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Abstract

State data (piezometric head) provide valuable information for identifying the spatial pat-
tern of aquifer parameters (hydraulic conductivity) and to reduce the uncertainty of aquifer
models. To extract such spatial information from the measurements and accurately quantify
the uncertainty, a Monte Carlo method typically calls for a large number of realizations
that are conditional to hard data and inverse-conditional to state data. However, inverse
stochastic simulation is extremely computationally intensive since a nonlinear inverse prob-
lem is involved. In contrast to some classical nonlinear optimizers, a blocking Markov chain
Monte Carlo (BMcMC) scheme is presented to generate independent, identically distributed
(i.i.d) realizations by sampling directly from a posterior distribution that incorporates a
priori information and a posterior: observations in a Bayesian framework. The realizations
are not only conditioned to hard data and inverse-conditioned to state data but also pre-
serve expected spatial structures. A synthetic example demonstrates the effectiveness of the
proposed method.

Keywords: Inverse conditional simulation, Model calibration, Model structure, Spatial statis-
tics, McMC



1 Introduction

The model parameters of interest in groundwater and petroleum engineering include hy-
draulic conductivity or permeability, storage coefficient or porosity, dispersivity, retardation
factor, mass transfer rate, etc. Amongst them, the spatial variation of hydraulic conductivity
or permeability predominantly controls flow and transport of solutes. It is also recognized
that this key variable can vary significantly over a short distance showing strong heterogene-
ity and a log-normal distribution in space.

Unfortunately, the physical model of parameters of interest is almost impossible to obtain
fully and directly from the underground. On the basis of some direct but sparse observa-
tions from well-bore and some indirect measurements by means of geophysical tools, two
types of mathematical tools are developed to compensate for this under-determination or
unavailability of the underground reality: one is the estimation algorithm and the other is
the simulation algorithm. The estimation algorithm focuses on seeking a single estimate,
e.g. the maximum likelihood (ML) estimate (e.g. Carrera and Neuman, 1986; RamaRao
et al., 1995) and the maximum a posteriori (MAP) estimate (e.g. McLaughlin and Town-
ley, 1996; Kitanidis, 1996), of the unknown parameters. The simulation algorithm, on the
other hand, aims at constructing a series of “equally likely” models of unknown parameters
(Gomez-Hernandez et al., 1997). One of the main advantages of the simulation over the es-
timation lies in that the former generates a set of alternative models as input to the complex
functions to appraise the uncertainty of the spatially variable parameters of interest. Indeed,
there are a large number of realizations consistent with the observations since the parameter
measurement is limited in comparison with the unknown parameter field of interest.

However, this set of “equally likely” realizations should be constrained to all information
available in order to further reduce the uncertainties of underground reservoirs and aquifers.
This information may include some prior concepts, e.g. those from the experts’ subjective
imagination, and some posterior observations, e.g. those from the measurements in the field.
It is possible that those observations are linearly related to the parameters of interest, e.g.
those space-dependent static hard and soft data, or even nonlinearly related, e.g. those time-
dependent dynamic observations known as state data. Basically, three types of quantitative
data might be drawn from this information: the hard data x, the state data y, and the
hyperparameters @ on model statistics and spatial structure. The objective of conditional
simulation is to draw i.i.d samples x|z, y, 0, with x being the parameter of interest Ink.

Amongst them, constraining to nonlinear state data x|y is very computationally chal-
lenging since a highly nonlinear inverse problem is involved. Mathematically, the forward
problem can be simplified as,

y=g(x)+e, (1)

where & C R" is the parameterized physical model of interest; y = Yy, C R* is the error-
prone dynamic observations; g(x) C R* is the transfer operator that maps the parameters
of interest & to the observation attribute y; and € C R* is the system error € ~ N(0,X)



where 3 is a covariance matrix. The objective of the conditional simulation is to make
inference to the physical model x given the observation y by assuming some prior error
€. In this sense, the conditional simulation x|x,y, @ involves a complex inverse problem;
the procedure of conditioning to the nonlinear data x|y is termed as “inverse-conditioning
problem” just because of the existence of such inverse problem, i.e. ¢g~'(y). Note that the
forward operator g(x) is generally analytically untractable. Most often, a complex numerical
simulator is employed to solve the forward problem.

