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Spain

Abstract

The localized normal-score ensemble Kalman filter (NS-EnKF) coupled with covariance inflation is used

to characterize the spatial variability of a channelized bimodal hydraulic conductivity field, for which the

only existing prior information about conductivity is its univariate marginal distribution. We demonstrate

that we can retrieve the main patterns of the reference field by assimilating a sufficient number of piezometric

observations using the NS-EnKF. The possibility of characterizing the conductivity spatial variability using

only piezometric head data shows the importance of accounting for these data in inverse modeling.

Keywords: Normal score transform, Localization, Covariance inflation, Ensemble Kalman filter, Filter

divergence

1. Introduction1

It is well known that proper characterization of subsurface hydrogeologic properties and their uncertainty2

are critical issues for groundwater forecast, subsurface resource management and environmental risk assess-3

ment [1]. This can be achieved by stochastic inverse modeling accounting for real-time state data. Some4

existing methods for stochastic inverse modeling are the gradual deformation method, the sequential self-5

calibration, the Markov chain Monte Carlo method, the Representer method, and the Pilot Points method6

[e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10]. Although these methods are flexible with regard to nonlinearities and system7

complexity, they are very time consuming and not easy to apply to large scale problems [11].8
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To overcome this problem, the Ensemble Kalman Filter (EnKF) has become more popular in many fields,9

such as oceanography, meteorology, petroleum engineering, or hydrology [e.g., 12, 13, 14, 15, 16, 17, 11, 18],10

because it is computationally efficient and capable of handling large fields. However, it has been shown that,11

although the EnKF is good accounting for the non linearities of the state equation, it fails when dealing with12

non-Gaussian parameter fields [e.g., 19, 20, 21].13

The particle filter (PF) [e.g., 22, 23, 24] is able to handle any type of statistical distribution and it14

is very robust for nonlinear models and non-Gaussian distributed variables [25]; however, it is also very15

time-consuming and hardly applied to large simulation models.16

Recently, new methods have been developed trying to adapt the EnKF to non-Gaussian distributions.17

They can be grouped in four categories according to their characteristics: those using a Gaussian mixture18

model (GMM), those using a transformed reparameterization, the iterative EnKF, and those using a Gaussian19

anamorphosis (GA) also known as normal score (NS) transform.20

In the first category, the methods using a Gaussian mixture model method apply a probabilistic model in21

which a finite number of Gaussian probability density functions (pdf’s) is used to approximate the underlying22

non-Gaussian pdf’s [e.g., 26, 19, 27, 28, 29, 30]. GMM takes advantage that for linear transfer functions the23

forecasting step preserves the Gaussian mixture. Sun et al. [19] showed the benefits of the EnKF integrated24

with GMM techniques for high-dimensional, multimodal parameter distributions. Dovera and Della Rossa25

[28] combined the EnKF with GMM for simulating a multimodal distribution in the context of reservoir26

facies modeling.27

In the second category, the transformed reparameterization, the methods work with alternative state28

variables that may be better approximated by a Gaussian distribution. Chen and Oliver [31] discuss that29

using the EnKF to update saturation may yield non-physical results because of its non-Gaussian distribution.30

They proposed to reparameterize the formulation of the EnKF using the water arrival time as the state31

variable. This approach has also been followed by Chen et al. [21], Chang et al. [32], Li et al. [33].32

In the third category, the iterative EnKF, an iterative scheme is introduced into the forecasting and33

updating steps of the EnKF. At any given time step, the static parameters are repeatedly updated using34

the Kalman gain equation until a satisfactory match between predicted state variables and observations35

is reached. This iteration is needed because of the strong non-linearities of the forecast model. Example36

applications can be found in the petroleum engineering literatures [e.g., 34, 35, 36, 37, 38, 39, 40, 41], and37

also in hydrogeology [11].38

In the fourth category, the EnKF is combined with GA. Gaussian anamorphosis (also known as normal39
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score transform) is used to transform the non-Gaussian variables into Gaussian ones, but only at the univari-40

ate level. Then the EnKF is used on the univariate Gaussian variables. Applications of this approach can41

be found in the fields of ecology, remote sensing, geophysics, petroleum engineering or hydrogeology [e.g.,42

20, 42, 17, 43, 44, 45, 25, 46, 47].43

In this paper, we will apply the GA implementation by Zhou et al. [46] to a bimodal aquifer assuming that44

the only information we have about the hydraulic conductivity is its univariate distribution. Our conjecture45

is that the assimilation of enough transient piezometric head data is sufficient to capture the main features46

of the spatial variability of hydraulic conductivity.47

The structure of this paper is as follows. First, an introduction of the GA implementation is given. And48

then we evaluate the impact of the number of conditioning piezometric heads in the characterization of the49

conductivity patterns. The paper ends with a summary of the main findings.50

2. The Localized Normal-Score Ensemble Kalman Filter with Covariance Inflation51

The Normal-Score Ensemble Kalman Filter (NS-EnKF) is an evolution of the EnKF to accommodate non-52

