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Abstract

Groundwater flow and mass transport predictions are always subject to uncertainty due to
the scarcity of data with which models are built. Only a few measurements of aquifer pa-
rameters, such as hydraulic conductivity or porosity, are used to construct a model, and a
few measurements on the aquifer state, such as piezometric heads or solute concentrations,
are employed to verify/calibrate the goodness of the model. Yet, at unsampled locations,
neither the parameter values nor the aquifer state can be predicted (in space and/or time)
without uncertainty. We demonstrate the applicability of a new blocking Markov chain
Monte Carlo (BMcMC) algorithm for uncertainty assessment using, as a reference, a syn-
thetic aquifer in which all parameter values and state variables are known. We also analyze
the worth of different types of data for the characterization of the aquifer and for reduction
of uncertainty in parameters and variables. The BMcMC method allows the generation of
multiple plausible representations of the aquifer parameters, and their corresponding aquifer
state, honoring all available information on both parameters and state variables. The real-
izations are also coherent with an a priori statistical model for the spatial variability of the
aquifer parameters. BMcMC is capable of direct-conditioning (on model parameter data)
and inverse-conditioning (on state variable data). We demonstrate the flexibility of BMcMC
to inverse-condition on piezometric head data as well as on travel time data, what permits
identification of the impact that each data type has on the uncertainty about hydraulic
conductivity, piezometric head and travel time.

Keywords : Inverse modeling, Bayesian modeling, heterogeneity, stochastic hydrogeology,
conditional simulation, temporal moments



1 Introduction

There is an increasing interest in evaluating the uncertainty associated with groundwater
flow and mass transport predictions. Scarcity of data leads to building models that, at most,
can reproduce the aquifer state at a few sampling locations. The parameters controlling the
aquifer response vary in space in a non-deterministic way, generally following some kind of
structural pattern overlaid by an erratic component. Scarcity of data and spatial variability
makes for many alternative combinations of those parameters that could yield a model
that reproduces the state measurements, i.e., piezometric heads or concentrations. Within
this context, we propose to use stochastic inverse conditioning Monte Carlo methods to
evaluate aquifer prediction uncertainty. Stochastic, because we will build a random function
model to represent all equally likely representations of the aquifer parameter distribution;
inverse, because in building such a random function model, we will use both parameter
measurements (i.e., conductivity data) and aquifer state measurements (i.e., piezometric
data); and conditioning, because we will force that, within measurement error, each member
of the random function model will reproduce the parameter measurements, and the solution
of the state equation in each member will reproduce the state measurement data.

This type of analysis has been carried out before. The originality of this work is the use
of a new algorithm, based on Monte Carlo Markov chains, for the generation of the aquifer
parameter realizations. As a result we will demonstrate that the new algorithm is capable of
performing stochastic inverse conditioning Monte Carlo as stated above, and we will analyze
the worth of different types of data for the characterization of aquifer heterogeneity and the
evaluation of the uncertainty in model predictions.

The challenge we faced is the generation of realizations of conductivity following a given
statistical structure, specifically, a multiGaussian random function model, conditioned to
conductivity data, and “inverse conditioned” to piezometric head and travel time data. The
inverse conditioning aspect of the new algorithm is our main contribution.

Probably, the most difficult part in hydrogeological inverse modeling is conditioning to
mass transport information. Concentration data have been directly used for parameter
inference, e.g., characterization on the spatial correlation structure and the point estimation
on local parameters, by several authors (i.e., Graham and McLaughlin, 1989a, 1989b; Sun
and Yeh, 1990a, 1990b; Woodbury and Sudicky, 1992; Deng et al., 1993; Anderman and Hill,
1999; Nowak and Cirpka, 2006). Ezzedine and Rubin (1996) derived, using a geostatistical
approach, the cross covariances between the tracer concentration data and both conductivity
and head, which allows using tracer data to estimate the spatial distribution of conductivity.
Franssen et al. (2003) used the sequential self-calibration method (Gómez-Hernández et
al., 1997) to generate realizations conditional to the spatially distributed concentration data
with the aid of the adjoint-state method to calculate the sensitivity matrix.

Travel time data are a cheaper alternative to concentration data due to the low cost
in the data acquisition. Indeed, collecting travel time of tracers only invokes couples of
wells for forced-gradient flow or a series of wells distributed along a plane perpendicular to
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the mean flow direction for natural-gradient flow (Rubin and Ezzedine, 1997). Fernàndez-
Garcia et al. (2005) found that, even under a uniform, natural-gradient flow condition,
only several full-penetrating wells are required to accurately estimate the first two moments
of the breakthrough time curves (BTCs) obtained from total mass fluxes passing through
the control planes. Additionally, there are also some merits in the computational aspects
(Harvey and Gorelick, 1995). For example, the travel times are scale-independent and thus
avoid the disparity problem between the model resolution and the measurement scale since
the travel times are typically modeled in a Lagrangian framework rather than the grid-based
Eulerian method when solving the forward transport problem.

Several authors have approached the problem of conditioning aquifer parameters on the
travel time. Vasco and Datta-Gupta (1999) developed an asymptotic solution to the solute
transport equation to calculate the sensitivities for the inversion of the tracer data. Then an
iterative linearized inversion algorithm is used to infer the parameter distribution. Wen et
al. (2002) derived sensitivity coefficients of tracer travel time with respect to permeability
by tracking streamlines between well pairs. The sequential self-calibration method is then
employed to construct geostatistical realizations conditional to concentration data. Results
from a synthetic aquifer show that tracer concentration data carry important information
on the spatial variation of permeability in the inter-well areas while the pressure data only
provide information near the well-bore.