Traditional optimization-based inverse approaches to generate conditional and inverse-
conditional realizations typically consists of three stages (e.g. Zimmerman et al., 1998):
(1) identify model statistics and spatial structure @; (2) generate conditional realizations
x|x1,0; and (3) constrain these realizations to state data x|x;,y. However, a problem
arises: most often, the final models do not preserve the expected spatial structure, i.e.
x|r1,y # x|T1,y,0, since the hyperparameters 6 are readily modified during the model
calibration. One of the objectives of this study, therefore, is to generate i.i.d realizations
that preserve the spatial structure, i.e. |z,y,0.

The construction of physical models honoring the prior information, the linear data and
the nonlinear data is only one aspect of the geostatistically-based conditional and inverse-
conditional simulation. Of equal importance is to perform uncertainty analysis, e.g. to
quantify the reliability of those models, to identify key uncertainty resources, and to assess
the resolutions and confidence regions of the conditional realizations so as to measure how
much the property parameters can depart from the conditional realizations. Note that the
purpose of the quantitative uncertainty analysis is not to reduce uncertainty which can only
be achieved by collecting additional effective information. However, not all conditioning
algorithms can detect such uncertainty reduction introduced by additional effective infor-
mation. Therefore, quantification of uncertainty can reflect the efficiency of a conditioning
algorithm.

Uncertainty assessment and ranking of uncertainty sources are useful in practice, e.g. for
experimental network design. Once the relative importance of the various error sources to the
prediction of aquifer responses has been established, one can rank the sources of uncertainty,
i.e. to rank the contributions to the error of a response from different sources, e.g. the model
structure, the parameter estimation, and the inherent variation of aquifers. Inevitably, the
relative significance of different sources is problem specific and it is not expected that a
general conclusion can be drawn from an individual case study.

To these two ends, a blocking Markov chain Monte Carlo (BMcMC) method is presented
to perform Monte Carlo stochastic simulation. This article is organized as follows. The
second section presents the BMcMC sampling method and the measures of the performance
of the BMcMC. The third section displays the efficiency of the proposed BMcMC method
for inverse-conditional simulation and some of the influential factors via a synthetic aquifer.
The fourth section quantifies the model uncertainty and the response uncertainty and points
out the main sources of error. Finally, several conclusions and further research directions
are summarized.



2 Methodology

Consider a stochastic simulation at n grid nodes conditional to m hard data and k non-
linear state data. Specifically, let = (x¢, z1,...,2,_1)7 C R"™ denote a realization condi-
tional to m hard data @) = ®us = (), 7, ..., 2}, ;)T C R™ and k state data y = yops =
(Yo, Y1, -, yr—1)T C RF. Assuming a multi-Gaussian process, the spatial distribution of x
follows, |0 ~ N(u,Cy), where 8 denotes the hyperparameters, p, the prior mean of the
Gaussian process, and C, its covariance. The observation errors of x,s are assumed to
be assimilated into the prior statistical model. Assuming a multi-normal error, the simu-
lated state Y, for a given sample & can be expressed as, Ysim|x ~ N(g(x), Cy), where
C,, describes the degree of discrepancy between the transfer function g(x) and the true but
error-prone observation y. The transfer function g(x) is error-prone since most often an
analytical expression is not available. One generally has to resort to some complex com-
puter models to simulate the physical process. The accuracy depends also on the ability of
the mathematical model to grab the physics of undergoing phenomena. As the dimension
of parameterization grows, the transfer function becomes more accurate at the expense of
the computational efforts. Also, there may exist some observation errors of y that can be
included in this statistical model. In this sense, C, measures both the modeling errors and
the measurement errors.

In summary, the objective of the stochastic inverse-conditional simulation is to infer «
from y by assuming some spatial statistical structures and other hyperparameters @, where
y is nonlinearly related to @ through a forward operator g(x) and  may be partly observed.
The most challenging part of the conditional simulation is basically an inverse problem since
an inverse operator g~!(y) is applied to the conditioning procedure.

2.1 Bayesian formulation

Assuming a multi-Gaussian distribution & ~ N (u, Cy), the joint prior density function (pdf)
of the random field is,

w(ale1,6) = (2m) FICalFexp { (o~ )G~ )} )

where m(x|xy,0) denotes the prior pdf of @ C R"; n is the length of the vector ; p C R"
is the prior mean of the random field; and C, C R™ " is the positive-definite covariance
matrix of the vector . Note that & may be partly observed, say, €1 = x,,, C R™, but not
fully known, i.e. m < n. The prior pdf represents some prior knowledge about the param-
eterization of a physical model @ through the configuration of u and C, which, together
with other parameters, boil down to a hyperparameter set 6. The hyperparameters @ are
inferred from both the a posteriori measurements and the a prior: subjective imagination.
It should allow for the greatest uncertainty while obeying the constraints imposed by the
prior information.