Gaussian random variables. It is based on a univariate transformation of each component of the parameter53

vector of non-Gaussian conductivities into another vector in which all components follow a standard Gaussian54

distribution.55

We will present the NS-EnKF for the case in which we wish to characterize the heterogeneity of hydraulic56

conductivity (X) by assimilating transient piezometric heads (Y ). The NS-EnKF can be summarized as57

follows:58

1. Initialization step. An ensemble of hydraulic conductivity fields must be generated. There are many59

techniques that can be used for this purpose, such as sequential simulation, multiple point simulations60

with training images [e.g., 48, 49, 50]; however, since we assume that there is no prior information61

about the spatial heterogeneity, but only information about its marginal univariate distribution, we62

generate homogeneous realizations, each one with a value drawn from this distribution.63

2. Normal-score transformation step. At each location, all conductivity values from all realizations are64

collected, and a normal score transform function is built. Then, these functions are used to transform65

all values for all realizations.66

The normal score transformed conductivity vector X̃ is67

X̃ = ϕ(X) (1)
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where ϕ(·) is a vectorial normal score transform function, different for each location. Each member of68

the vectorial function is non-parametrically built.69

3. Forecasting step. In this step, the simulated piezometric heads are calculated for the tth time step70

based on the piezometric heads from the (t − 1)th time step using a transient flow model, realization71

by realization.72

Yt = ψ(Yt−1,Xt−1) (2)

where Yt, Yt−1 are the simulated piezometric heads at the tth time step and the simulated piezometric73

heads at the (t − 1)th time step, respectively; Xt−1 is the conductivity estimate at the (t − 1)th time74

step; ψ(·) denotes the transient groundwater flow model.75

4. Analysis step or assimilation step. The aim of this step is to update the transformed conductivity X̃76

and piezometric heads Y accounting for the discrepancy between forecasted and observed piezometric77

heads.78

(a) First, build the augmented state vector S with the transformed conductivity X̃ and the forecasted79

piezometric heads Y, which for the ith realization at the tth time step is:80

Sf
i,t =

[
X̃

Y

]
i,t

, (3)

(b) Then, the measured piezometric heads at time t are assimilated by updating the state vector into81

Sa
i,t using:82

Sa
i,t = Sf

i,t +Gt(Y
o
t + ei,t −HSf

i,t) (4)

83

Gt = PtH
T (HPtH

T +Rt)
T (5)

where Sa
i,t is the updated state vector of the ith ensemble member at the tth time step; Sf

i,t is84

the forecast state vector; Pt is the forecast covariance matrix; Yo
t + ei,t is the hydraulic head85

observation vector, including the true head Yo
t plus the observation error ei,t —the observation86

error has with mean zero and covariance Rt; Gt is the Kalman gain; and H is an observation87

matrix, which consists only of 0’s and 1’s when observations are taken at simulation nodes, in88

which case, Equation 5 can be simplified as89
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Gt = CX̃Y (CY Y +Rt

)−1
(6)

where CX̃Y corresponds to the cross-covariance between the transformed state vector and the90

forecasted piezometric heads at the observation locations; and CY Y is the covariance between the91

forecasted piezometric heads at the observation locations.92

5. Back transformation step. Back transform the updated normal-score transformed conductivities into93

conductivities using the inverse of the previously computed transform functions:94

X = ϕ−1(X̃) (7)

since a non-parametric transformation is used, there is a need to specify how to backtransform the95

values that are outside the range given by the minimum and maximum values used to build the non-96

parametric transform function. In our case we used the same approach as described in the Gslib library97

[51] choosing a power interpolation with absolute bounds set at -4 and 4 ln(m/d).98

6. Return to the step 3 and repeat the processes until all the observed data are assimilated.99

Zhou et al. [46, 52] have shown that the NS-EnKF is a good alternative in the characterization of non-100

Gaussian distributed conductivity fields. However, since the NS-EnKF is based in the EnKF, it has the same101

drawbacks, that is, the appearance of spurious correlations between distant points and the underestimation102

of the final uncertainty. Spurious correlations appear due to the numerical nature of the covariance calcula-103

tions, which result in fluctuating covariance estimates about zero at distances for which it should be zero.104