In contrast to the entire BTCs, a variety of statistical measures computed from the
BTCs, e.g., the peak concentration arrival times, the percentiles of travel times, and the
temporal moments of tracer data, can also be used for inverse-conditional simulation and
mitigate the computational effort. Several methods based on the temporal moments and
statistics of the BTCs have been used for parameter inference. Cirpka and Kitanidis (2001)
developed a sensitivity matrix of the temporal moments of tracer data with respect to the
conductivity using the adjoint-state method. On the basis of such sensitivity matrix (of
the first moment), the quasi-linear geostatistical inversion or iterative cokriging method is
employed to conditioning the conductivity on the tracer data. A synthetic example demon-
strates a minor improvement of the integration of tracer data (in terms of the first temporal
moment) into the estimate of conductivity compared to the result of head data. Rubin and
Ezzedine (1997), Woodbury and Rubin (2000), and Bellin and Rubin (2004) proposed to
use the peak concentration arrival times to infer the geostatistical models of conductivity.
Actually, public officials assessing health risks associated with contaminant exposure in a
drinking water supply system may be most concerned with peak concentration or the corre-
sponding arrival time (Lemke et al., 2004). Moreover, an appealing point in data acquisition
is that the peak concentration arrival time is less affected by the truncated BTC records,
e.g., the missing early or late arrivals due to the infrequent sampling and the insensitivity
of measurements. Wilson and Rubin (2002) used indicator variables of solute arrivals for
the inference of parameters controlling the heterogeneous structure of conductivity and the
mean flow velocity.

The meaningfulness of conditioning on the various percentiles of the BTCs is apparent
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in physics. The early arrivals in the BTCs follow the fastest pathways between the release
source and the control plane, which are dominated by preferential flow, i.e., flow conduits.
On the other hand, the late travel times reflect a more integral behavior, or even flow bar-
riers. Therefore, different inversion results provide distinct knowledge about the flow and
transport properties. High connectivity generally results in earlier breakthrough. Failing
to account for such case will have too conservative conclusion in risk analysis in that the
real arrival time may be much faster than that estimated one (Gómez-Hernández and Wen,
1998). On the other hand, low connectivity results in later breakthrough. An aquifer reme-
diation design without considering such feature may fail because the resident contaminants
will be removed more slowly than expected (Wagner and Gorelick, 1989). Harvey and Gore-
lick (1995) presented a method for estimating the spatial pattern of conductivity from the
quartiles of solute arrive times. In a hypothetical aquifer example, they found that adding
the median quartile of the BTCs to the cokriging procedure does improve the accuracy of
the estimate of conductivity. But the tails of the BTCs (10 and 90 percentiles in their case)
do not convey much more information about the conductivity field than the median quartile
on the basis of the first-order approximation of the flow and transport equations.

The paper presents a blocking Markov chain Monte Carlo (BMcMC) algorithm tailored to
the problems found in groundwater flow and mass transport inverse modeling that is used to
perform an uncertainty and worth of data analysis involving conductivity, piezometric heads
and travel times. Uncertainties about the different parameters and variables, at unsampled
locations, are modeled, and the worth of the different types of data is evaluated under
different constraints.

No conceptual model uncertainty is accounted for. That is, we assume that geometry,
boundary conditions, and all intervening processes are known. We also assume known the
prior model of spatial variability of conductivity, that is, the multiGaussian random function
model characterizing conductivity, thus, the worth of data from diverse sources is evaluated
without conceptual or structural uncertainty involved.

The remaining of the paper is organized as follows. First, the blocking Markov chain
Monte Carlo method for inverse stochastic modeling of groundwater flow and mass transport
is outlined. Then, several quantitative metrics are defined to measure model uncertainty and
prediction uncertainty. It follows a synthetic example to illustrate the power of BMcMC in
performing data integration. Then, the worth of various data is analyzed on the basis of
uncertainty assessment. And finally, summary and conclusions end the paper.

2 Methodology

2.1 Blocking Markov chain Monte Carlo

Markov chain theory proves that using an appropriate transition kernel one can build a chain
of realizations that, eventually, will converge to a series of random drawings from a pre-
specified probability distribution function (pdf). Each member of the chain is conditional to
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the previous member and its value is determined through the transition kernel as a function of
the previous chain member value. The transition kernel is a probability distribution function,
much simpler to draw from than the target probability distribution function. Realizations
can be univariate or multivariate. The two problems faced in any McMC implementation
are which transition kernel to use, and how long it will take for the chain to converge.

For the specific problem of stochastic inverse conditioning in hydrogeology we wish to gen-
erate realizations of conductivity, conditional to conductivity, piezometric head, and travel
times. Under some assumptions, which will be discussed later, we can build the multivariate
conditional probability distribution function (cpdf) of conductivity given the different types
of data. To draw directly from this cpdf is impossible, therefore, we resort to building a
Markov chain of realizations that will converge to a series drawn from this cpdf.

