Numerical sedimentation particle-size analysis using the Discrete Element Method
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Abstract

In this work, DEM interacts with the simulation of flow using the well known one-way-coupling method, a computationally
affordable approach for the time—consuming numerical simulation of the hydrometer, buoyancy and pipette sedimentation
tests. These tests are used in the laboratory to determine the particle-size distribution of fine-grained aggregates.

Five samples with different particle-size distributions are modelled by about six million rigid spheres projected on
two-dimensions, with diameters ranging from 2.5 x 107 m to 70 x 10~ m, forming a water suspension in a sedimentation
cylinder. DEM simulates the particle’s movement considering laminar flow interactions of buoyant, drag and lubrication
forces. The simulation provides the temporal/spatial distributions of densities and concentrations of the suspension.
The numerical simulation cannot replace the laboratory tests since it needs the final granulometry as initial data; but, as
the results show, these simulations can identify the strong and weak points of each method and eventually recommend

useful variations and draw conclusions on their validity, aspects very difficult to achieve in the laboratory.

Keywords:
drag-lubrication forces

ASTM-D-422, buoyancy pipette sedimentation tests, particle size distribution, discrete element method,

1. Nomenclature

In what follows, lists of symbols with sub- and super-
indices by order of appearance in the article are included.
The units of these symbols are in the base-unit SI system.

2. Introduction

The laboratory tests to determine the particle-size dis-
tribution of fine-grained aggregates are based on the anal-
ysis of the sedimentation of a sample of a given soil. Up
to now, there is not a numerical approach that simulates
the experiment with the target to describe and understand
the phenomenological processes that happen in the exper-
iment, specially sedimentation.

Numerical continuum approaches have traditionally
been employed to simulate the suspension sedimentation
of a large number (millions) of particles in a flow. The
concentration evolution is often analyzed using advection-
dispersion equations (see [1, 2, 3, 4]). The traditional con-
tinuum approach (see Fig. 1, right top) is a simplification
of reality, that nonetheless, has provided good results in
many applications [5, 6, 7, 8]; however, the physics of the
problem is better represented by individual particles trans-
ported by a fluid, with flow interacting with the particles
that, in turn, interact among themselves.
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In this work, the granular media is analyzed as a discon-
tinuous structure with rigid particles and voids between
them, see Fig. 1, right bottom. The formulation of the
Discrete Element Method (DEM) [9] probably is the most
suitable to simulate the behavior of granular materials in
these situations, since it is based on the study of the indi-
vidual particles and their contact interactions. Addition-
ally, DEM can capture other information such as arrange-
ments of particles or global constitutive laws (contact al-
gorithms in this context, see [10]), aspects very difficult to
account for with numerical methods based on continuum
media. Nowadays, and thanks to the increased computa-
tional resources, it is possible to conceive the modelling
of the sedimentation of a large number of particles by ad-
dressing the physics of the problem at —or approximate—
the grain scale.

We review now some of the methods that have been de-
veloped to analyze the particle-fluid interaction and mo-
tion of particles inside a fluid. Lagrangian particle track-
ing used in computational fluid dynamics (CFD) meth-
ods are based on multiphase continuum techniques, see
[11], and are applied to analyze the behaviour of sprays,
small bubbles and dust particles; processes in which the
contact interactions are negligible. The Immersed Bound-
ary Method, see [12, 13, 14], simulates the fluid-particle
interactions: fluid and structure are represented by Eu-
lerian and Lagrangian coordinates, respectively. In turn,
the Navier-Stokes equations are solved in a structured grid
so that the effort needed to generate a body-fitted grid is
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Description

g Gap

Normal vector or direction
Horizontal position/coordinate
Vertical position/coordinate
T.T Tangential vector/direction
n Number, index
Displacement

t Time

f Force

K Penalty stiffness

m Mass

w Weight

1 Inertia

M Moment

w % accumulated weight
Re Reynolds number
Coefficient

Area

Concentration
Empirical exponent
Aspect ratio

Gravity acceleration
Volume

Width

Height

Pressure

Unit vertical vector
Increment

Frictional Coulomb’s law
Friction coefficient
Friction angle
Angular rotation
Diameter

Density

Dynamic viscosity
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avoided, and, at the same time, body resistant forces are
obtained. The method requires an accurate discretization
of particles and fluid, therefore, its application is limited to
problems with a small number of particles. Stokesian Dy-
namics, see [15, 16], simulates the flow and particles sub-
jected to stochastic Brownian forces, but again requires a
high computational cost for a relatively small number of
particles, see [17].

The computational cost for a large number of parti-
cles was recently reduced by the combination of DEM and
CFD, see [18]. In the CFD-DEM models of fluid-particles
systems, the solid motion is obtained by DEM but the
flow motion is described by locally averaged Navier-Stokes
equations solved using a CFD approach. The coupling
between fluid and solid phases is modelled by Newton’s
third law. The combination of DEM and other fluid nu-
merical simulations has successfully applied in rheology of
suspensions, see[19, 20, 21] and sediment transport, see
(22, 23, 24].

Symbol Sub- or supra-index
(o)'F Particle number indices
(©)y Total

(0)¢ Contact

(3) Second-time derivative
(0)cg Center of Gravity

() Drag

(o) Lubrication

(o), Hydrostatic

(%) First-time derivative
(O)mt Matrix

(0), Ordered

(9)na Hydrometer

()t Buoyancy test

(©)ps Pipette test

(o) Fluid

(0)yr Terminal

(9)ss Stokes

(o), Particle

(©)ey Cylinder

(©)y Layer of cylinder

(©)jn Layer in contact w/ bulb
(©)¢o Column

(0)s Suspension

(o), Out-of-plane dimension
(0)o Initial

©F Pure water

(©)sp Buoyancy test sphere
(©)a Pure air

(©)dem Discrete element method
(©)rst Experimental test

Finally, the coupling of the Lattice-Boltzmann method
with DEM, see [25, 26], is also suitable to simulate motion
of particles in a flow but requires an accurate and refined
discretization, not computationally suitable for the prob-
lems studied here as explained in [27].

In this work, flow and particles are coupled using the
one-way-coupling method, see [28]. This technique sub-
stantially reduces computation, considering that flow does
modify particle movement but particles do not substan-
tially modify flow: see [29] for the application of this tech-
nique to the analysis of inclined sediment beds. The as-
sumption is acceptable to simulate sedimentation of fine-
grained materials due to the small size and low deposi-
tion velocities of the particles. In addition, the action of
the flow is analytically represented by the flow-particle in-
teraction modelled by the drag force taking into account
concentration of the neighboring particles, see [30], and
by the squeezing of the intermediate flow when two par-
ticles are close, see [31, 32]. These two models permit
the calculation of forces other than the contact forces that
are included into DEM, allowing a good representation
of the long time deposition process at an affordable CPU
cost. Due to the dissipative character of the drag forces,
the equations are solved using the time integration scheme
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Figure 1: Granular medium (left). Equivalent continuum medium
model (top right) and discontinuous medium modelled with 2D pro-
jected spheres (bottom right).

from [33], which offers a stable and physically consistent
framework to model dissipation phenomena. Finally, the
contact interactions between particles are simulated using
the penalization technique from [34].

The key point of this paper is to apply the fluid—particle
coupled DEM technique for a better understanding of the
sedimentation. This technique will be applied to numer-
ically simulate the ASTM D-422 [35] sedimentation test,
providing additional data and interpretations that real ex-
periments cannot provide; in addition and for comparison
purposes the less used buoyancy, [36, 37], and pipette [38]
will also be simulated. The three tests are used in the
laboratory to determine the particle size distribution of
granular samples with diameters ranging from 2.5 x 107
m to 70 x 107 m; distributions that cannot be easily mea-
sured by standard sieving methods as explained in [39].
DEM incorporates the particle kinematics and therefore
the temporal and spatial distributions of densities and con-
centrations of the suspension. These data along with the
laws of hydrostatics are used to numerically reproduce the
measurements of a hydrometer 152-H, a buoyancy sphere
and a pipette. A comparison of the results derived by
the numerical simulation of the laboratory experiments to
five original a-priori known distributions is performed with
good agreement, validating the simulations and identify-
ing several issues regarding the interpretation of the labo-
ratory observations.

Although tests based in sedimentation are widely used
due to their simplicity and relatively low cost, it is im-
portant to remark that other expensive and sophisticated
techniques have been developed for the particle size anal-
ysis using x-rays, see [40] or a combination of x-rays and
centrifugation, see [41].