Underestimation of the final uncertainty is due to the underestimation of the empirical covariance based105

in a small number of realizations [53]. These two problems can be tackled through combining covariance106

localizations and covariance inflation techniques.107

Covariance localization aims to eliminate the effect of spurious correlations among the state variables108

and the parameters by constraining the correlation range of the empirical covariance. This can be achieved109

by replacing Equation 6 with the following equation:110

Gt = ρX̃Y ◦CX̃Y

(
ρY Y ◦CY Y +Rt

)−1
(8)

where ◦ represents the Schur product; and ρX̃Y and ρY Y are localization functions used to correct CX̃Y and111

CY Y , respectively.112
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There are many alternatives to calculate the localization functions [e.g., 54, 55, 56, 57, 58]. In this paper,113

we use the same fifth-order distance dependent localization function [e.g., 59, 60] for both covariances.114

ρX̃Y (d) = ρY Y (d) =


− 1

4 (
d
a )

5 + 1
2 (

d
a )

4 + 5
8 (

d
a )

3 − 5
3 (

d
a )

2 + 1, 0 ≤ d ≤ a;

1
12 (

d
a )

5 − 1
2 (

d
a )

4 + 5
8 (

d
a )

3 + 5
3 (

d
a )

2 − 5( da ) + 4− 2
3 (

d
a )

−1, a≤ d≤ 2a;

0 d>2a.

(9)

where d is the Euclidean distance, and a is a distance parameter controlling the distance at which the115

localization function will die out to zero. We chose this function based on our past experience [18, 47].116

Covariance inflation is a technique used to avoid filter divergence (inbreeding) by inflating the empirical117

covariance. This can be achieved by linearly inflating each component of the augmented state vector:118

Sinf,f
i,t =

√
λt(S

f
i,t − ⟨Sf

t ⟩) + ⟨Sf
t ⟩ (10)

where Sinf,f
i,t is the ith ensemble member at the tth time step of the state vector; ⟨·⟩ denotes ensemble average;119

λt is the inflation factor at the tth time step. There are many methods to get the inflation factor λ [e.g.,120

61, 62, 63, 64, 65]. In this work, we will use the time-dependent inflation algorithm proposed by Wang and121

Bishop [66].122

λt =
(R

− 1
2

t dt)
TR

− 1
2

t dt − kt

trace{R− 1
2

t HPt(R
− 1

2
t H)T }

(11)

where kt is the number of observations; dt is the residual between observation data and forecast data, which123

can be described as:124

dt ≡ Yo
t + ei,t −H⟨Sf

t ⟩ (12)

Then the transformed analysis state vector Sa
i,t is:125

Sa
i,t = Sinf,f

i,t + λtCX̃Y (λtCY Y +Rt)
T (Yo

t + ei,t −Yinf,f
i,t ) (13)

where Yinf,f
i,t contains the forecasted piezometric heads after inflation at the observation locations.126

6



3. Synthetic Example127

A synthetic bimodal confined aquifer consisting of 30% high permeability sand and 70% low permeability128

shale is constructed on a grid of 100 by 80 by 1 cells, each cell being 3 m by 3 m by 10 m. The SNESIM129

code, a multiple-point simulation program developed by Strébelle [67], is used to generate a two-facies field130

using the training image in Strebelle [49] (see Figure 1). Then, the facies field is populated, independently131

for each facies, with log-conductivity values using a sequential Gaussian simulation algorithm [48]. The132

parameters used in the sequential Gaussian simulations are shown in Table 1. The resulting reference log-133

conductivity field and its histogram are shown in Figures 2 and 3, respectively. We can see in Figure 2134

that the distribution of log-conductivities is clearly non-Gaussian, and that the field has well-connected sand135

channels. The bimodal distribution in Figure 3 has a global mean of -0.3 ln(m/d), and a global standard136

deviation of 1.7 ln(m/d).137

The boundary conditions used in the simulation of transient groundwater flow are: north and south138

boundaries, no flow; east boundary, prescribed flow as indicated in Figure 2; and west boundary, general139

head boundary condition with head at 2 m and leakage coefficient of 0.14 d−1. The initial head is set to zero140

throughout the domain. Specific storage is set to 0.003 m−1. The total simulation time is 500 days and it141

is discretized into 100 time steps. The time steps increase in size as time progresses following a geometric142

series with ratio 1.05. The transient flow simulator MODFLOW [e.g., 68, 69] is used as the forward model.143

