditional random function model; at the ini-332

tialization step, the initial ensemble of realizations already produces a random function333

model that is conditional on conductivity data; and then, after each time step, the random334

function model is modified by making it conditional to the observed piezometric heads,335

too. Furthermore, since iSS is based on the sequential simulation algorithm, which uses336

a search neighborhood to decide the information to use when computing the cumulative337

distribution function at a given location, it avoids the use of spurious correlations for long338

distances, since conditioning data which are far from the point being simulated are never339

used, solving, in this way, a common problem of the ensemble Kalman filter implementa-340

tions. There is nothing that prevents the use of the iSS algorithm to condition not only341
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on the observed piezometric heads at time t+1, but simultaneously on piezometric heads342

measured at time t, and at other previous times (something that can also be achieved with343

the use of ensemble smoothers); including these additional past data would imply only344

computing the cross-covariances between normal-scored conductivities and the forecasted345

piezometric heads at the earlier steps, and could improve the final characterization of con-346

ductivities. The power of iSS, as compared with other stochastic simulation techniques,347

is based on the same principle that has made the ensemble Kalman filter so successful,348

the use of non-stationary covariances experimentally computed from a set of ensemble re-349

alizations of conductivity and the resulting ensemble of piezometric heads obtained after350

running a numerical flow model on the conductivity realizations. Notice that iSS, being351

an inverse simulation technique, is neither an optimization algorithm nor a filter, it is a352

stochastic simulation technique.353

The code we have developed for the purposes of demonstrating the algorithm is far from354

been optimal and therefore it does not make too much sense to benchmark it in terms of355

CPU times. However, we can anticipate that the most time consuming step of the workflow356

is the computation of the non-stationary covariances; it is this step that should attract the357

largest optimization efforts at the beginning, once this step has been optimized, we should358

optimize the simulation algorithm, even considering the use of alternative covariance-based359

stochastic simulation ones.360

This paper presents a new approach for inverse modeling in a stochastic context, which361

is conceptually very simple and easy to implement. At this stage, the results do not362

indicate that it should be used for inverse modeling as a replacement of the NS-EnKF,363

since it performs equally well. However, we believe that the novelty of the approach364
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will warrant extensions and refinements that will yield it superior to existing methods.365

The algorithm is still in its early stages, but we are confident that it could be used for366

inverse stochastic simulation under a wide variety of scenarios, not limited to the field of367

hydrogeology.368

6. Summary and conclusions

A new inverse stochastic simulation method, the inverse sequential simulation (iSS), has369

been proposed for the purpose of generating a set of hydraulic conductivity realizations370

that, when used to model groundwater flow, can reproduce observed piezometric heads.371

The method is based on the sequential simulation paradigm making use of the non-372

stationary covariance experimentally inferred form an ensemble of conductivity fields and373

the corresponding piezometric head responses, in a manner similar as how it is done in374

ensemble Kalman filtering. We have benchmarked the technique against the normal-score375

ensemble Kalman filter (NS-EnKF), possibly the current algorithm that best performs for376

inverse modeling using transient piezometric heads. The iSS compares very well with the377

NS-EnKF in all aspects analyzed (histogram reproduction, ensemble mean and variance,378

reproduction of observed piezometric heads, and reproduction of breakthrough curves),379

and it can be considered an alternative approach for inverse stochastic simulation. The380

new algorithm has room for expansion and has the potential of application in other fields.381

Appendix A: Normal-score transform

We have Ne realizations, each one discretized into N nodes. LetKi,j the conductivity for382

realization i at node j. For each node, determine the experimental cumulative distribution383

function (cdf) from the set of values {Ki,j, i = 1, . . . , Ne}:384
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Fj(k) = Prob(K ≤ k), j = 1, . . . , N, (A1)

these cdfs are generally non-parametric, and they are defined in tabular form by pairs of385

(k, Fj(k)) values. Let G(y) be the cumulative distribution function of a variable y having386

a Gaussian distribution of zero mean and unit variance.387

The normal-score transformation is given by:388

K̃i,j = G−1(Fj(Ki,j)), i = 1, . . . , Ne; j = 1, . . . , N. (A2)

Similarly, the normal-score back transform is given by:389

Ki,j = F−1
j (G(K̃i,j)), i = 1, . . . , Ne; j = 1, . . . , N. (A3)
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nition in a bimodal aquifer using the normal-score ensemble kalman filter, Mathematical492

Geosciences, pp. 1–17.493
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Figure 1. Flowchart of the iSS. For the flowchart of the NS-EnKF, replace the bracketed

processes for the floating ones in brackets on the right.

D R A F T January 6, 2015, 3:03am D R A F T



X - 28 XU ET AL.: INVERSE SEQUENTIAL SIMULATION

Easting

N
o

rt
h

in
g

50.00

50.00

0
0

Figure 2. Location of the conditional data. The red nodes denote shale; the green nodes

denote sand.

Training Image

Easting

N
o
rt
h
in
g

.0 750
.0

750

Shale

Sand

Figure 3. Training image used to generate the ensemble of binary facies realizations.
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Figure 5. The histogram of the reference log-conductivity field.
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as calibration wells.
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Figure 8. Ensemble mean and ensemble variance of lnK for the initial realizations.
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Figure 9. Ensemble mean of lnK after assimilating observation heads at the 10th and 50th

time steps for the two scenarios.
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Figure 10. Ensemble variance of lnK after assimilating observation heads at the 10th and

50th time steps for the two scenarios.
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Figure 12. Evolution in time of the piezometric head at the two calibration wells for the initial

ensemble of log-conductivity realizations. The red square line corresponds to the piezometric head

in the reference, the gray lines correspond to the realizations and the vertical dashed lines marks

the end of the conditioning period, the green delta line corresponds to the average of the gray

lines.
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Figure 13. Evolution in time of the piezometric head at the two calibration wells after the 50th

time step. The red square line corresponds to the piezometric head in the reference, the gray lines

correspond to the realizations and the vertical dashed lines marks the end of the conditioning

period, the green delta line corresponds to the average of the gray lines.
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Figure 14. Breakthrough curves (BTC) at the two control planes for the initial lnK realiza-

tions. The red square line corresponds to the BTCs in the reference. The black lines correspond

to the 5 and 95 percentiles of all realization BTCs, and the green delta line corresponds to the

median.
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Figure 15. Breakthrough curves (BTC) at the two control planes for the lnK realizations

updated after the 50th time step. The red square line corresponds to BTCs in the reference. The

black lines correspond to the 5 and 95 percentiles of all realization BTCs, and the green delta

line corresponds to the median.
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Table 1. Parameters of the random functions describing the spatial continuity of the sand

and shale log-conductivities

Facies Proportion Mean Std.dev Variogram λx λy sill
[ln [m/d]] [ln [m/d]] type [m] [m]

Sand 0.35 3.5 1.0 exponential 20 20 1
Shale 0.65 -2.5 0.6 exponential 20 20 0.35

D R A F T January 6, 2015, 3:03am D R A F T