The remaining of the paper has the following struc-
ture: Sect. 3 introduces the DEM method, its formulation
and the terms necessary for the one-way coupling of the
particle-flow interaction. Section 4 analyzes the sedimen-
tation test, and describes its numerical implementation,
including the forces acting on the particles and how to
project the axisymmetric geometry into a two-dimensional

(2D) one. Finally, Sect. 5 presents and analyzes the results
of the numerical simulations, with discussions on the ac-
curacy of the laboratory experiments and on the quality
of the measurement techniques.

3. Discrete element method

DEM is a numerical tool that naturally simulates the
behaviour of particle materials. It is able to model the
geometry of each particle and to capture the mechani-
cal response without the necessity of complex constitutive
laws; the global response of a set of particles is a conse-
quence of multiple contact/friction interactions among a
large number of particles (micro-mechanics). Multiple si-
multaneous and long-lasting contacts might be produced
generating particle clusters; an appropriate technique to
simulate the contact interaction among particles is penal-
ization, see [34]. This technique does not increase the num-
ber of unknowns and produces only small particle overlaps,
see Fig. 2 left. In addition, these unphysical overlaps are
minimized by a proper tuning of the numerical parameters
used in the penalization approach.

The DEM detects contacts between particles through a
gap function gif‘ that measures the minimum distance or
maximum overlap between two particles numbered i and
k, as

g¥=(x-Y)N*, (1)

where X, Y are the coordinates of the two points, one in
each particle, that give the minimum distance (if parti-
cles are not in contact) or the maximum penetration (if
they overlap). The penetration, when happens, is always
minimal, although it has been exaggerated in Fig. 2 for
clarity. When this penetration occurs, or if the gap func-
tion is zero, we will say that the particles are in contact.
N*=_N* is the normal unit vector at the contact point,
see Fig. 2.

In case of contact, the relative motion between the con-
tact points in the tangential component is measured by
the tangential gap g;" as

gf =X +U'X) - Y -U (V)| T*, (2)

where U'(X) and U(Y) are the displacements of the contact
points of i and k corresponding to a time increment Af,
while T% is the tangential unit vector at the contact point
as in Fig. 2.

The contact particle interactions are mechanically mod-
elled by defining the contact force as

PN T ®)

where fc’;‘v and c”} are the components of the contact force
that act against the interpenetration in the normal direc-
tion and control the motion in the tangential direction,
respectively. For spherical and rigid particles the contact



Figure 2: Top: Penetrating contact between two particles. Bottom:
g;{/‘ defines maximum penetration, g?‘ tangential displacement. Over-
lapping magnified for better representation.

can be represented by a point force applied at a single
point. We define

W= - 1A @

where, according to Coulomb’s law u | fc’;‘vl is the maximum
friction force, with u = tan¢ being the friction coefficient,
and ¢, the friction angle; we can distinguish between mo-
tion by rolling if ®* < 0 (lack of relative motion at the
contact point) or by sliding if ®* > 0.

The penalization technique based on the soft-sphere
model is used to determine the contact forces between the
two particles. It consists on introducing two virtual high
stiffness elastic springs at the contact points X, Y along
the normal and tangential directions (see Fig. 2 right) re-
sulting in: fcllk\, = Ky gif‘ and fcl’} = Kr g;" for rolling, or

C’]’i, = Ky gff and fcl]} =u fc’]’; for sliding. The Ky, Kr and u
coeflicients are the constitutive parameters of the model,
the first two being artificial numerical parameters repre-
senting the stiffnesses of the elastic springs. These stiff-
nesses must be chosen according to the model developed
in [42] that take into account both the deformability and
the impenetrability of the particles. In this problem the
particles are considered almost rigid, therefore the springs
mainly avoid interpenetrations. The reference [43] addi-
tionally provides the prescriptions to minimise the inter-
penetrations without losing numerical stability. The value
of the stiffness of the spring will be computed in section
5.2.

The governing equations of DEM for a system of n, par-
ticles are formulated by the translational and rotational
dynamic equilibrium (see Fig. 3) of each particle with mass
m' and inertia I’

= S S L
where u’ = {u!, u} and ¢ are the displacement of and ro-
tation around the center of gravity (cg) of each particle;

ré=m, (5

the supraindex () denotes second time derivative. The
force fi = DI f* is the vectorial resultant of the contact
forces of all other particles acting on particle i; the rest of
forces fﬁl, f;, f;l, w' are the drag, lubrication, hydrostatic
and weight, all of them applied at the cg of i and defined
in the next section. In the second equation M’ is the only
non-zero moment generated by the friction contact forces:
the other forces do not create moments for spherical par-
ticles.

Figure 3: Forces on spheres sedimenting inside a viscous fluid.

In 2D, Egs. (5) form a set of 3n, non-linear equations
with a right-hand side dependent on the displacement u'
through force f' and on velocity @' through fﬁz The left
hand sides inertial terms depend on the two unknowns,
translational and rotational accelerations i’ and &'.

The displacements U’ of any point (x',y’) within i are
obtained by first order interpolation using

1
G JU [0 iy
v {glo R g @
where x_,, yi, are the coordinates of the cg of i. Finally, the
time integration of Egs. (5) is carried out by an implicit
single-step algorithm proposed in [44, 33]. The choice is
based on the algorithm capability to simulate the dissipa-
tion produced by friction and drag forces in a physically

consistent manner without the need of using dampers.

4. The sedimentation tests

4.1. Description

This experiment is traditionally performed to obtain the
grading size distribution of samples with particles of diam-
eters of less than 70 x 107® m. The standard ASTM-D422
describes the procedure to obtain the grading size distribu-
tion using the sedimentation test: a sample of total solid
(particles) mass m,, of 60x1073 Kg is poured into a cylinder
full of water. The cylinder is shaken for 60 s, so that the
particles are dispersed forming a suspension with homoge-
neous concentration. Then, the cylinder rests in vertical
position and the particles start sinking with velocities de-
pendent to their sizes. The concentration of the suspension



progressively gradates in the vertical direction as a func-
tion of the particles’ sizes. After several hours, most of
the large and intermediate particles settle at the cylinder
bottom, while the finer particles are still at the top and
middle.

ASTM-D422 formulae provide the grading size distribu-
tion at different instants through the measurements of a
hydrometer, composed of bulb and stem. The hydrome-
ter immersed in a suspension measures the concentration
around the bulb, which sinks a certain depth. As particles
concentrate towards the bottom, the hydrometer gradu-
ally sinks deeper since the concentration around the bulb
reduces. The depth of the hydrometer measured from the
bulb center to the water surface taken at different instants
provides and indirect measurement of the time variation of
fluid density (and consequently of particle concentrations)
at the bulb level; depth is related to fluid density using the
analytical laws of flotation from [45].

The buoyancy and pipette tests provide the grading size
distribution differently, measuring the concentration of the
suspension at different instants but at a fixed depth.

The buoyancy test measures the suspension concentra-
tion at a specific and constant depth y, as described in
[36]. A Teflon sphere of diameter 2.5x1072 m and weight
20x107* Kg attached to a nylon line connected to a sensi-
tive scale is submerged into the liquid. The scale measures
the apparent mass of the sphere.

The pipette test is conceptually the most simple and
accurate test, see [38], although requires the additional
use of a drier and a precision scale. At prescribed times,
particle concentrations are measured by weighing the dry
residual resulting from 35 ml samples taken at a specified
and constant depth y,, using a standard pipette.

In the three tests, limiting diameters and accumulated
weights are determined (as it will be explained later) up
to ten times, and with them an approximation of the par-
ticle size distribution is obtained. The limiting diameter
¢, is the maximum diameter of the particles above a cer-
tain depth. The accumulated weight w, is the weight of all
particles with a diameter smaller than or equal to ¢,. The
pairs ¢,,w, observed at different times provide the parti-
cle size distribution, commonly called granulometry of the
sample.

The target of the numerical simulation described in this
section (and to the best of our knowledge not published
by other authors) is to numerically replicate the physics of
the three sedimentation tests: hydrometer ASTM D422,
buoyancy and pipette. The numerical simulations start
with a given grading size distribution and study the sedi-
mentation providing the position, velocities and accelera-
tions of all particles at all instants. From these results, it is
relatively simple to reproduce the measurements as they
would have been observed with each of the three tests.
The grain distributions resulting from the numerically-
reproduced test measurements differ only slightly from the
starting ones.

The remaining of this section describes the physics and

the numerical implementation of the experiments.