3.1. Scenarios144

In this work, seven scenarios are used to demonstrate the power of transient piezometric head in the145

characterization of a bimodal hydraulic conductivity field. The impact of the covariance inflation in the146

characterization of the hydraulic conductivity field (see Table 2) is also analyzed. It is important to recall147

that no prior information about the spatial variability of conductivity is used, and that no conditioning148

hydraulic conductivity data are used, either.149

For reference purposes, we include a Scenario S0 in the analysis. This scenario replicates the analysis150

performed by Zhou et al. [46], where they had information about the spatial variability of hydraulic conduc-151

tivity in the form of the training images from which the reference case had been generated; therefore, the152

training image of Figure 1 is used to generate 1000 unconditional realizations of the two-facies distribution,153

which are later populated with conductivity values by Gaussian sequential simulation, in the same manner154

as the reference realization was built. Scenarios S1, S2, S3, S4, S5, S6 use, as initial realizations, the same155

1000 homogenous fields generated based on the bimodal distribution shown in the Figure 3.156
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All scenarios use localization in the application of the NS-EnKF. The distance a in the localization157

function (Equation 9) is set to 40 m implying that correlation will be zero at a distance of 80 m. This value158

is chosen after analyzing the experimental cross-covariances of the first batch of realizations. Figure 4 shows159

the localization function. Scenarios S0, S1, S3, S5 do not use covariance inflation, whereas scenarios S2, S4,160

S6 do use it.161

The number of observation piezometers goes from 111 down to 24 for the different scenarios as indicated162

next. Scenarios S1 and S2 have 111 observation piezometers (see Figure 5a), scenarios S0, S3 and S4 have163

56 observation piezometers (see Figure 5b), and scenarios S5 and S6 have 24 observation piezometers (see164

Figure 5c). In addition, two control piezometers, not used for conditioning, are employed to verify the165

performance of the NS-EnKF in all the scenarios (see Figure 5). The control piezometer number 1 is located166

in the north-western part of the aquifer, and the control piezometer number 2 is towards the center.167

4. Analysis168

We have applied the localized NS-EnKF for the different scenarios described previously assimilating the169

piezometric observations for the first 60 time steps (67.7 days). We will show the updated log-conductivity170

fields after the 10th time step (2.4 days) and after the 60th time step. We will also show the piezometric171

evolution at the control points from time zero until the 100th time step (500 days).172

Figure 6a displays the log-conductivity histogram for the initial ensemble of heterogeneous realizations173

used in scenario S0. Figure 6b displays the log-conductivity histogram of the updated ensemble of realizations174

in scenario S0 after the 60th assimilation step. Figure 7 displays at the top the log-conductivity histogram for175

the initial ensemble of homogeneous realizations used in scenarios S1-S6. The corresponding histograms for176

each scenario after the 60th assimilation step are shown in Figure 7a-7f. Comparing the updated histograms177

with the reference one, we can observe that the bimodality is preserved in all scenarios, although only178

scenarios S0, S2, S4, and S6 are able to approximately keep the original proportions between sand and shale.179

Figure 8 shows the ensemble mean of the initial log-conductivity fields, together with the ensemble mean180

of the updated log-conductivity fields after the 10th and 60th assimilation time step for scenario S0. Similarly181

Figure 9 shows the ensemble variance for the same sets of log-conductivity in Figure 8.182

The ensemble mean and the ensemble variance of the initial log-conductivities for scenarios S1-S6 are183

not shown, since they are the same as Figure 8a and Figure 9a, respectively. Figures 11 and 12 show the184

ensemble means of the updated fields after the 10th and 60th time step, respectively. Similarly, Figures 13185

and 14 show the corresponding ensemble variances.186
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The initial ensemble means in Figure 8a and Figure 10a are homogeneous with a value equal to the187

prior mean (even for scenario S0), since the initial realizations are unconditional. For the same reason, the188

initial ensemble variances in Figure 9a and Figure 10b are also homogeneous with a value equal to the prior189

variance.190

Figure 8 and Figure 9 replicate the results by Zhou et al. [46] who introduced the NS-EnKF algorithm. We191

can see how, as time progresses, the main channel features in the reference field are better delineated in the192

ensemble mean maps, and the ensemble variance decreases. Since the fastest piezometric head changes are193

close to the east and west boundaries, the channel features close to these boundaries can be already identified194

at the 10th time step. It was precisely the evolution of the ensemble mean map as a function of time seen195

in the these figures, what disclosed to us the importance of the transient piezometric head for hydraulic196

conductivity characterization. For this reason, this paper focuses in the power of assimilating transient197

piezometric heads using the NS-EnKF algorithm for the case in which we do not have any information about198

the spatial variability of hydraulic conductivities.199

Figures 11a,c,e, and 12a,c,e show the ensemble means for the scenarios in which no covariance inflation200

has been implemented. Correspondingly, Figures 13a,c,e, and 14a,c,e show the ensemble variances for these201

scenarios. We notice that the implementation of the localized NS-EnKF with homogeneous initial fields202

results in filter inbreeding very quickly. This can be identified in the variance maps in Figures 14a,c,e, which203

are almost zero everywhere. Even though, after the 60th time step, some of the channel features can be204

identified when using 111 piezometers, we discarded these results as acceptable due to filter inbreeding. And,205

for this reason, we implemented covariance inflation into the localized NS-EnKF.206