Consider conductivity discretized at n grid nodes and modeled as a random function (RF).
Consider that there are m conductivity data, and k state data (including both piezometric
head and travel time). Specifically, let x = (x1, x2, ..., xn)T ⊂ Rn denote the RF, x1 = xobs =
(x′1, x

′
2, ..., x

′
m)T ⊂ Rm denote the m conductivity data, and y = yobs = (y1, y2, ..., yk)

T ⊂ Rk

denote the dependent state data. Conductivity and the state data are related through the
groundwater flow and mass transport equations, succinctly represented by y = g(x).

Assuming a multiGaussian RF model for x, with a spatially variable mean µ and a
stationary covariance function Cx, the joint probability distribution function of x given x1

is,

π(x|x1,θ) = (2π)−
n
2 ‖Cx|x1‖−

1
2 exp

{
−1

2
(x− µx|x1)

T C−1
x|x1

(x− µx|x1)

}
, (1)

where parameter θ = {µ, Cx} represents the prior information about the random func-
tion, µx|x1 is the conditional mean obtained by simple kriging, and Cx|x1 is the conditional
covariance obtained by simple kriging, too.

Assuming a multiGaussian distribution for the discrepancy between observed state values
y and their corresponding model predictions ysim = g(x), the joint pdf of y given the model
parameters x is,

π(y|x) = (2π)−
k
2 ‖Cy‖− 1

2 exp

{
−1

2
(y − g(x))T C−1

y (y − g(x))

}
, (2)

where Cy is the error covariance, generally assumed diagonal (see for instance Carrera and
Neuman (1986) for a good justification of this choice).

Using Bayes’ theorem, we can derive the posterior cpdf of x given the observations x1

and y, and the prior model θ,

π(x|x1,y,θ) =
1

c
× π(y|x)× π(x|x1,θ), (3)

with c = ∫ π(y|x)π(x|x1,θ)dx being a normalization constant.
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Dropping the different constants we arrive to an expression for this posterior cpdf, up to
an unknown proportionality constant, given by,

π(x|x1, y, θ) ∝ exp

{
−1

2
(x− µx|x1)

T C−1
x|x1

(x− µx|x1)−
1

2
(y − g(x))T C−1

y (y − g(x))

}
.

(4)
The objective of the stochastic inverse-conditional simulation is then to draw independent,
identically distributed (i.i.d.) samples for x from this posterior cpdf π(x|x1,y,θ). For the
sake of simplicity, θ and x1 are dropped out in the sequel such that π(x) ≡ π(x|x1,θ) and
π(x|y) ≡ π(x|x1,y,θ).

We adopt a Markov chain Monte Carlo (McMC) algorithm employing the Metropolis-
Hastings rule to explore the posterior cpdf π(x|y). It can be proven (Metropolis et al., 1953;
Hastings, 1970; Geman and Geman, 1984) that, if a series of realizations is drawn according
to the following rules, it will eventually converge to a series of i.i.d. realizations drawn from
π(x|y):

(1) Initialize the first realization x;

(2) Generate a new realization according to the Metropolis-Hastings rule:

• Draw a candidate realization x∗, conditioned on the previous realization x in the
series using a transition kernel q, x∗ ∼ q(x∗|x);

• Accept the candidate realization x∗ with probability min{1, α}, where

α =
π(x∗|y)q(x|x∗)
π(x|y)q(x∗|x)

; (5)

(3) Return to (2).

There are two critical points in the previous algorithm, how to select the transition
kernel q, and how to evaluate the acceptance probability α. These two critical points have
to be solved with two aims, accelerate the convergence of the chain to become a chain of
realizations drawn from the sought cpdf, and favor the mixing of the chain, in the sense
that the realizations explore all the space of the cdpf so that they are truly random, i.i.d.
realizations.

There are not too many example applications of McMC in the hydrogeological literature.
Oliver et al. (1997) were probably the first one, and they used a single-component updating
kernel. With such a kernel, the candidate realization x∗ is exactly equal to the previous real-
ization except for one of the discretization cells, the value of which is drawn from a Gaussian
univariate pdf with mean and variance computed by simple kriging from the conditioning
x1 data. As one can quickly foresee, this method, although effective, is quite inefficient in
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its convergence, particularly if the number of cells n is large, and required much computer
time to generate the realizations.

Our proposal for the transition kernel follows the dissertation by Fu (2008) who employs
a blocking scheme. The proposal candidate x∗ differs from the previous realization x in an
entire block, in the synthetic cases performed by Fu (2008), half a correlation range was the
optimal block size for maximum convergence speed, although its exact size could be subject to
test for the specific case at hand. The proposal kernel is a multiGaussian pdf conditioned on
the conditioning x1 data, and on the values of the cells in the previous realization immediately
adjacent to the block being updated. Generating the new values within the block is very
simple when there are no x1 data, since, in such a case the conditioning pattern for any block
is always the same and some precalculations can be carried out to speed up the generation
process. When there are x1 data, the generation is a little bit less efficient, but it follows
standard geostatistical techniques. The blocking scheme has proven to make the McMC
simulations more efficient in other fields (Liu, 1996; Roberts and Sahu, 1997).