4.2. Fluid-particle interaction

The experiments simulated in this work include par-
ticles with small Reynolds numbers, more precisely, the
Reynolds numbers for the particles in all samples analyzed
range from Re = 1.2 x 107 to 0.28 as determined from
the observed minimum and maximum terminal velocities.
Therefore, the flow is laminar, a consequence of the small
size of the particles and their small depositional velocity.
We can assume that particles do not perturb the fluid,
although the fluid does affect the particles as they move.
This “one-way coupling” is a computationally affordable
assumption that allows the simulation of the interactions
between fluid and particles. The one-way coupling is es-
sential to reduce the CPU cost. It permits to simulate
large experiment times (~ 40000 s), with high number of
particles and small Atr. The use of one way requires two
conditions: 1) the Re < 1 and 2) the volume and mass
concentrations must be lower than 1.6% and 4% respec-
tively. The first condition is shown in this section and the
second in 5.3.

The action of the fluid on the particles is represented
by the Stokes’ drag force, fil, and by the squeezing force
fi, which appear in the right hand side of Eqgs. (5). Other
forces might be included such as Basset, Virtual Mass or
Magnus but they are negligible for this problem. The ex-
pressions for the drag and lubrication forces are presented
next.

4.2.1. Stokes’ drag forces

Forces created by fluid-particle interaction have tradi-
tionally been modelled using Stokes’ law, see [46], a sim-
plified model that does not take into account the inter-
actions of other particles in the surrounding. This law is
not completely valid to study the sedimentation of this pa-
per since the concentrations obtained in this problem are
higher than the limiting value of 0.3 kg/m® given by [47].
It is important to remark that the Stokes’ law provides the
basis for the analytical formulation of the ASTM D-422,
buoyancy and pipette tests. For the numerical modeling,
the more sophisticated formulation from [30] solves the
previous deficiency, resulting in the drag force f!, acting
on i as

i [ ipi il i gy (1€
fa=5 Cipr Al —id| @y =iy (H'™ . (7)
This expression is the one used in the numerical simulation
of Eq. (5). The symbol C/, represents the drag coefficient
and depends on the particle Re. Both are given by

4 48 \? o pgct it =] ¢
i = (0.63 + —) . Rel= M . ®
Re' vy

where pr, vy are the fluid density and dynamic viscosity,
respectively. The remaining symbols of Eq. (7) are: ¢/,



particle concentration around i, A’, area of projected par-
ticle with diameter ¢’ into the plane perpendicular to the
flow, @', velocity of the fluid around i (i, ~ 0 in this work)

and e’ is an empirically exponent given by
. 1 A2
¢l =3.7-0.65 exp [—5 (1.5 - log,y Re') ] 9

In the numerical simulation, the concentration ¢’ of par-
ticles around i is calculated by discretizing the space into a
regular grid with cell size given by [48] and computing the
volume of particles inside each cell, see [49] and Sect. 4.4.

4.2.2. Lubrication forces

Each pair of approaching particles experience a repul-
sive lubrication force due to the squeezing of the flow be-
tween them. The lubrication forces are important when
two closer particles approach each other and contact. Ac-
cording to [31, 32], this force can be defined as

. . —10 g* .
fF=10 (r:b)3 exp(iri gN] N | (10)
¢

where the constant 10 is a parameter that represents the
intensity and the range of the repulsive force, valid for very
small spheres in water. The coefficient r; =2 ¢' /(¢ +¢F) is
the ratio between the particle diameter i and the average
diameter of the two interacting particles. Notice that due
to the negative exponential the lubrication forces do not
have a relevant influence for very distant pair of particles.

4.8. Simple model of sedimentation

While for the numerical modeling of sedimentation we
will use the more precise expression of the drag force given
by Eq. (7), the interpretation of the experiments is per-
formed using the same simplified analytical formulation as
in the sedimentation tests. We will review next this sim-
plified model, and the procedure to infer the particle grain
distribution. (Additionally, this simplified model allows
us to estimate the number of time steps to be used for the
numerical modeling.) The approach from [50] is based on
Stokes’ law for a single spherical particle, with a simplified
drag force given by

fZ'sf =3n¢ v (11)

Now, we can establish Newton’s second law for a single
sphere, assuming that the only forces at which is subjected
are weight, drag and buoyancy:

T . T ; i i [y
5 (¢’)3gpp—g @) gpr-3nviprdul =mii', (12)

where p, is the particle density and g is the gravity con-
stant. Had we included the lubrication forces or the con-
tact forces in Eq. (12), it would have been impossible to
obtain an analytical solution due to the high non-linearities
introduced by these two forces. As already mention, these

forces are accounted for in the numerical simulation, which
should give a more accurate physical model.

Equation (13) left is the general solution of Eq. (12), for
the initial condition @'(0) = 0.

u"(r)—[l—ex (— 18 Vft)} i coal =
- p op (¢,‘)2 tr > tr =

(op —py) 8 ()
18 Vf ’
(13)
The solution includes a negative exponential term that
vanishes for a sufficiently long ¢, at which time the velocity
reaches a constant terminal value #!,. Figs. 4 (top and
bottom) show sedimentation velocities computed using the
previous equation for particles with density 2500 kg/m?,
suspended in water of density 1000 kg/m?® and viscosity
107 N-s/m?. The time to reach a @' = 0.99!, is found by
iterating in Eq. (13) left and it depends, quadratically, on
the particle size. The computation of the response time #,,
is necessary for the election of Az (see section 5.2). The #,
ranges from 3.2 x 107 s for the largest particle to almost
zero for the smallest one, with a value of 3 x 107 s for
an intermediate one, see also Table 1. Once the terminal
velocity has been reached, the particle diameter can be

estimated at a certain time directly by Eq. (13) right

. 18 Vf .
f= ] - 14
Y= N —pig Y (14)

This expression is the one reported in the standard for the
interpretation of the experiments. Notice that to derive
the diameter from Eq. (14) an estimate of lu;rl is necessary;
Sect. 4.5 describes how the diameters are derived.
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Figure 4: Particle sedimentation velocities |u’| in water as a function
of time for several diameters. Notice how the terminal velocity is
quickly reached.



[¢x10°m [ 4, x 107 s | J,|x 10 m/s |

70 313.4 400.5
50 104.0 204.3
25 26.0 51.09
10 4.16 8.17
) 1.04 2.04
2.5 0.26 0.51

Table 1: Terminal velocities [it;,| and time to reach them f;, derived
from the approximate analytical expression for several particle diam-
eters.

4.4. Numerical generation of the sample

As mentioned in Sect. 4.1, after the cylinder is shaken,
the suspension of particles is homogeneous. Then, these
particles start sedimenting under the action of gravity and
interact with the flow under drag and squeezing forces,
see Eq. (7) and Eq. (10). Prior to the beginning of the
simulation, a homogeneous distribution of particles has to
be defined as initial conditions for the numerical modelling.

The samples are composed of a set of particles, whose
sizes follow a specific distribution. The set is defined by:
i) several different diameters ¢, with n ranging from 1 to
ng, = 220, and ii) the number of particles n|, associated
to each ¢,,.

Wn1

Wn

| L R S :

log ¢

¢n—1 ¢n ¢n+l

Figure 5: Continuous (thick) and discretized piecewise (dot-dash
line) grading size distribution: accumulated weight w in % vs. particle
diameters ¢, in logarithmic scale.

Figure 5 schematizes the granulometry; the abscissa rep-
resents the diameter ¢ and the ordinate the percentage of
accumulated weight w: the weight of particles with diame-
ters less than or equal to a given one defined by a subindex.
The figure plots with a thick line the particle size distribu-
tion of a generic sample. Since the real distribution is con-
tinuous but DEM must manage a finite number of sizes,
the curve is discretized into ng4, points. The weight cor-
responding to ¢, is approximated by w,, calculated from
the original distribution with the average size (¢,+1 + ¢,,)/2
(vertical line of dots). That is, the weight of particles with
diameter exactly ¢, is (W, — w,_1).

Given a sample of mass m;, and a set of ¢,, the number
of particles corresponding to each diameter is obtained as

Wy — Wp—1

_ 15
100 p, 7 &3 (15)

nlg, =6 my

Therefore, the original distribution is replaced by the dis-
crete (dot-dash line) defined by the relations ¢, < wy.
The piecewise distribution tends to the original one as ng,
increases.
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Figure 6: Two-dimensional rectangular matrix: particles randomly
located in cells (stratified random sampling). Positions represent the
homogeneous suspension after shaking.

In the laboratory test, a total of n, = Z:"’:”I ng, particles
representing the 60x1073 Kg of the sample is poured and
shaken in a standard cylinder of height H = 0.457 m and
diameter B = 0.0635 m with a geometrical ratio r., = B/H
= 0.14.