Figures 11b,d,f, and 12b,d,f show the ensemble means for the scenarios in which covariance inflation207

has been implemented. Correspondingly, Figures 13b,d,f, and 14b,d,f show the ensemble variances in these208

scenarios. When using 111 piezometers and covariance inflation after 60 time steps, the ensemble mean209

captures very well the main features of the reference field (see Figure 12b). If the number of piezometers is210

reduced to 56, the method can still capture the general position of the channels, but with less accuracy than211

in the previous case (see Figure 12d). However, if we reduce the number of piezometers down to 24, then212

the characterization of the channels is very poor. As in scenario S0 after 10 time steps, in scenarios S1-S6,213

we can start to see the appearance of the channels in the ensemble means of the updated fields. For these214

scenarios, in which covariance inflation was implemented, the ensemble variance after 60 time steps is too215

small indicating some filter inbreeding.216

The issue of filter inbreeding is better analyzed by looking at the ratio of the root mean square error217
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(RMSE) to the ensemble spread (ES), where RMSE and ES are defined as follows:218

RMSE =

√√√√ 1

n

n∑
i=1

(srefi − ⟨sa⟩i)2, (14)

where n is the number of model elements; srefi is the value of the reference field at node i; ⟨sa⟩i is the219

ensemble mean of the updated fields, and220

ES =

√√√√ 1

n

n∑
i=1

σ2
i , (15)

where σi is the ensemble variance of the updated fields at node i.221

The RMSE measures how well the ensemble average map reproduces the reference one, the smaller the222

RMSE, the better the reproduction. Yet, we know that the ensemble average map can only be a smooth223

representation of the spatial heterogeneity, and consequently it can never be zero. The ES measures the224

degree of variability across the different realizations. When ES is too close to zero, it indicates that the225

realizations have collapsed and filter inbreeding occurs. Liang et al. [63] show that a good way to check the226

degree of filter inbreeding is by analyzing the ratio of RMSE to ES, which, in ideal conditions, should be 1.227

Figure 15 shows the evolution of the RMSE for all scenarios computed on the updated log-conductivity228

fields after each assimilation step. We can see how, except for S6, the RMSE decreases with time. The229

smallest values are found for scenario S0, followed by scenario S2. Figure 16 shows the evolution with time230

of the ratio of RMSE to ES. In this figure, we can clearly see how for scenario S0 this ratio converges231

quickly to 1, indicating that there is no filter inbreeding. On the other hand, filter inbreeding is very high232

for scenarios S1, S3, S5 (the ones without covariance inflation), and it is less pronounced for scenarios S2,233

S4, S6 (the ones with covariance inflation). As already noticed in Figure 12b, scenario S2 provides the best234

results.235

Next, we analyze the reproduction of the piezometric heads at the control piezometers. Figure 17 shows236

the evolution of the piezometric heads at control piezometers 1 and 2 for the initial log-conductivity fields;237

in the top row, the evolution in the heterogeneous fields used in scenario S0, and in the bottom row, the238

evolution in the homogeneous fields used in the other scenarios. The figure also shows the evolution of heads239

in the reference field and the average of the individual realizations. Figure 18 shows the evolution at the240

two control points in the updated fields after 60 time steps for scenario S0. Figure 19 and Figure 20 shows241

the evolution of heads at control piezometers 1 and 2, respectively, in the updated fields after 60 time steps242
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for scenarios S1-S6. Notice that for Figures 18, 19 and 20 the assimilation period lasts only until day 67.7,243

beyond that the log-conductivity fields are not updated anymore.244

We can see in Figure 17 that with no conditioning to conductivity and without assimilating any piezo-245

metric head the spread of the responses of piezometric head is extremely large. The localized NS-EnKF246

with initial heterogeneous fields (scenario S0) does a good job in reducing the spread of the piezometric head247

curves with the conductivity fields updated up to the 60th assimilation time step. However, there is still a248

small bias between the reference values and the ensemble mean results.249

The evolution of the piezometric heads computed on the updated fields after the 60th assimilation time250

step in both control piezometers is very similar for all scenarios. The spread is reduced very much with251

respect to the spread in the initial fields, although for some scenarios like S1, or S3, the reduction is too252

large due to the filter inbreeding. Scenario S2, which performed best for log-conductivity reproduction, is253