For the computation of the acceptance probability in (5), we should first analyze how its
different components can be evaluated. It can be rewritten as,

α =
π(x∗)
π(x)

π(y|x∗)
π(y|x)

q(x|x∗)
q(x∗|x)

, (6)

taking the logarithm results in,

ln α = ln π(x∗)− ln π(x) + ln q(x|x∗)− ln q(x∗|x) + ln π(y|x∗)− ln π(y|x). (7)

These terms can be determined as follows:

ln π(x∗) = −1

2
(x∗ − µ)T C−1

x (x∗ − µ) + c1, (8)

ln π(x) = −1

2
(x− µ)T C−1

x (x− µ) + c1, (9)

ln q(x∗|x) = −1

2
(x∗ − µ′)T C ′

x
−1

(x∗ − µ′) + c2, (10)

ln q(x|x∗) = −1

2
(x− µ′)T C ′

x
−1

(x− µ′) + c2, (11)

ln π(y|x∗) = −1

2
(y − g(x∗))T C−1

y (y − g(x∗)) + c3, (12)

ln π(y|x) = −1

2
(y − g(x))T C−1

y (y − g(x)) + c3, (13)

where π(x∗) and π(x) are functions of the values of x over the entire domain (x and x∗ are
vectors of size n, and Cx is a matrix of size n× n), π(y|x∗) and π(y|x) are functions of the
values of y at the observation locations (y and y∗ are vectors of size m, and Cy is a matrix
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of size m×m), and q(x∗|x) and q(x|x∗) are functions of the values of x within the n′ cells of
the updating block (x and x∗ are, in this case, vectors of size n′, and C ′

x is a matrix of size
n′×n′), µ′ and C ′

x are the mean and the covariance of x within the n′ cells of the updating
block conditioned to the immediately adjacent values of x in the previous realizations and
to the conditioning data x1, and c1, c2 and c3 are constants that cancel out in (7).

The sensitivity analysis performed by Fu (2008) show that as soon as the domain is
relatively large, inverting the covariance matrix in (8) and (9) is prohibitive, thus, these two
values have to be approximated. For this purpose, we approximate both pdf values by the
values of a multiGaussian distribution defined over a smaller domain centered at the block
being updated. This smaller domain was made equal to twice the size of the updating block.
Fu (2008) also found that for the initial convergence of the chain the most efficient approach
was to use an independent kernel, in which case, q(x∗|x) = π(x∗) and the acceptance rate
simplifies to,

α =
π(y|x∗)
π(y|x)

. (14)

Thus, the procedure to generate the realizations is as follows: at the beginning of the
chain, the proposal candidates are drawn using an independent kernel and the acceptance
rate (14), then, when convergence has been achieved (as measured by the discrepancy be-
tween observed and simulated state variables), the conditional kernel is used and the accep-
tance rate is computed by (7) but approximating both (8) and (9) over a domain only twice
as large as the updating block. Although not used in this paper, several further improve-
ments on the methodology have been described by Fu (2008) and Fu and Gómez-Hernández
(2009).

2.2 Uncertainty assessment

We will use the proposed blocking Markov chain Monte Carlo method (BMcMC) in a syn-
thetic example to build a model of uncertainty for conductivity, piezometric heads, travel
times and macrodispersion, from a limited amount of conductivity, head and travel time
data. In our example we will use a synthetic aquifer to generate a synthetic reality from
which samples will be taken, our synthetic reality will serve as a reference when analyzing
the conditional realizations. The procedure to construct a model of uncertainty in prac-
tice would be the same, although we could not evaluate any bias with respect to reality,
because reality would be unknown. In addition, in our synthetic example we assume all
other parameters and model constraints known, whereas in reality there will be additional
parameter and model uncertainties. Such an uncertainty model should always accompany
our model predictions, so that the decision maker can assess the degree of confidence that
can be deposit in the model.

The model of uncertainty is also a tool that permits the evaluation of the worth of data,
and can be used for optimal network design.
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In this example, in order to analyze the uncertainty due to scarcity of data, we will
assume that there is no conceptual uncertainty (we know the processes involved, boundary
conditions, geometry, etc.) so we can better analyze the specific worth of each data without
interferences due to unaccounted uncertainties.

To measure parameter uncertainty we will compute three metrics. The first metric I(x)2
2

measures the precision of the realizations since it evaluates the ensemble variance over all
the cells as given by:

I(x)2
2 =

1

n

n∑
i=1

1

nr

nr∑
r=1

(xi,r − x̄i)
2, (15a)

where n is the number of cells, nr is the number of realizations, xi,r is the simulated value
at cell i and realization r, and x̄i is the ensemble average over all realizations at location i.

The other two metrics take advantage of our knowledge of the reference field to measure
the average bias I(x)3, and a combination of bias and precision I(x)2

4:

I(x)3 =
1

n

n∑
i=1

1

nr

nr∑
r=1

(xi,r − xi,ref ), (16a)

I(x)2
4 =

1

n

n∑
i=1

1

nr

nr∑
r=1

(xi,r − xi,ref )
2, (16b)

where xi,ref is the reference value at location i.
Similarly, we define I(y)2

2, I(y)3 and I(y)2
4 to measure the precision and bias of the model

predictions.

2.2.1 Macrodispersion

In addition, the macrodispersion can be viewed as a parameter reflecting the spatial variabil-
ity of hydraulic conductivity. Indeed, experimental and theoretical results have suggested
that macrodispersion of solutes is essentially produced by the spatial variation of the fluid
velocity resulting from the heterogeneity of hydraulic conductivity. We expect that as more
conditioning data are used, specially data on travel times, the macrodispersion coefficient
computed in the inverse conditioned realizations would be closer to the macrodispersion
coefficient of the reference.