The particle motion in the three tests is approximately
vertical and axisymmetric. In order to reduce the number
of particles and the CPU cost, a 2D rectangular model of
the cylinder vertical section is used for simulation. Only
the particles closer to the section are simulated and their
centres move in this plane. The dominium is a cuboid
with depth equal to the maximum diameter of the parti-
cles. The centres of the particles only move in the vertical
plane located in the middle of the depth. The 2D model
reduction implies a loss of physical phenomena since it
cannot simulate the kissing or tumbling of the particles,
but it provides the basic data and interpretations that we
cannot deduce with the real experiments. We choose to
model the equivalent of two opposing wedges of 1°, that
is, 180" of the total volume; these two wedges are pro-
jected onto a 2D rectangle of width B and height H. The
rectangle is divided onto a regular 2D matrix of n,,, X n,,,
with n,, equal to Vn,/180 rounded up to the next inte-
ger (see Fig. 6 left). The cells have the same aspect ratio
as the cylinder. The particles, amounting to a total mass
of 60 gr/180°, are randomly stratified inside the cells, see
Fig. 6 right.



4.5. Sitmulation of tests

As particles settle they are progressively gradated in the
cylinder according to its size and therefore particle concen-
tration varies within the cylinder and in time. The one-way
coupled DEM computes the positions of the several-million
particles by integrating Eqs. (5) at all time steps. At any
given time step particle concentrations can be computed
for specified volumes at given depths in the cylinder. Next,
we describe how the results from DEM are used to mimic
the laboratory tests.

4.5.1. Simulation of the ASTM-D422 hydrometer test

To measure fluid density (or equivalently particle con-
centration) at different instants, an ASTM-E100 hydrom-
eter model 152-H (dimensions in Fig. 7) is sunken in a
standardized cylinder full of water with a particle suspen-
sion. This type of hydrometer is suitable for measuring the
range of densities expected in the simulation. Although it
would have been possible to include the hydrometer it-
self an special body in the numerical model, it would have
required specific formulation for its equilibrium equation
and would increase the CPU time as explained in [51]. We
decide not to include it in the simulation since its presence
does not affect the particles’ sedimentation. (Including
the hydrometer in the simulation could help to optimize
its shape, weight, etc.)

Bulb = 140 Stem = 140

K 4

Figure 7: ASTM-E100 hydrometer model 152-H, dimensions in mm.

Figure 8 depicts the physical functioning of the hydrom-
eter. In the experiment, shown in the left side, the hydrom-
eter would sink to a depth y, at certain z,. With these two
values a limiting diameter ¢, of all particles above y, is
determined by the following expression:

18 18y yg,, (16)
-pp)lgl N

(An expression very similar to that in (14).) The accu-
mulated weight for all particles with dlameters below this
limited diameter ¢, is given by

Co
=100 = . (17)
o
with ¢o the particle concentration at time zero, which is
known, and ¢, the particle concentration at time ¢,, which
is given by
pp (os —py)
Pp — Py
where pjy is the suspension density, which is calculated from
the hydrometer stem as a function of the read y,.

o

Combining the previous expressions, the accumulated
weight equation of the projected parallelepiped is obtained
by

wo = 100 L2EL Y0 oy (18)
Pp = Pf My
where ry = py/py, given by [52]
My
ry = , 19)
_A(yow_yo)pf (

where A is the cross-sectional area of the hydrometer stem
and y,, the depth at which the same hydrometer would
sink in pure water.

As a summary, to obtain the diameter ¢, and the asso-
ciated accumulated weight w, it is necessary to measure,
in the laboratory, the depth of the center of gravity of the
bulb and the density of the suspension around the bulb.

The standard prescribes that depths y, must be mea-
sured at ordered instants 1, = {2,5, 15, 30,60, 250, 1440}
min, and the resulting pairs (¢,,w,) obtained after equa-
tions (16) and (17) the granulometric curve is established.

Ps

1y °

ps'

Figure 8: ASTM D422 test: hydrometer sunken in suspension with
particles artificially enlarged. Distribution of densities (left); pres-
sures and force equilibrium (right).

The numerical simulation of the experiment proceeds
first by computing the depth at which the hydrometer
would sink, establishing the equilibrium of the hydrome-
ter weight w,y and the resultant of hydrostatic forces f;l as
schematized in Fig 8 right. The density of the suspension,
and therefore the pressure exerted on the hydrometer, is
not constant as explained in [45]. For this reason, the com-
putation of the y, is not straightforward; it is computed
from the positions of the particles as described next

e Discretization of H in nj equally spaced layers of
height Ay, see Fig. 8 left.



Each layer must contain a statistically representative
number of particles; by trial and error we choose n; =
4000 with a resulting h;, = H/nj = 115 X 107 m, that is,
each layer is as thick as about 46 particles of the mini-
mum diameter and as about 1.5 particles of the maximum
per layer. For the purpose of computing solution den-
sities, it is necessary to assign a thickness h, to the 2D
projection of the two 1° wedges, this thickness must be
such that the total volume of the resulting parallelepiped
coincides with that of the two wedges, which results in
h, = xB/720 = 2.26 X 10™*m.

e For layer j (j = 1,...,ny, counting down from the

liquid free surface), the density of the suspension pf
is given by

J J
J_ Pp Vp TP Vg

ol , (20)

J
Vi

where v,’, = B hyy h; is the total volume of the layer, and

/= v,’t—vj, is the volume of the particles in the layer, which

v
»
is calculated using DEM. The density of the suspensions
only has to be calculated for the layers that comprise the

bulb.

e The vertical hydrostatic force is the resultant of the
pressures acting on the hydrometer bulb.

For a layer j, the pressure is the weight of a unit-area
column from the bottom point of the layer to the liquid
free surface, which is computed by adding up the weights
of all layers above

j U )
i pS vCO |g|
J = I8 o O
p _Z B h,

n=1

where V! is the volume of layer n. This pressure is a vector
orthogonal to the bulb surface.

The hydrostatic force acting on the bulb is the sum-
mation of the pressures exerted by the fluid of each layer
on the horizontal projection of the intersection of the the
bulb external surface with the layer. Therefore, for a hy-
drometer with its tip immersed in j, and with its bulb
intersecting nj, layers the total hydrostatic force is

njp—1

f;l — Z(pj—nJrl J) T [(bn+1)2 _ (bn)2],
n=1

where j is the unit vertical vector, the dot - represents the
scalar product and »" the bulb radii at the intersection
with the layer boundaries.

e In equilibrium, the tip of the hydrometer sinks to y,
(located inside a layer j), and the hydrometer weight
wha balances f7.

The equilibrium depth is found iteratively varying the
position of the bulb tip until 'fi_l' < |wpal < |f£|, corre-
sponding to a depth y, between (j — 1) Ay and j hy. If
the number of layers is large (as is the case of this exper-
iment), that is, the height of the layers is small, we can
assume that the tip of the hydrometer is at the bottom of
the layer, but if the layer thicknesses are large it is best
to assume a varying pressure within the layer and linearly
interpolate the position of the tip as

Jhy =G =1 hy

T

(waal =|r7)) - 0

Once the depth of the tip of the hydrometer is known,
the depth of its center of gravity is computed, and the
density of the solution is obtained using (20) considering
the approximation that the density is constant along the
height of the bulb. From these two parameters, the pairs
(¢po,w,) are obtained as in the standard.

During the DEM simulation, particle positions are
stored every 10 s. Therefore we could simulate the posi-
tion of the bulb, and the suspension density at any instant
after the initial shaking.

4.5.2. Simulation of the buoyancy test

In this variation of the previous test, a precision dy-
namometer (Fig. 9 left) measures the tensile force f,, act-
ing on the line, which must be equal to wy, — f,, where
W, is the sphere weight, and f), = —v,, ps g is the (time
varying) hydrostatic force at the depth of the sphere yj;
the volume of the sphere is noted by v, and py is the sus-
pension density at that depth. The apparent mass of the
sphere is therefore my, = | f b,| /|gl. The suspension density
is numerically computed by DEM following the same pro-
cedure described for the previous test and Eq. (20). Again,
to reduce the CPU cost, the sphere is not simulated as an
additional particle for the same reasons as we did not sim-
ulate the hydrometer in the ASTM test.

The apparent mass m)(t,) is measured in this test at the
ordered instants ¢, = {0.5,1,2,4,15,30,60, 120,240,480}
min. At each time, a diameter ¢, is determined with equa-
tion (16) but replacing ye, by yir, which remains constant
through the experiment. And the percentage of accumu-
lated weight of particles with diameter < ¢, is given by

m —m,
w, = 100 22 sohy, =

=

Pp

. (22)

wo mSpla)

where msplw is the apparent mass that the sphere would
have if immersed in pure water to the same depth, and
mSPla is the mass of the sphere in air.

In the numerical simulation, we determine the apparent
mass of the sphere by subtracting from the mass of the
sphere, the mass of the solution which occupies the same
volume as the sphere.
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Figure 9: Buoyancy test (left): force equilibrium and scale measuring
apparent mass mg, of an immersed sphere at constant depth yp,.
Pipette test (right): extraction of 35 ml suspension subsample at
constant y,, around circle. Particles artificially enlarged for clarity.