the one displaying the largest spread among the different realizations but also the largest bias between the254

reference values and the ensemble average.255

In order to analyze the characterization of the log-conductivity fields in the different scenarios, we are256

going to perform two additional checks, one involving the advective transport of an inert solute, and the257

other one based on the analysis of some connectivity functions. For these checks, we will use the updated258

log-conductivity fields after the 60th assimilation time step.259

For the transport exercise, we release 10,000 particles along an injection line at x = 10 m and we track260

them to the two control planes at x = 100 m and x = 280 m using the random walk particle tracking261

program RW3D [70] (see Figure 2). Porosity is assumed constant and equal to 0.3. Figure 21 shows the262

breakthrough curves (BTCs) corresponding to scenario S0. Figure 22 shows the BTCs at the first control263

plane for scenarios S1-S6, and Figure 23 shows the BTCs at the second control plane.264

Again, scenario S0 is the one that performs best since the reference BTCs are within the 90% confidence265

interval for both control planes, and the median BTCs do an acceptable job in reproducing the reference266

BTCs. The non inflation scenarios display an extremely narrow 90% confidence interval, although they267

are able to reproduce the reference BTCs for control plane 2. Of the inflation scenarios both S2 and S4268

give good results both in terms of the confidence intervals and the approximation of the reference BTC by269

the median. The behavior of scenario S6 is odd, particularly when compared with S5, since S5 is able to270

reproduce moderately well the BTCs for both control planes (with a very narrow band of uncertainty) and271

S6 fails completely, displaying a transport behavior much slower than in all other scenarios. This behavior272

must be due to the covariance inflation and the low number of conditioning points, such an inflation may273
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result in an overall higher variability that masks the presence of the conductivity channels.274

All in all, transport results could be very much dependent on the reference field used for the analysis,275

and should be interpreted in this view.276

For the connectivity exercise, we are going to analyze the connectivity of high conductivity values in the277

horizontal direction. Of the different methods proposed to evaluate connectivity [e.g., 71, 72, 73], we choose278

the one proposed by Stauffer and Aharony [74]. Before computing the connectivity of each field we need to279

convert the continuous log-conductivity fields into binary fields using the indicator transform function280

I(x) =


1, if lnK ≥ 0

0, otherwise

(16)

where we chose the threshold value lnK = 0 because it separates sand from shale in the reference histogram281

(Figure 3). The program CONNEC3D [75] computes the connectivity following the method by Stauffer282

and Aharony [74] as the probability that two points with log-conductivities larger than zero horizontally283

separated by a certain distance are connected by a continuous path of log-conductivities larger than zero.284

Figures 24 and 25 show the connectivity curves for the high conductivities as a function of their horizontal285

separation distance. Both figures show the connectivity curves computed in all realizations together with286

the connectivity curve computed in the reference field, and the mean of the curves. Figure 24 shows the287

connectivity curves for the initial heterogeneous conductivity realizations and for the updated conductivity288

realizations after the 60th assimilation time step for scenario S0. Figure 25 shows the connectivity func-289

tions for the updated conductivity realizations after the 60th assimilation time step for scenarios S1-S6.290

The connectivity functions for the initial homogeneous fields are not displayed since the connectivity in a291

homogeneous field is always perfect.292

Analyzing Figures 24 and 25 we can arrive at the same conclusions as before. The spread of the curves293

for the non inflation scenarios is too small. The fact that the connectivity functions for scenarios S1 and S3294

are so close to the reference connectivity function may be the explanation why the BTCs are also so well295

reproduced for these scenarios. Scenarios S2 and S4 show a larger spread than the non inflation scenarios,296

yet, the envelope of individual functions encloses the reference function, and its mean is an acceptable297

approximation of the reference.298
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5. Summary and conclusion299

In this paper we wanted to show the power of transient piezometric head information for the characteri-300

zation of the spatial variability of hydraulic conductivity, for hydraulic conductivity fields displaying spatial301

patterns that can not be characterized with multi-Gaussian approaches. We have taken an extreme posi-302

tion in that we assume that we do not have any information about hydraulic conductivity, neither locally303

nor globally, except for its bimodal marginal distribution. Zhou et al. [46] already showed that transient304

piezometric head was enough for hydraulic conductivity characterization if a training image for the hydraulic305

conductivity was available. Our main finding is that without such a training image but with enough transient306

piezometric head information, we can generate an ensemble of realizations that captures the main patterns307

of the non-Gaussian reference field. The number of piezometers below which the characterization will dete-308

riorate is very much problem dependent; both the type of underlying conductivity field and the boundary309

conditions of the flow problem will have an impact on how many piezometers are necessary and for how310

long they have to be measured. In this paper we do not seek to give an answer to this latter question, but311