The scale- or time-dependent macrodispersion is defined as the change rate of the second-
order moment of a solute plume. Extensive studies on the effects of hydraulic conductivity
on macrodispersion of solutes have shown that, under steady-state flow conditions with a
uniform mean hydraulic gradient in a statistically stationary media of finite correlation length
of hydraulic conductivity, macrodispersion increases with time from the point at which the
solute body first enters the flow domain, until after the solute cloud has traveled a few tens
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of hydraulic conductivity correlation lengths when it reaches a constant asymptotic value
(Dagan, 1984; Khaleel, 1994).

We compute the macrodispersion coefficients at several control planes away from the
release plane using the coefficient of variation of the breakthrough curves (BTCs) as in the
works by Kreft and Zuber (1978), Desbarats and Srivastava (1991), and Wen and Gómez-
Hernández (1998),

AL(x) =
x

2

σ2
t (x)

m2
t (x)

, (17)

where AL(x) is the apparent longitudinal macrodispersion at control plane x, mt(x) and
σ2

t (x) are the mean and variance of travel times at x, respectively. To overcome the sen-
sitivity of σ2

t (x) to the presence of outlier travel times, the distribution of log travel time
was suggested by Khaleel (1994) and Wen and Gómez-Hernández (1998) to calculate the
temporal moments,

mt(x) = exp

{
mln t(x) +

1

2
σ2

ln t(x)

}
,

σ2
t (x) = m2

t (x)
(
exp

(
σ2

ln t(x)
)− 1

)
,

mln t(x) and σ2
ln t(x) are the mean and variance of log travel times at the displacement distance

x.

3 A Synthetic Example

3.1 Reference models and conditioning data sets

A synthetic isotropic lognormal 2D confined aquifer under a uniform, natural-gradient flow
condition, serves as the reference field to illustrate the effectiveness of the proposed method
for inverse-conditional simulation. In this paper, we assume that x is ln K that we aim to
identify and y represents the conditioning data including head data (h) and measured travel
time (t). Any set of coherent units will lead to the same results and conclusions, therefore,
in the remainder of the paper no units are quoted, just the dimensions of the parameters.

Figure 1A shows the reference conductivity field. It was generated using the code
GCOSIM3D (Gómez-Hernández and Journel, 1993) that generates realizations from a sta-
tionary multiGaussian distribution. It has 100 by 100 cells, each cell is of size 1 [L] by 1 [L]
by 1 [L]. The mean of lnK is 0 [ln(LT−1)], the standard deviation of lnK is 1 [ln(LT−1)], and
the two-point covariance is exponential with an integral scale of 50/3 [L], that is, a practical
range—the distance at which 95% of the correlation is lost—of 50 [L] in all directions.

The use of a synthetic aquifer with a high spatial correlation is justified for two reasons:
(1) it allows a better visual comparison of the simulations and the reference and (2) it is easier
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Figure 1: (A) Reference ln K field, (B) conditioning ln K data, (C) reference piezometric
head (solution of the flow equation in the reference conductivity field), (D) conditioning
piezometric head data

10



to measure the worth of data since only a few measurements are necessary to capture the
essential features of the aquifer. On the other hand, the high correlation tightens the set of
conditional realizations making more difficult for the BMcMC algorithm to draw acceptable
candidate realizations.

The high correlation produces a relatively large correlation range to sampling space ratio,
which is always an important factor for model identification. Generally speaking, compared
to the sampling spacing, a smaller prior correlation length yields an inverse estimate closer to
the prior mean except in the immediate vicinity of measurements (McLaughlin and Townley,
1996). In principle, parameter variability with a correlation length smaller than the sampling
spacing cannot be determined. Conversely, a larger prior correlation length yields a smooth
estimate which varies gradually over the region of interest. Besides, it was recognized that
the uncertainties of models and their responses remain significant even with a large number of
hard conditioning data (Harter and Yeh, 1996; van Leeuwen et al., 2000; Scheibe and Chien,
2003). Eggleston et al. (1996) found that for the Cape Code aquifer the estimation error is
relatively insensitive to the number of hard data above a threshold of three measurements
per integral volume. In this synthetic example we will keep two samples per correlation
range.

A single-phase flow experiment is set up as follows. The upper and lower boundaries
are no flow boundaries. The left and right sides have prescribed constant heads equal to
10 [L] and 0 [L], respectively. The confined steady-state flow problem is solved by a block-
center finite-difference simulator. The reference head field obtained by solving the flow
equation using the reference lnK field is shown in Figure 1C. From both the reference
logconductivity and piezometric head fields, nine samples are taken that will be used for
conditioning purposes at the locations and with the values shown in Figure 1B and Figure 1D.

With the lnK field, and the corresponding head field, the velocity field at cell’s interface is
obtained using Darcy’s law and a constant porosity of 0.3. The conservative transport prob-
lem is then solved by the constant-displacement random-walk particle-tracking algorithm
(Wen and Gómez-Hernández, 1996). The effects of pore-scale dispersion and molecular dif-
fusion are neglected. In this case, the solute particles move along the streamlines of the
steady-state velocity field. Hence the solute plume is confined transversally by the two no-
flow boundaries. Two thousand particles, uniformly distributed along the left boundary,
are tracked until they arrive at the control plane located at the right boundary. Travel
times are recorded at different control planes for the purpose of computing the apparent
macrodispersion at various distances from the source. The first and second moments of the
breakthrough curve in the reference field at the right boundary, and five of its percentiles
will serve as conditioning data; their values are shown in Table 1.