4.5.8. Simulation of the pipette test

This test measures the concentration ¢, of the suspen-
sion at a fixed depth y, and at the axis of symmetry of
the cylinder for several ordered instants ¢, by extracting a
small amount of suspension with a standard pipette, see
Fig. 9 right; we have not found in the literature any data
of the times that should be used for the sampling. The
subsample is dried and the mass m,, weighted; then, the
concentration is directly calculated dividing this weight by
the subsample volume.

The accumulated weight is calculated with the same ex-
pressions as those of ASTM-D422 with y,, = y,. Again, a
set of data pairs (¢,,w,) provides the particle size distri-
bution as in Fig. 5.

In the numerical simulation, the composition of the sus-
pension is calculated from the simulation of DEM by sam-
pling the particles’ position and diameters inside a circle
centered at the vertical centerline of the cylinder and at
the prescribed position of the pipette tip y,;, see Fig. 9
right. The circle radius is chosen so that the sampling
volume is equivalent to that of the experiment accounting
for the fact that we simulate only two wedges of 1° of the
whole cylinder.

4.6. Numerical solution

The procedure to obtain the numerical solution starts
with the input of material, numerical parameters and the
initial location of particles described in Sect. 4.4. The ini-
tial velocity is set to zero;, the computer code simulates
the sinking through changes of positions and velocities for
all particles taking into account gravity w', drag fﬁl, con-
tact f., lubrication f; and hydrostatic f’h forces acting on
all particles.

DEM detects contacts applying Eq. (1) to all particles
to compute the corresponding contact fﬁ.k and lubrication

fk forces. Traditionally this contacts are computed for all
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possible data pairs in order to reduce computational time.
In this work, the efficient procedure described by [53] has
been used, checking particle contacts only with the closest
particles and/or boundaries.

The contact and lubrication forces are used in the gov-
erning Eqs. (5), forming a set of non-linear differential
equations, which are solved through time with an iterative
finite-difference algorithm. We have used a time integra-
tion scheme specifically designed for the consistent energy
dissipation of contact, drag and consequently lubrication
non-linearities, see [54] and [44]. The CPU time is fur-
ther reduced using a variable time step At, with an upper
limit to suppress spurious oscillations in particle velocities.
The terminal velocity |/,| and its related terminal time 7,
from Sect. 4.3 defines the initial time increment used to
integrate the Eqs. (5): At has to be smaller than the 7,
of the smallest particle. Furthermore, to ensure accuracy
besides stability, we use A < 0.1 min(#,). At certain cho-
sen time step, a computer routine checks that all particles
have reached their #,,; then, the Ar from the previous iter-
ation is progressively increased until unstable changes in
the velocity appear again, then this Az is reduced a small
amount and the check is repeated.

The set of equations is linearized with standard Newton-
Raphson iterative techniques.

5. Numerical sedimentation and particle size dis-
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Figure 10: Particle size distribution (granulometry) for five repre-
sentative samples with diameters between 2.5 % 107 m and 70 x 10~¢
m.

This section presents the results of the numerical analy-
sis for the particle sedimentation and describes their most
important features. Additionally, the simulations provide
useful insight into the performance and quality of the three
test designs.

5.1. Initial granulometry

Five grading size distributions or “samples” have been
studied, see Fig. 10. All samples have the same mass, and
contain particles with diameters ranging from 2.5 x 107
m to 70 x 107® m and at least one particle for each ¢, in



which the grading curve has been discretized; the range of
sizes can be seen in Fig. 10. The size distributions have
been chosen to be very different among them and to in-
clude discontinuities in order to investigate the measure-
ment capabilities of the test methods.

The first sample is composed mostly of small particles
with diameters from 2.5x107% m to 20 x 107® m with some
large ones of minimum diameter of 60 x 107% m; the large
particles amount for 40% of the total weight; two rising
limbs and a plateau in between can be observed in the size
distribution curve. In the second sample, large diameters
from 50 x 107 m to 70 x 107% m are prevalent, comprising
95% of the weight; this and the following distributions
have a single rising limb. In sample 3, small particles from
2.5x 107 m to 15x 10° m are dominant, accounting for
95% of the total weight. In sample 4, 92% is composed by
particles with diameters between 25 x 107° m to 35 x 1076
m, 5% of the sample has smaller diameters, and 3% larger
ones. Finally, sample 5 has a smooth distribution with
gradated diameters of approximately equal contribution
to the total weight.

Before carrying out the simulation, terminal velocities
and the times to reach them are calculated for several rep-
resentative particle sizes using Eqs. (13). Table 1 shows
|te;,] and 1, for single particles sedimenting in water. It can
be appreciated that both quantities strongly depend on
size and that the highest velocity is three orders of mag-
nitude larger than the smallest one.

ASTMD-422 requires that measurements must be taken
once all particles have reached terminal velocity and tran-
sient phenomena have disappeared, prescribing that the
first measurement must be done after the first minute of
sedimentation.

5.2. General simulation

For all samples, the penalty parameters are Ky = K7 =
10° N/m, values based on trial and error to avoid numerical
ill conditioning due to the very small size of some parti-
cles. As mentioned in Sect. 4.6, the initial Az must be small
enough to capture the transient particle motion shown in
Fig. 4; thus, an initial At ~ 2.6 x 1077 s is adopted. Ac-
cording to [49], the restitution coefficient is 1 for very low
particle concentration flows and the main source of dissi-
pation is the viscosity of the flow. The other parameters
have been given in the previous sections.

In Fig. 11 the numerical sedimentation simulation is
shown for 60, 300 and 900 s (from top to bottom) and
for the five samples (from left to right); the long rectan-
gles represent the cylinder. For display purposes, a zoom
is made at the top, intermediate and bottom areas of the
cylinder, with magnification rates of 25, 25 and 62.5, re-
spectively, at 900 s; the smallest particles cannot be seen
due to limited resolution.

The grey scale in the cylinders represent the mass pro-
portion with respect to the total mass of 60 gr, averaged
every 100 layers out of the total 4000 in which the cylinder
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was discretized, see Sect. 4.5.1. Right after the initial shak-
ing, the particles’ positions are equally distributed; for this
reason, at 60 s in most of the samples the grey intensity
is fairly uniform, except at the top where all intermediate
and large particles have sedimented and at the bottom,
where some of these particles rest without movement. The
exception is for sample 2, in which the prevalence of large
particles provokes a small or very small concentration in
the upper half of the cylinder.

At 300 s (middle figures), sedimentation is in an inter-
mediate state, with particles distributed within most of the
cylinder except in sample 2 for which the sedimentation is
nearly finished. The granulometry of the samples starts to
be evident, for example in number 5 the gradation is linear
and in sample 3 most of the particles still fill the cylinder.

At 900 s (bottom figures), only small sizes remain at
the top and middle of the cylinder; at the bottom there
is a mixture of small, intermediate and large particles, the
latter the most abundant due to their high deposition ve-
locity. Therefore, and except for sample 3, most of the
mass is at the cylinder base as shown by the almost black
intensity.

In accordance to the experimental observations from
[55], the particles progressively gradate in horizontal lay-
ers. This can be visually verified in the first sample and
especially in the third one, in which large, intermediate
and small particles group in sets due to the similar depo-
sition velocity of similar sizes.

During the simulation, the fluid interacts with the par-
ticles, mostly with the large ones due to their higher
Reynolds number. The contact interactions are also im-
portant, large particles sediment with higher terminal ve-
locity li,| (Fig. 4) and, therefore, overtake the smaller
ones. In this process, clusters of particles with different
sizes but with almost the same high velocity may form:
small particles are “trapped” by the large ones. Some clus-
ters can be appreciated in the middle zooms of samples
1 and 5 but, we have concluded that, for the sedimenta-
tion analyses considered here, there is no need for a spe-
cial treatment of the clusters since they occur towards the
lower part of the cylinder, away from the area in which the
experimental measurements are modeled.

Although the CPU time of each simulation is reduced
using incrementally larger time steps and restricted con-
tact search (see Sect. 4.6), this time is still very high when
the whole process is simulated. For sample 3, the simu-
lation takes about 420 hours in an Intel® station Core
i7-4930K, with 12 cores running at 3.40 GHz and with 32
Gb of RAM memory. This is due to the large number
of small particles and time steps. The fastest simulation
occurs for sample 2, the one with the smallest number of
particles, which takes 60 hours.