Assuming that the observation and modeling errors are normally distributed, the condi-
tional probability for observing y given the attribute x, 7(y|x), or equivalently, the likelihood
model, L(x|y), is,

(o) = (20) H1Cy1 exp { - S(o(a) - 7 Cy ol ) . 3)

where y = yus C R* represents the values of the observations; g(x) is usually a highly
complex transfer function of &, by which x relates to y; and C,, C R*** is the covariance
matrix of the vector y. Note that if the observation errors of y are fully independent from
each other, then C), is a diagonal matrix.

Using the Bayes’ theorem, the posterior distribution of @ given x;, y, and € may be
written as w(x|xy,y,0) = 7(y|x) X ©(x|x),0)/c, with ¢ = [7(y|z)n(x|x1,0)dx being a
normalization factor. Dropping the constant ¢, we can write the posterior pdf,

rlafeny.0) o oxp { -3 - W) C @ — ) - Jlola) =G @) - b (0
The posterior pdf measures how well a parameter model @ agrees with the prior information
and the observed data y. The objective of the stochastic conditional and inverse-conditional
simulation is then to draw i.i.d samples for « from this posterior distribution m(x|x;,y, 0).
For the simplicity of presentation, &; and @ are dropped out such that 7(x) = 7(x|x;,0)
and 7(z|y) = n(x|z1,v,0).

2.2 Blocking McMC scheme

Due to the highly complexity of the log-likelihood model, it is impossible to sample directly
from this posterior distribution 7(x|y). The Markov chain Monte Carlo method (Metropolis
et al., 1953; Hastings, 1970; Oliver et al., 1997), however, is especially suitable for exploring
the parameter space of such type of complicated posterior distribution. A typical McMC al-
gorithm employing the Metropolis-Hastings rule to explore the posterior distribution 7 (x|y)
is as follows,

(1) Initialize the parameters «;
(2) Update x according to the Metropolis-Hastings rule:
e propose ¥ ~ q(x*|x);

m(z"|y)q(z|z") .

e accept * with probability min{1, o}, where a = @l m)

(3) Go to (2) for the next step of the chain.



After the chain converges, it will give the realizations of & with the stationary posterior
distribution 7(x|y).

One of the most interesting problems in this algorithm is the configuration of the pro-
posal transition kernel g(x*|x), which plays a crucial role in the computational efficiency
of a Metropolis-Hastings-type McMC method. Unlike the traditional McMC methods (Ge-
man and Geman, 1984; Oliver et al., 1997) whose proposal distribution is generally single-
component, e.g. z* ~ N(u,0?), and only a single grid node is updated each time, the
proposed method in this study adopts a blocking updating scheme, x* ~ N(u, C,), which
is more efficient since it approximates the posterior distribution more closely, i.e. ¢(x*|x) =
m(x*|x). Moreover, it is well known that the blocking scheme helps speed up the convergence
and improve the mixing of Markov chain (Liu, 1996; Roberts and Sahu, 1997). A more in-
teresting feature of the blocking updating scheme is that the generated realizations preserve
the spatial structure as specified a priori since the hyperparameters 8 remain unchanged
during the sampling procedure.

The meaningfulness of “blocking” is twofold: (1) the updating unit is in a block as
opposed to the single component and (2) the updating transition kernel is correlated such
that it has the prior spatial statistics and structure. Specifically, the proposal kernel &*|& ~
N(ft,C,), which has the identical spatial distribution as the prior model &*|& ~ N(p, Cy)
except that their dimensions are different, where * C x* denotes the new parameters of the
updating block and & C « represents the old parameters of a limited neighbor around the
updating block (see Figure 1). The superblock that consists of the updating block & and its
neighbor & can be defined as a template over which the proposal scheme generally works,
ie. = (z*,2)7 C x. As the Markov chain evolves, the models are continuously updated
as the template & moves within the entire field & following a random scanning path.