BMcMC is now used to generate realizations of logconductivity conditioned to the nine
logconductivity data and the nine piezometric head data depicted in Figure 1, and the
statistics of the travel time BTC at the right boundary shown in Table 1, all of them from
an underlying multilogGaussian random function with zero mean, unit variance and an
exponential isotropic covariance with a range of one half the simulation domain.
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Table 1: Statistics of the reference travel time BTC at the right boundary

Statistic Travel time [T ]
05 percentile of the BTC 912
25 percentile of the BTC 1014
50 percentile of the BTC 1081
75 percentile of the BTC 1232
95 percentile of the BTC 1823

1st moment 1192√
2nd moment 313

We are not seeking “the best” logconductivity spatial distribution, but any realization
that could be drawn from the random function and honor the conditioning data up to within
measurement errors. At the end we will have an ensemble of realizations, each of which with
the proper patterns of spatial variability, and each of which consistent with the conditioning
data. These ensemble of conditional realizations serves to perform an uncertainty analysis
on logconductivity, piezometric head, travel time and macrodispersion.

3.2 Uncertainty assessment

Six scenarios are analyzed. Several combinations of conditioning data sets are considered,
from unconditional realizations to realizations conditioned to all data types. The condition-
ing information included in each scenario is indicated in Table 2. This table also shows the
relative errors used to build the diagonal Cy matrix in (12) and (13). As mentioned previ-
ously, the large correlation of the reference field makes difficult for the BMcMC algorithm
to sample the conditional realizations; for this purpose, the relative errors used are large so
that realizations will be accepted even though the reproduction of head and travel times is
not exact.

Table 2: Scenarios and conditioning data types

Scenario Conditioning Error measurements for building Cy

1 x|− —
2 x|x1 —
3 x|h σ2

h = 0.2
4 x|t σ2

t = 1.0
5 x|h, t σ2

h = 0.2, σ2
t = 1.0

6 x|x1, h, t σ2
h = 0.2, σ2

t = 1.0
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With these restrictions, generating 100 realizations for each of the six scenarios can be
carried out in an ordinary desktop PC in little time. For each set of 100 realizations the three
metrics defined earlier are computed for logconductivity and piezometric head. Also, for each
set of 100 realizations the ensemble mean and ensemble variance of logconductivity and of
piezometric head are calculated. Also, for each realization, the apparent macrodispersion for
planes at different distances from the source were computed using (17), and their ensemble
means are recorded.

Table 3: Precision, bias and combined measure of uncertainty for ln K

Scenario Model I(x)2
2 I(x)3 I(x)2

4

1 x|− 1.02 0.22 1.45
2 x|x1 0.91 0.22 1.24
3 x|h 0.89 0.25 1.22
4 x|t 0.88 0.54 1.42
5 x|h, t 0.85 0.30 1.19
6 x|x1,h, t 0.81 0.32 1.13

Table 3 shows the value of the three metrics computed on the log of hydraulic conduc-
tivity. (Notice that, since neither x̄i nor xi,ref are spatially uniform, I(x)2

4 6= I(x)2
3 + I(x)2

2).
Figure 2 shows the ensemble average of the 100 logconductivity realizations for all six sce-
narios. Figure 3 shows the ensemble variance for the same 100 logconductivity realizations
and scenarios. Figure 4 shows the histogram of all the generated conductivity values for
all 100 realizations, and Figure 5 show the variograms for the reference field in the x- and
y-directions, and the average variograms of all 100 realizations for each scenario.

Regarding the statistical structure of the realizations and considering that, as we as-
sumed, no uncertainty about the prior RF model will be considered (that is, the prior RF
model used for all BMcMC runs is the same as the one used to generate the reference realiza-
tion), it is not surprising that all histograms for all scenarios are roughly Gaussian with zero
mean and unit variance, with possibly the exception of the set of realizations which are only
conditioned to travel time statistics which show a slightly large mean (also noticeable in the
I(x)3 metric) and a smaller variance. The mean variograms for all scenarios are very similar
and close to the variogram of the reference realization, and actually they are almost identical
for distances below λ (= 16.66). This indicates that the BMcMC algorithm does generate
realizations with the desired statistical properties: indeed, in BMcMC we draw candidates
from a distribution and then the drawing is accepted or rejected, but the realization is never
modified (or perturbed) to make it conditional to the piezometric and travel time data, as
is done in other stochastic inverse-conditional approaches.

Analyzing Table 3 we notice that the intrinsic variability of logconductivity about its
ensemble mean I(x)2

2 decreases as more information is added: with no conditional data
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Figure 2: Ensemble average logconductivity fields for the different scenarios
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(scenario 1) it is equal to the prior variance, and it is reduced to 0.91 when the 9 conductivity
data are used. It seems that both head and travel time data impose a higher restriction on
the alternative realizations that can reproduce such data, as indicated by a lower value of
I(x)2

2, and, as would be expected, when several data types are combined for conditioning, the
ensemble variance reduces even further. In all cases, the ensemble of realizations are biased
with respect to the reference as indicated by the values of I(x)3, part of this behavior can be
explained by the fact that the reference realization, although drawn from a multiGaussian
RF with zero mean and unit variance, has a mean of 0.05 and a variance of 1.11 (this
departure in the realizations statistics with respect to the RF model ones is expected given
the large correlation range with respect to the size of the field). The fact that BMcMC
draws all its realizations using an a priori RF with a smaller mean and a smaller variance
than the reference should explain most of the observed bias. The metric I(x)2

4 which is a
combined measure of precision and bias summarizes the influence of the different types of
data in getting an ensemble of realizations as close as the data permit to the reference: its
value goes down from 1.45 with no data to 1.13 when all data are accounted for.