Every 107 s the positions and velocities of all particles
are recorded, and they are used, together with the parti-
cle diameters, to compute the intermediate data, densities,
concentrations, depths and apparent masses needed to ap-
ply the analytical laws from Sects. 4.5.1, 4.5.2 and 4.5.3.



Figure 11: Numerical simulation of the ASTM-D422 experiment for the five samples. Gradation of particles at 60, 300 and 900 s. The grey
scale represents the proportion of mass with respect to the total mass. Zooms of particles with amplification of 25 (top and middle) and 62.5
(bottom).

12



From these laws, the particle size distributions can be in-
ferred as if the experiments had been carried out.

5.3. Preliminary measurements

Figure 12 shows, for different times, the limiting diam-
eter of all particles above depth y., as given by Eq. (16)
together with the minimum diameter of the particles actu-
ally above y., as modeled numerically. Depth varies from
the free surface y,, = 0 to the bottom of the cylinder
Yoy = H = 0457 m, (geometry in Fig. 6) and the times
displayed are 60 s, 120 s, 300 s, and 900 s. Since the
samples have the same maximum diameter the curves will
coincide for the five of them.

The agreement between the values given by Eq. (16) and
the maximum diameter observed in the numerical exper-
iments is remarkable, with the following exceptions. At
60 s, the numerical values are below the analytical results,
but this is consistent with the fact that Eq. (16) does not
pretend to give the exact value but an upper bound (see
Sect. 4.5), and, therefore, it can overestimate the actual
value. For instance, this equation predicts that at a depth
of 0.4 m, the limiting diameter is 90 X 107 m, but we do
not have any sample with such a diameter, so the numer-
ical results are bounded by the maximum diameter in the
sample.

Finally, at 300 s and at 900 s, the agreement is good
for the upper part of the cylinder, but it fails at the bot-
tom, because sediment accumulate and Eq. (16) is for a
bottomless cylinder, and it does not account for a possible
accumulation of sediments.

For later times the three curves become flatter since only
very small particles would remain in suspension. They also
would tend to collapse to the minimum diameter except
close to the bottom zone, in which the numerical method
“knows” that all particles are accumulating there.

Figure 13 shows the variability of the suspension den-
sity along the height of the bulb, from top to bottom
0 < hyg < 0.14 (see Figs. 7 and 8 for geometry), for the
different samples and at different times. The average sus-
pension density along the height of the bulb is the key
variable in Eq. (18) to determine the weight percentage of
the particles above the limiting diameter associated to the
bulb-center depth. Also notice that since the bulb sinks as
the experiment progresses, the curves correspond to dif-
ferent depths in the sedimentation cylinder. The curves
at time t = 0 are approximately horizontal and equal for
all samples corresponding to a homogeneous suspension
of density 1015 kg/m3. For t = 900 s, the curves are
again almost horizontal and with densities getting closer
to the fluid density. Samples 1, 3 and 5, which contain a
larger proportion of fine material than the other two sam-
ples, have a density higher than the fluid density since the
finest particles are still in suspension. For the intermedi-
ate times, we can observe different density distributions
described in what follows. For sample 1, the coincidence
of the curves at times 60 s and 180 s is associated to the
discontinuity in the particle size distribution. For sample
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2 and time 60 s, there is an approximately linear variabil-
ity along the bulb, all particles have already passed the
upper part of the bulb, and a few of the smaller ones are
still sedimenting around the bulb center and below. For
sample 3, the coincidence of the curves at times 0 and 60
s is due to the small diameter of the larger particles in the
sample; at time 60 s at the depth of the bulb there has
not been a differentiation of the particles but at times 180
s and 300 s it is when a linear variability of the density
can be observed, corresponding to a moment in which the
small and intermediate particles are passing by the bulb.
For sample 4, at the beginning the behavior is exactly the
same as for sample 3: all particles are too small and have
not displayed their differential velocities at the bulb depth;
sometime between 60 s and 180 s, the suspension should
have displayed a linear variation similar to the one ob-
served for sample 3, but which was not captured given the
large diameters of the particles. For sample 5, it is at time
60 s when the linear variability of the suspension density
is observed, after that the density diminishes with time in
an almost constant distribution along the bulb.

Comparing the average densities around the bulb com-
puted by averaging the curves in Fig. 13 and those ob-
tained by the approximate expression given by Eq. (19),
their values are almost exactly equal except for samples
3 and 4, for which there are some deviations as shown
in Fig. 14. The differences are due to the fact that the
approximate expression assumes a homogenous suspen-
sion density, whereas, as discussed above, in the curves
in Fig. 13 the suspension density varies approximately lin-
early for some time steps.We the above data we also have
computed the maximum mass and volume concentrations
with values of 1% and 2.4 % respectively, therefore they
fulfill the requirements for the usage of the one—way cou-
pling technique. Additionaly the maximum volume frac-
tion in the top and middle areas are 0.98.

5.4. Tests measurements

This subsection presents relevant intermediate results
for the three tests described in Sect. 4.5. In Fig. 15 the
hydrometer depth y,,, limiting diameter ¢, and accumu-
lated weight percentage w, computed after the numerical
simulation of the ASTM hydrometer test are shown for
the five samples. Through the duration of the test, the
suspension density py decreases at the top and middle of
the cylinder and increases at the bottom, with the cor-
responding spatial variation of pressure and hydrostatic
force (see Fig. 8) on the bulb. Due to the progressive de-
crease of p; around the bulb, the hydrometer sinks with
time (yg, increases), since to reach equilibrium, a higher
depth is needed to balance the weight with the decreasing
hydrostatic force. The slope of the curves in the top graph
defines the sinking velocity.

Samples 2 and 3 show the highest and lowest sinking ve-
locities at early times, due to their respective preeminence
of largest and smallest particle diameters. For sample 1
the slope is zero in the interval 80 to 400 s, for its lack of
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Figure 12: Maximum diameter sizes above a variable depth inside the ASTM cylinder for the five numerical experiments (dashed lines) and
limiting diameter from Eq. (16) (continuous line) at different times.
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Figure 13: Suspension density p; along hydrometer bulb at several instants and for the five samples ordered from left to right, top to bottom.
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Figure 14: Average suspension density p; along hydrometer bulb computed using Eq. (19) (continuous line) and density obtained from
numerical simulation, for samples 3 and 4.
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intermediate particles; during this time interval there is a
short stationary situation in which similar concentrations
of small and large particles are traveling by the bulb. The
curve of sample 4 is similar to that of 2 and lies between
those of samples 2 and 3. Finally, for sample number 5, the
hydrometer sinks progressively, due to its particle size gra-
dation. After a sufficient time, y,, asymptotically tends to
yw, the depth at which the hydrometer would sink in clear
water, meaning that most of the particles are concentrated
at the cylinder bottom, with the solution density around
the bulb approximately equal to that of water, p, = py.
When y,, is reached, quickly for sample 2 and slowly for 3,
the hydrometer stops sinking.

The progressiveness of sedimentations is also observed
in Fig. 15, middle. As particles sink, the large ones rapidly
overpass the center of gravity of the bulb y,,, due to their
high deposition velocity; this fact can be appreciated with
the high slope of the curves at the initial instants, up to
100 s. The values of ¢, are calculated with Eq. (16); at
any given time, the resulting limiting diameters are dif-
ferent for the different samples since they vary according
to the square root of y,,. Again all curves are delimited
by those of samples 2 and 3 with the largest and smallest
sizes, respectively. Although out of scale in the figure, the
asymptotic value slowly approaches the minimum diame-
ter.

The curves in Fig. 15, bottom, show the opposite varia-
tion from that observed in the top one. Initially, the con-
centration is homogeneous, no particle has sedimented and
the accumulated weight is the total one. As time passes,
the concentration decreases above y,,, very fast for samples
2 and 4 and slowly for 1 and 3; therefore the weight per-
centage of particles that are in suspension decreases (see
Eq. (17)). The value of w, asymptotically tends to zero
with time since all particles have passed the hydrometer.
Again in sample 1 and now in 3 there is a zone of zero
slope: a negligible amount of mass passes the bulb in this
interval.

Figure 16 shows the apparent mass my, of the sphere,
the limit diameter and the accumulated weight w, vs. time
computed for the buoyancy test. The difference between
this and the previous test is that the sphere does not
change its position (at y, = 0.3H = 13.71x107? m) and
its weight is balanced by the hydrostatic force and the
tension of the line. For reasons discussed in the previous
paragraphs, my, increases when p, decreases and, there-
fore, the hydrostatic force decreases at the depth of the
sphere y,, through time.