rather emphasize that even for a clearly channelized bimodal conductivity field, the transient piezometric312

heads carry very valuable information about the conductivity spatial heterogeneity, and therefore, we should313

always do every attempt to try to assimilate these data into our flow models. On occasions, piezometric314

head is disregarded for the purpose of inverse modeling on the account that it is a low pass filter of the315

conductivities, it is true that in the examples shown, the assimilation of piezometric head cannot get the316

short scale variability of the reference field, but the main patterns are clearly identified. We took a rather317

radical approach, i.e., no spatial information was used. However, additional information about the patterns318

in conductivity, without the need of resorting to a training image, such as the main orientation of the chan-319

nels and their width, will help improving the characterization. If in addition, a training image is available,320

the characterization would improve as demonstrated in the reference scenario S0.321

We have also shown that filter inbreeding can be reduced with covariance inflation techniques. Although,322

when no inbreeding appears, as in scenario S0, there is no need for such an inflation.323

We conclude that the NS-EnKF approach developed by Zhou et al. [46] proves again capable of preserving324

the bimodality of the reference field, even for the case in which there is very limited information about the log-325

conductivities. Covariance localization and inflation are necessary to reduce filter inbreeding. For the specific326

case analyzed in this paper, 56 piezometers were enough to capture the main channels in the reference field;327

however, our purpose is not to give a rule about how many piezometers are needed, but rather to emphasize328

the importance of accounting for transient piezometric heads in our inverse modeling.329
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[48] Gómez-Hernández, J.J., Journel, A.G.. Joint sequential simulation of multi-Gaussian fields. Geostatis-441

tics Troia 1993;92(1):85–94.442

[49] Strebelle, S.. Conditional simulation of complex geological structures using multiple-point statistics.443

Mathematical Geology 2002;34(1):1–21.444

[50] Mariethoz, G., Renard, P., Straubhaar, J.. The direct sampling method to perform multiple-point445

geostatistical simulations. Water Resources Research 2010;46(11):W11536.446

[51] Deutsch, C.V., Journel, A.G.. GSLIB, Geostatistical Software Library and User’s Guide. New York:447

Oxford University Press; second ed.; 1998.448
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[53] Xu, T., Jaime Gómez-Hernández, J., Li, L., Zhou, H.. Parallelized ensemble kalman filter for451

hydraulic conductivity characterization. Computers & Geosciences 2013;52:42–9.452

[54] Chen, Y., Oliver, D.. Cross-covariances and localization for enkf in multiphase flow data assimilation.453

Computational Geosciences 2010;14(4):579–601.454

[55] Greybush, S., Kalnay, E., Miyoshi, T., Ide, K., Hunt, B.. Balance and ensemble kalman filter455

localization techniques. Monthly Weather Review 2011;139(2):511–22.456

[56] Houtekamer, P., Mitchell, H.. A sequential ensemble kalman filter for atmospheric data assimilation.457

Monthly Weather Review 2001;129(1):123–37.458

[57] Bergemann, K., Reich, S.. A localization technique for ensemble kalman filters. Quarterly Journal of459

the Royal Meteorological Society 2010;136(648):701–07.460

18



[58] Nan, T., Wu, J.. Groundwater parameter estimation using the ensemble kalman filter with localization.461

Hydrogeology Journal 2011;19(3):547–61.462

[59] GASPARI, G.. Construction of correlation functions in two and three dimensions. Quart J Roy Meteor463

Soc 1999;125:723–57.464

[60] Hamill, T., Whitaker, J., Snyder, C.. Distance-dependent filtering of background error covariance465

estimates in an ensemble kalman filter. Monthly Weather Review 2001;129(11):2776–90.466

[61] Anderson, J.. An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus467

A 2007;59(2):210–24.468

[62] Zheng, X.. An adaptive estimation of forecast error covariance parameters for kalman filtering data469

assimilation. Advances in Atmospheric Sciences 2009;26(1):154–60.470

[63] Liang, X., Zheng, X., Zhang, S., Wu, G., Dai, Y., Li, Y.. Maximum likelihood estimation of471

inflation factors on error covariance matrices for ensemble kalman filter assimilation. Quarterly Journal472

of the Royal Meteorological Society 2011;138(662):263–73.473

[64] Li, H., Kalnay, E., Miyoshi, T.. Simultaneous estimation of covariance inflation and observa-474

tion errors within an ensemble kalman filter. Quarterly Journal of the Royal Meteorological Society475