A more qualitative analysis, which leads to similar conclusions, can be done analyzing
Figures 2 and 3. First of all, it is important to recall that the ensemble average is not
a realization, therefore it does not display the degree of spatial variability of individual
realizations (or the reference); yet, it can be used to check whether the long trend patterns
of the reference are captured by the ensemble. Notice that the reference field has a very
distinctive pattern for the highs and lows characterized by a zone of high values in the lower
right corner, and a zone of low values in the upper right corner. Notice, too, that since
the ensemble fields are smoother representations of the reference, the scale used in Figure 2
is narrower than the one in Figure 1 in order to appreciate better the overall patterns in
the ensemble averages. When no conditioning data are used, no overall pattern is captured,
even though each individual realizations will depict a pattern of variability similar to that
of the reference. The spatial distributions of highs and lows will be randomly located in the
ensemble of realizations leading to a flat ensemble mean as shown in Figure 2. When only the
x1 data are used, we get the typical kriging map: the overall patterns are more consistently
reproduced through the ensemble of realizations as long as the conditioning data samples
them. Conditioning only to piezometric head is enough to introduce the patterns of highs and
lows necessary to bend the head isolines implied by the nine head data (notice in the reference
head field that the head gradient is not uniform with its highest values in the lower left and
upper right corners). Piezometric head is the result of a convolution applied on all hydraulic
conductivity data; for this matter, even though they are not sufficient to identify exactly
local values, they are very good in capturing overall patterns. When conditioning to travel
time only, and considering that the data is taken at the right boundary only, it is impossible
to delineate local features in the realizations. Precisely, this difficulty in delineating local
features induces the bias in the realizations, unless the high values of the lower right quadrant
in the reference are captured by the conditioning algorithm. There is a need to increase the
overall mean of conductivity in order to match the statistics of the reference BTC curve. It
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is interesting to see how conditioning in head and travel times induces already the proper
patterns of variability, in this case, local head information complement the global information
provided by the travel times. And, of course, the best results are obtained when all data are
accounted for.

From Figure 3 we can appreciate how the introduction of conditioning data forces the
generation of conditional realizations more alike to each other. While no conditioning data
is used, the overall variability of the realizations is equal to the prior variance. As soon as
conductivity data are used, the variance map has the typical bull-eye look of a kriging map,
with zero variance at sampling locations and growing away from them. More interesting
is to notice how the variance is reduced in a more uniform manner when conditioning to
piezometric head data and/or travel time data. Piezometric head samples, although local,
carry information about conductivity over a much larger distance than conductivity sam-
ples, likewise travel time data. However, the minimum variance values, when conditioning
on either head or time never reach zero anywhere, but, in contrast, they induce variance
reductions near the edges of the aquifer, something that conductivity data alone cannot.
Again, the highest reductions in conductivity variance occur for the case in which all data
are used for conditioning.

Regarding the contribution of travel time to the reduction of uncertainty in conductivity,
we find, from scenario 4 (even from scenario 5) that uncertainty reduction is larger near the
upstream boundary than near the downstream one, what agrees with the finding presented
by Franssen et al. (2003) who reached this conclusion in the basis of inverse-conditioning to
spatial concentration data by the sequential self-calibration method (Gómez-Hernández et
al., 1997). The reason why it happens is still not very clear to the authors but Franssen et
al. (2003) attributed this phenomenon to more sensitivity of concentration to flow velocity
in the upstream zone.

Analysis of Table 4, containing the metrics regarding piezometric head, shows that head
data is the most efficient piece of information in reducing the overall variability of predicted
heads about their reference values, and also the bias. Scenarios 3, 5, and 6 have noticeably
lower values for all three metrics than the other scenarios that do not use head as conditioning
data. Taking as the reference the unconditional case, the reduction in all three metrics after
conditioning to conductivity (scenario 3) is much smaller than after conditioning to head
(scenario 4) indicating that, for the purpose of best characterization of piezometric head,
piezometric data is the most appropriate.

From Figure 6 we can see that for the unconditional case, even though each realization will
have undulating patterns of piezometric head similar to those in the reference, the random
location of high and low gradients makes that the ensemble average appear to correspond
to a uniform field. As soon as local data is introduced, the local patterns in piezometric
head emerge, with an ensemble average for scenario 6 which is very close to the reference
piezometric head of Figure 1. Travel time information, not being local, does not achieve, by
itself only (scenario 4), a significant departure from the ensemble field for the unconditional
case.
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Figure 6: Ensemble average piezometric head fields for the different scenarios
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Table 4: Precision, bias and combined measure of uncertainty for predicted head

Scenario Model I(h)2
2 I(h)3 I(h)2

4

1 x|− 0.99 0.18 1.36
2 x|x1 0.73 -0.10 0.88
3 x|h 0.40 -0.10 0.55
4 x|t 0.65 0.18 1.12
5 x|h, t 0.41 -0.10 0.57
6 x|x1,h, t 0.36 -0.03 0.47

It is very interesting to see how the piezometric head ensemble variance evolves for the
different scenarios (Figure 7). For the unconditional case we retrieve the classical result,
no variance at boundaries with prescribed head, increasing away from the boundaries to a
maximum at the center. Introducing conductivity data reduces the variance but still leaves
some areas with high uncertainty about heads. The picture changes substantially as soon as
head data are used. For scenarios 3, 5 and 6, the variability in head among realizations is
very small as indicated by the close to zero value of the variance over most of the domain.