The top graph in Fig. 16 is similar to the top one in
Fig. 15 since both are based in force equilibrium of the
same samples, although the response is less smooth in
the second. For all samples, the first value is about 1.52
gr, which corresponds to the apparent mass of the sphere
submerged in a completely homogeneous suspension, and
tends to 1.62 gr, which is the apparent mass of the sphere
in clear water. The limiting particle diameters ¢, as given
by Eq. (16) reduce to a single value for all samples and
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Figure 15: Depth of hydrometer center of gravity (top), limiting
diameters (middle) and accumulated weight (bottom) from the sim-
ulation of the ASTM-D422 test.

a given time since the depth is fixed. The bottom graph
in Fig. 16 is also very similar to the corresponding one of
Fig. 15 although the decrease in accumulated weight is, in
this case, faster for all samples, since the depth of the mea-
surement device is smaller than that of the hydrometer, see
again Eq. (16).

The first and last graphs in Fig. 16 show oscillations,
specially the top one since the method measures the den-
sity of a small portion of suspension close to the sphere,
a volume much smaller than that of the hydrometer. In
the top graph these oscillations are very visible for sample
3 since the effect of the small measurement area couples
with the small diameter of most particles.

Finally, Fig. 17 shows limiting diameters (top) and ac-
cumulated weights (bottom) computed with the pipette
test at a constant depth equal to the sphere depth in the
previous experiment, y,, = yp. Both variables follow the
same tendency as that of the buoyancy test. The bottom
figure is almost equal to that of Fig. 16 although the oscil-
lations are more pronounced, due to the even more reduced
sampling volume.

Although not quantified in this work, the higher the
measurement point of buoyancy and pipette the better and
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Figure 16: Apparent mass (top), diameters (middle) and accumu-
lated weight (bottom) computed from simulation of the buoyancy
test at a depth of 0.3H (see Figs. 6, 9).

faster the obtained values are, since the gradation is faster
and the inhomogeneities also disappear faster.

5.5. Final granulometry

Figs. 18 compare the original particle size distributions
with those numerically calculated, for the three tests and
the five samples. These figures are not a validation of the
numerical approach but rather a study of the precision of
the laboratory tests, since they are based on approxima-
tions of some of the physical laws governing the sedimen-
tation process of a group of particle as explained before.

The agreement between the numerically simulated dis-
tributions and the original one is very good for small and
medium particle sizes, but differences can be found for the
large particles since they are measured mostly at the begin-
ning of the experiment when the suspension is composed
of a homogeneously mixture of particles of all sizes. This
mismatch is an intrinsic shortcoming of the design of the
laboratory tests.

The hydrometer test “smoothes” the granulometry and
is not capable of capturing discontinuities or the abrupt
end of the curve, whereas the buoyancy and pipette tests
oscillates for large sizes. This oscillation is due to small
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Figure 17: Diameters (top) and accumulated weight computed (bot-
tom) from simulation of the pipette test at a depth of 0.3H (see
Figs. 6, 9).

and local inhomogeneities at the initial stages of the ex-
periment: even if the particles are supposed to be homo-
geneously distributed, these unavoidable inhomogeneities
are relevant in tests that measure locally. The effect is no-
ticeable for samples 4 and 5 that include a fair amount of
intermediate particles. The hydrometer test does not have
oscillation problems for any sample due to the relatively
large volume that it measures, but in exchange tends to
predict smaller sizes and slightly lower weights.

The intrinsic inhomogeneities at the beginning are also
the cause of the incorrect prediction of accumulated
weights above 100% for the buoyancy and pipette tests: in
the relation (17) introduced in Sect. 4.5.1, the local ¢, at
the early stages can be slightly larger than the average ini-
tial ¢o. Note that for all tests, we can compute the weight
associated with particle diameters larger than 70 x 107 m
(in experimental situation we do not know which is the
largest particle size), resulting always in percentages of
100% except for the already mentioned fluctuations.

Notice that all results are phenomenological since the
2D model cannot fully simulate the physics of the 3D sedi-
mentation model but it provides enough data and interpre-
tations to understand the problem of the sedimentation.

6. Conclusions

The Discrete Element Method (DEM) is a powerful tool
for the numerical modelling of systems with a large number
of particles. Therefore, its application to the numerical
simulation of the sedimentation of granular materials is
natural and immediate using a “one-way coupling” between
fluid and particles. In this work, DEM has permitted to



Original i
100 L Hydrometer --------- i’ L = R
sonp | Do P f
ippette
£ 50 | : :
25 + - -
0
100 + e I
® 751 i
= 50 - .
25 L g
0 : t I I I I I I I
25 50 10 25 50 90 25 50 10 25 50 90
¢o X 10°° m Po X 10°° m

Figure 18: Numerical simulation of granulometry (particle grading size distribution) for samples 1 to 5 (left to right, top to bottom) as would
result from the ASTM-D422; buoyancy and pipette tests. Comparison with the original distribution after 40.000 s of sedimentation.

mimic the determination of the particle size distribution
of several granular samples by the hydrometer, buoyancy
and pipette tests using numerical data and analytical laws
of hydrostatics.

The simulation uses the position and velocities of all par-
ticles and the description of the procedure used in the ex-
periments. The particle size distributions using the three
tests have been compared with the original ones obtaining
a good agreement and most importantly, identifying the
strong and weak points in the design of the tests. The
detected errors of the real experiment cannot easily be
identified with the experimental data. The numerical ex-
periment could be used to optimize the setup and monitor
the sedimentation laboratory test in the future with the
aim of defining the duration of the experiment, the shape
and size of the recipient, or the mass of the sample. We
can also envision that this simulation approach could be
used to retrieve the exact distribution of the sample from
the approximate one obtained in the laboratory by an it-
erative process based on inverse modelling.

It is worth to emphasize that this work does not intend
to supersede the laboratory experiments and it also does
not fully simulates the 3D physics but rather permits to
understand better their strong and weak points.

The important conclusions from the numerical simula-
tions are:

e Inside the range allowed by the standards, small par-
ticles are easier to measure than large ones.

e The hydrometer test smoothes the real granulome-
try, the buoyancy, pipette tests give oscillatory pre-
dictions.

e All tests tend to predict larger particles than in re-
ality, although with an associated small accumulated
weight.
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e In the buoyancy and pipette tests, the higher the po-
sition of the measurement point, the more accurate
the prediction.

e Although a large simulation time has been used, a
much smaller one can give reasonable results if a mass
lower than the real one and only the initial part of the
experiment are simulated.

Finally, we believe that the use of DEM with sophisti-
cated couplings could be directly applicable to the study of
other fluid-particle interaction problems, such as sediment
transport, dune evolution or reservoir sedimentation.

7. Acknowledgements

R. Bravo and J.L. Pérez-Aparicio were partially sup-
ported by the project MICIIN #BIA-2012-32918. The sec-
ond researcher used the grant GV BEST/2014/232 for
the completion of this work. J. Jaime Goémez-Hernandez
acknowledges the financial aid from project MINECO
CGL2011-23295.

References

[1] Lowe SA, Sivakumar M. A penalty finite difference model for
navier-stokes flow problem in sedimentation basins. Advances
in Water Resources 1991;14(6):318-22.

Griffiths C, Dyt C. Accessing sedsim:
tary process modelling software. 2004.
http://www.csiro.au/products/Sedsim.html.
Garzén-Alvarado DA, Galeano C, Mantilla JM. Experimen-
tos numeéricos sobre ecuaciones de reaccién conveccién difusién
con divergencia nula del campo de velocidad. Revista Interna-
cional de Métodos Numéricos para Calculo y Diseno en Inge-
nierfa 2010;26(2):69-81.

Jha SK, Bombardelli FA. Theoretical /numerical model for the
transport of non-uniform suspended sediment in open channels.
Advances in Water Resources 2011;34(5):577-91.

sedimen-

URL

2]

(3]

(4]


http://www.csiro.au/products/Sedsim.html

[5]
[6]

(7]

(8]

[20]

21]

22]

23]

Tetzlaff D, Harbaugh J. Simulating Clastic Sedimentation.
Computer Methods in the Geosciences; Springer-Verlag; 1989.
O’Brien JS. Flo-2d: 2-dimensional flood routing model software.
1993. URL http://www.flo-2d.com/.

Krishnaswamy J, Lavine M, Richter DD, Korfmacher K. Dy-
namic modeling of long-term sedimentation in the yadkin river
basin. Advances in Water Resources 2000;23(8):881-92.
Cordero F, Diez P. Xfem+: Una modificacién de xfem para
mejorar la precisién de los flujos locales en problemas de dis-
fusién con conductividades muy distintas. Revista Internacional
de Métodos Numéricos para Calculo y Disefio en Ingenieria
2010;26(2):121-33.

Cundall P, Strack O. A discrete numerical model for granular
assemblies. Geotechnique 1979;29(1):47-65.