2009;135(639):523–33.476

[65] Kurtz, A., Lugolobi, F., Salvucci, G.. Germanium-silicon as a flow path tracer: Application to the477

rio icacos watershed. Water Resources Research 2011;47(6):W06516.478

[66] Wang, X., Bishop, C.. A comparison of breeding and ensemble transform kalman filter ensemble479

forecast schemes. Journal of the atmospheric sciences 2003;60(9):1140–58.480
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[71] Western, A., Blöschl, G., Grayson, R.. Toward capturing hydrologically significant connectivity in491

spatial patterns. Water Resources Research 2001;37(1):83–97.492

[72] Knudby, C., Carrera, J.. On the relationship between indicators of geostatistical, flow and transport493

connectivity. Advances in Water Resources 2005;28(4):405–21.494

[73] Neuweiler, I., Cirpka, O.. Homogenization of richards equation in permeability fields with different495

connectivities. Water resources research 2005;41(2):W02009.496

[74] Stauffer, D., Aharony, A.. Introduction to percolation theory. Taylor and Francis, London. 181pp;497

1994.498
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Table 1: Parameters of the random functions describing the spatial continuity of the sand and shale logconductivities

Facies Proportion Mean Std.dev Variogram λx λy sill
[ln [m/d]] [ln [m/d]] type [m] [m]

Sand 0.3 2.1 0.7 exponential 144 72 1
Shale 0.7 -1.4 0.7 exponential 72 72 0.35

Table 2: Definition of scenarios

Scenario S0 S1 S2 S3 S4 S5 S6
Initial Homogenous fields

√ √ √ √ √ √

Initial Heterogenous fields
√

Observation piezometers (111)
√ √

Observation piezometers (56)
√ √ √

Observation piezometers (24)
√ √

No variance inflation
√ √ √ √

Variance inflation
√ √ √

Training Image

Easting

N
o

rt
h

in
g

.0 750
.0

750

Shale

Sand

Figure 1: Training image used to generate the ensemble of binary facies realizations.
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Figure 8: Scenario S0. Ensemble mean of lnK for the initial realizations and after assimilating heads at the 10th and 60th
time steps.
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time steps.
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Figure 10: Maps a,b show the ensemble mean and ensemble variance of the initial realizations for the scenarios with initial
homogenous fields (S1-S6).
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Figure 11: Scenarios S1-S6. Log-conductivity ensemble mean computed after the 10th time step.
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Figure 12: Scenarios S1-S6. Log-conductivity ensemble mean computed after the 60th time step.
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Figure 13: Scenarios S1-S6. Log-conductivity ensemble variance computed after the 10th time step.
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Figure 14: Scenarios S1-S6. Log-conductivity ensemble variance computed after the 60th time step.
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Figure 16: The ratio of RMSE to SE
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Figure 17: Graphs a,b show the piezometric head time evolution of the initial ensemble of heterogenous log-conductivity
realizations at the control piezometers 1 and 2, respectively; graphs c,d show the piezometric head time evolution on the
initial homogenous realizations at the two control piezometers. The red square line corresponds to the piezometric head time
evolution in the reference, the green triangle line corresponds to the mean of the ensemble, and the gray lines correspond to
the realizations.
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Figure 18: Scenario S0. The piezometric head time evolution after the 60th time step for the two control piezometers. The red
square line corresponds to the piezometric head time evolution in the reference, the green delta line corresponds to the mean
of the ensemble, the gray lines correspond to the realizations and the vertical dashed lines indicate the conditioning period.
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Figure 19: Scenarios S1-S6. The piezometric head time evolution at the control piezometer 1 after the 60th time step. The red
square line corresponds to the piezometric head time evolution in the reference, the green delta line corresponds to the mean
of the ensemble, the gray lines correspond to the realizations and the vertical dashed lines indicate the conditioning period.
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Figure 20: Scenarios S1-S6. The piezometric head time evolution at the control piezometer 2 after the 60th time step. The red
square line corresponds to the piezometric head time evolution in the reference, the green delta line corresponds to the mean
of the ensemble, the gray lines correspond to the realizations and the vertical dashed lines indicate the conditioning period.
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Figure 21: Graphs a,b show the BTCs at the two control planes for scenario S0. The red square line corresponds to BTCs in the
reference. The black lines correspond to the 5 and 95 percentiles of all realization BTCs, and the green delta line corresponds
to the median.
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Figure 22: Scenarios S1-S6. The BTCs at the first control plane. The red square line corresponds to BTCs in the reference.
The black lines correspond to the 5 and 95 percentiles of all realization BTCs, and the green delta line corresponds to the
median.
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Figure 23: Scenarios S1-S6. The BTCs at the second control plane. The red square line corresponds to BTCs in the reference.
The black lines correspond to the 5 and 95 percentiles of all realization BTCs, and the green delta line corresponds to the
median.
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