3.2.1 Conditioning and spreading

Rubin (1991) examined the impact of conditioning on lnK and h measurements in tracer
plume migration. In his study, he also includes the temporal moments of BTCs into the con-
ditioning procedure and investigates its impact on the prediction of solute plume spreading.
While Rubin’s approach is based on the linearization of the flow and transport equations,
our approach does not linearize them. We would like to compare our results with those by
Rubin.

By setting various control planes in the mean flow direction, the macrodispersion co-
efficients for the different scenarios may be computed using (17). Travel time BTCs are
observed at each of 10 control planes between 0.1λ and 2.0λ of the source, and the corre-
sponding apparent macrodispersion is computed for each plane, for each realization, for each
scenario. Also from these BTCs, the fifth and ninety-fifth percentile are retrieved. These
travel times are not used for conditioning. The travel data used for conditioning are the
statistics of the BTC at the right boundary, only.

Figure 8 shows the ensemble average apparent macrodispersion coefficients for all control
planes and all scenarios and the macrodispersion coefficients obtained in the reference field.
The first, and most noticeable, observation is that macrodispersion estimation is clearly
enhanced when travel time data is used for conditioning. This observation is consistent
with the work by Woodbury and Sudicky (1992). Based on the bromide and chloride tracer
tests performed at the Borden aquifer in Ontario, Canada, they found that conditioning to
the spatial moments of concentration data enhances the estimation on the rate of plume
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Figure 7: Ensemble variance of piezometric head fields for the different scenarios
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spreading in the longitudinal direction. Therefore, although travel times alone do not help
much in identifying conductivities or heads as was shown earlier, they do carry important
information about solute spreading, whether used alone or with other types of data.
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Figure 8: Ensemble average apparent macrodispersion coefficients as a function of the dis-
tance from the source for the different scenarios and the reference

When comparing conductivity and head, it appears that conductivity data alone contains
more information about macrodispersion than head data alone. Rubin (1991) also found that
introducing head data does not cause any considerable improvement for the estimation on
the solute plume migration.

Figure 9 shows the evolution of the ensemble average of the logarithm of the fifth t5% and
ninety-fifth t95% percentiles of travel time as the particles move away from the source for all
scenarios. All scenarios underestimate the early arrival (Figure 9A) with small differences
among them. For the early arrival of particles, within two integral scales of the source it
seems that conditioning to data does not modify much the front tail of the BTCs. On the
contrary, the late arrival is best estimated when all conditioning data are used (Figure 9B),
although the difference between scenarios remains small.
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4 Summary and Conclusions

We have presented and demonstrated a new algorithm for the stochastic generation of log-
conductivity realizations conditioned to logconductivity data, to piezometric head and travel
time data based on the theory of blocking Markov chain Monte Carlo that, to the best of our
knowledge, had not been used in hydrogeology earlier. The most interesting characteristic
of this method is that uses a sampling algorithm for conditioning to state data (heads and
travel times) instead of the common optimization approach used by other methods capable
of conditioning to state data.

We have used a synthetic example to demonstrate the applicability of BMcMC and to
analyze the interplay of different types of conditioning data in the characterization of the
aquifer parameters and of its state. We found that individually, logconductivity data is the
type of data that most reduces the uncertainty about logconductivity spatial distribution;
and that piezometric head data is the type of data that most reduces the uncertainty about
the piezometric head spatial distribution. However, all of them combined have always a
reinforcing effect in characterizing any parameter or state variable.

It was found that logconductivity samples have mostly a local impact in uncertainty
reduction, whereas piezometric head samples have a more intense impact. Travel time data,
since it was collected at the edge of the aquifer, carries only global information about the
spatial distribution of conductivities or heads, for the purpose of better characterizing the
aquifer it should be used in combination with other data types.

However, travel time conditioning has an important impact in the reproduction of the
apparent macrodispersion within the aquifer, and, in consequence, it is important for the
better reproduction of plume spreading.

The results would probably not have been so good if the sampling density of conductivity
and head had been larger (closer to the correlation range) as observed by Dagan (1985) and
Rubin and Dagan (1992).

We have not discussed the specifics of how to use these models of uncertainty for network
design, but it is easy to understand that the maps in Figure 3 and Figure 7 can guide in
determining the best new sampling locations. For instance, it is clear that there are two
zones, in the lower left and the upper right corners, that would benefit from two piezo-
metric samples. These types of maps, together with the algorithm to generate conditional
realizations, and the proper network design methodology can be used to minimize sampling
costs while estimating aquifer responses to a specified precision (James and Gorelick, 1994).
Apart from the economical factor in network design (James and Gorelick, 1994; Criminisi et
al., 1997), most algorithms construct the objective function either based on error reduction
of state variables or on the decrease of prediction uncertainty (e.g., McKinney and Loucks,
1992), but seldom both. Our results shows that conditioning to different combinations of
data types can meet these two objectives.
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