Pérez-Aparicio J, Bravo R, Ortiz P. Refined element discontin-
uous numerical analysis of dry-contact masonry arches. Engi-
neering Structures 2013;48:578-87.

Yeoh G, Tu J. Computational Techniques for Multiphase Flows.
Elsevier; 2009.

Xiong Q, Li B, Xu J, Wang X, Wang L, Ge W. Efficient 3d
dns of gas—solid flows on fermi gpgpu. Computers and Fluids
2012;70:86-94.

Li B, Zhou G, Li J, Wang J, Xu J, Wang L, et al. Large-scale dns
of gas—solid flows on mole-8.5. Chemical Engineering Science
2012;71:422-30.

Bhalla A, Bale R, Griffith B, Patankar N. A unified mathemat-
ical framework and an adaptive numerical method for fluid—
structure interaction with rigid, deforming, and elastic bodies.
Journal of Computational Physics 2013;250:446-76.

Brady J, Bossis G. Stokesian dynamics. Annual review of fluid
mechanics 1988;20:111-1157.

Yamanoi M, Pozo O, Maia J. Stokesian dynamics simulation of
the role of hydrodynamic interactions on the behavior of a sin-
gle particle suspending in a newtonian fluid. part 1. 1d flexible
and rigid fibers. Journal of Non-Newtonian Fluid Mechanics
2011;166(9):457-68.

Ball RC, Melrose JR. A simulation technique for many spheres
in quasi-static motion under frame-invariant pair drag and
brownian forces. Physica A 1997;247(1):444-72.

Hager A, Kloss C, Pirker S, Goniva C. Parallel open source cfd-
dem for resolved particle-fluid interaction. Journal of Energy
and Power Engineering 2013;9(7):1705-12.

Trulsson M, Andreotti B, Claudin P. Transition from the vis-
cous to inertial regime in dense suspensions. Phys Rev Lett
2012;109(11).

Seto R, Mari R, Morris JF, Denn MM. Discontinuous shear
thickening of frictional hard—sphere suspensions. Phys Rev Lett
2013;111(21).

Bian X, Litvinov S, Ellero M, Wagner NJ. Hydrodynamic shear
thickening of particulate suspension under confinement. Journal
of Non-Newtonian Fluid Mechanics 2014;213:39-49.

Carneiro MV, Pahtz T, Herrmann HJ. Jump at the onset of
saltation. Phys Rev Lett 2011;107(9).

Duran O, Andreotti B, Claudin P. Numerical simulation of
turbulent sediment transport, from bed load to saltation. Phys
Fluids 2012;24(10).

Durdan O, Claudin P, Andreotti B. Direct numerical sim-
ulations of aeolian sand ripples. Proc Natl Acad Sci USA
2014;111(44):15665-8.

Feng Y, Han K, Owen D. Coupled lattice boltzmann method
and discrete element modelling of particle transport in turbulent
fluid flows: Computational issues. International Journal for
Numerical Methods in Engineering 2007;72(9):1111-34.

Xiong Q, Madadi-Kandjani E, Lorenzini G. A lbm-dem solver
for fast discrete particle simulation of particle—fluid flows. Con-
tinuum Mechanics and Thermodynamics 2014;26:907—17.
Harting J, Chin J, Venturoli M, Coveney P. Large-scale lattice
boltzmann simulations of complex fluids: advances through the
advent of computational grids. Philosophical transactions of
the Royal Society A: Mathematical, Physical and Engineering
Sciences 2005;363(1833):1895-915.

18

[28]

[29]

[30]

31]

[32]

[34]

[35]

[36]

37]

Chaumeil F, Crapper M. Using the dem-cfd method to predict
brownian particle deposition in a constricted tube. Particuology
2013;15:94-106.

Bravo R, Ortiz P, Pérez-Aparicio J. Incipient sediment trans-
port for non-cohesive landforms by the discrete element method
(dem). Applied Mathematical Modelling 2014;38(4):1326-37.
Di-Felice R. The voidage function for fluid-particle in-
teraction systems. International Journal Multiphase Flow
1994;20(1):153-9.

Cunha F. Hydrodynamic dispersion in suspensions. Ph.D.
thesis; Department of Applied Mathematics and Theoretical
Physics. University of Cambridge; 1995.

Abade G, Cunha F. Computer simulation of particle aggregates
during sedimentation. Computer Methods in Applied Mechanics
and Engineering 2007;196(45):4597-612.

Bravo R, Pérez-Aparicio J, Laursen T. An energy consistent
frictional dissipating algorithm for particle contact problems.
International Journal for Numerical Methods in Engineering
2012;92(9):753-81.

Laursen TA. Computational Contact and Impact Mechanics.
Springer-Verlag; 2002.

ASTM-D422 . ASTM D422 Standard Test Method for Particle-
Size Analysis of Soils. American Society for Testing Materials;
1963.

Bardet J, Young J. Grain-size analysis by buoyancy method.
Geotechnical Testing Journal 1997;20(4):481-5.

Tambun R, Motoi T, Shimadzu M, Ohira Y, Obata E. Size
distribution measurement of floating particles in the allen re-
gion by a buoyancy weighing-bar method. Advanced Powder
Technology 2011;22(4):548-52.

Beuselinck L, Govers G, Poesen J, Degraer G, Froyen L. Grain-
size analysis by laser diffractometry: comparison with the sieve-
pipette method. Catena 1998;32(3):193-208.

Lambe TW, Whitman RV. Soil Mechanics. John Wiley & Sons;
1969.

Di-Stefano C, Ferro V, Mirabile S. Comparison between grain—
size analyses using laser diffraction and sedimentation methods.
Biosystems Engineering 2011;106(2):205-15.

Vdovic N, Obhodas J, Pikelj K. Revisiting the particle-
size distribution of soils: Comparison of different methods
and sample pre-treatments. European Journal of Soil Science
2010;61(6):854—64.

Kleinert J, Obermayr M, Balzer M. Modeling of large scale
granular systems using the discrete element method and the
non-smooth contact dynamics method: A comparison. In: EC-
COMAS Multibody Dynamics 2013. 2013,.

Nour-Omid B, Wriggers P. A note on the optimum choice
for penalty parameters. Communications in Applied Numeri-
cal Methods 1987;3(6):581-5.

Bravo R, Pérez-Aparicio J, Laursen T. An enhanced energy
conserving time stepping algorithm for frictionless particle con-
tacts. International Journal for Numerical Methods in Engi-
neering 2011;85(11):1415-35.

Heinonen M, Sillanpda S. The effect of density gradi-
ents on hydrometers. Measurement Science and Technology
2003;14(5):625-8.

Lamb H. Hydrodynamics. Cambridge University Press; 1993.
Elghobashi S. On predicting particle-laden turbulent flows. Ap-
plied Scientific Research 1994;52:309-29.

Peng Z, Doroodchi E, Luo C, Moghtaderi B. Influence of void
fraction calculation on fidelity of cfd-dem simulation of gas-solid
bubbling fluidized beds. Particle Technology and Fluidization
2014;60(6).

Lim EWC, Wang CH. Discrete element simulation for pneu-
matic conveying of granular material. Particle Technology and
Fluidization 2006;52(2):496-509.

Harr M. Mechanics of Particulate Media. A Probabilistic Ap-
proach. McGraw—Hill; 1977.

Idelsohn S, nate EO, del Pin F. A lagrangian meshless finite
element method applied to fluid—structure interaction problems.
Computers and Structures 2003;81(8):655-71.


http://www.flo-2d.com/

[52]

[53]

[54]

Munson BR, Young DF, Okiishi TH, Huebsch WW. Fundamen-
tals of Fluid Mechanics, 6" Edition SI Version. Wiley; 2010.
Munjiza A, Owen DRJ, Bicanic N. Combined finite-discrete
element method in transient dynamics of fracturing solids. En-
gineering computations 1995;12(2):145-74.

Chawla V, Laursen TA. Energy consistent algorithms for fric-
tional contact problems. International Journal for Numerical
Methods in Engineering 1998;42(5):799-827.

Di-Felice R. Liquid suspensions of single and binary component
solid particles—an overview. China Particuology 2007;5(5):312—
20.

19



	Nomenclature
	Introduction
	Discrete element method
	The sedimentation tests
	Description
	Fluid-particle interaction
	Stokes' drag forces
	Lubrication forces

	Simple model of sedimentation
	Numerical generation of the sample
	Simulation of tests
	Simulation of the ASTM-D422 hydrometer test
	Simulation of the buoyancy test
	Simulation of the pipette test

	Numerical solution

	Numerical sedimentation and particle size distribution
	Initial granulometry
	General simulation
	Preliminary measurements
	Tests measurements
	Final granulometry

	Conclusions
	Acknowledgements