An important implementation detail is the fast generation of the proposal transition
kernel &* which fully depends on the LU-decomposition of the covariance matrix (Dawvis,
1987; Alabert, 1987). Since the spatial structure of physical model is specified a priori
and should apply to all candidates, the covariance matrix remains unchanged which makes
the LU-decomposition method full of advantages for repetitive generation of candidates
because the decomposition operator is applied only once. Appendix A gives an outline on
the implementation of the LU-decomposition-based sampler.

The acceptance rate « is calculated by,

Take its logarithm,

Ina=lnn(z*)—Inn(x) + Inn(ylz*) — In7(y|x) + Inn(z|E) — In7(z*|T). (6)

Dropping the constants, the computations of the six items are listed as follows,

() o — (@ — )Gy (& — ), (")
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Figure 1: A superblock template & C « consists of the updating block & and its neighbor .
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where the superblock &* = (&*, %) C «*; & = (&,%)T C x; f15 is the kriging estimate for
the superblock from the neighbor @&; and C is the covariance matrix of the superblock. The
computational burden of Equations (7) and (8) is relatively small since Cy, is LU-decomposed
once for all. The computations of Equations (9) and (10) are straightforward since C is
generally a diagonal matrix and the forward simulator g(«) is called in a black-box way.
For the blocking McMC method, the proposal kernel &*|& ~ N(f1, Cy), which entails
that the kriging estimates and the kriging covariances are needed to compute firstly in that
they fully depend on the current state of the chain. This is quite computationally demanding.

An economical alternative can be found to compute In 7 (Z*|Z), i.e.



1
In7(x*|x) o —§z£*z53*, (13)

where zgz« ~ N(0,1) that yields the random realization for the updating block, since,

2*

1 1 1
where f1z is the kriging estimate for the updating block from its neighbor @. And,

1
Inm(x|x) o —§u£u§c, (15)

where ug satisfies Lzzuz = € — f1z. Note that the computation of Lss is quite expensive.
But the computational burden can be reduced by narrowing down the neighbor size of the
updating block, i.e. reducing the number of conditioning data for the kriging estimate.

2.3 Performance assessment of BMcMC

An empirical approach to convergence control is to draw pictures of the output of a chain
in order to detect deviant or nonstationary behaviors (Robert and Casella, 1999). The key
output of this method is a sequential plot, n(x) = (n(xy), n(x1), ...,n(x,,_1))", given a set
of output realizations = (g, &1, ..., T,, 1)’ and an evaluation function 7(-).

Based solely on a single replication, the cumulative sums (CUSUM) plot is a graphical
evaluation of convergence of the McMC, which was proposed by Yu and Mykland (1998)
and extended by Brooks (1998). It gives both qualitative and quantitative evaluation of
the mixing speed of the chain, i.e. how quickly the sample is moving around in the sample
space. Given a set of output realizations (after convergence), * = (g, 1, ..., Tn, 1)’ , and
an evaluation function, n(x) = (n(xo), n(x1), ..., n(x,.—1))7, one can construct CUSUM path
plots of scalar summary statistic as follows,

(1) Calculate the mean of the evaluation function 17 = n% St (@)

(2) Calculate the CUSUM oy = S0 (n(z:) — ), t € [0,n,), and o, = 0;

(3) Define a delta function §;, i € [1,n,) as follows: if (0,_1 — 0;)(0; — 0i51) < 0, then
0; = 1; else 6; = 0;

(4) Calculate the hairiness indices %, = STL6, tE[2,n,).

The key outputs are two sequential plots: o = (0¢, 071, ...,0,,)T and T = (g, 21, ..., X, ) 7.
The CUSUM, oy, gives a subjective evaluation of convergence performance of the chain since
the mixing rate is reflected by the variance CUSUMs over blocks of the sequence (Lin, 1992;
Brooks, 1998). A slowly mixing sequence will lead to a high variance for o, and a relatively



large excursion size before returning to 0 at n,. When the mixing of the chain is high, the
graph of o is highly irregular (oscillatory or “fractal”) and concentrates around 0. When
the mixing is slow, the CUSUM path is smooth and has a bigger excursion size. The hairi-
ness index, Y, presents a quantitative measure of smoothness to evaluate the convergence
performance of a chain. An ideal convergence sequence will be centered at around 0.5.

3 An Illustrative Example

3.1 Reference models

A synthetic two-dimensional aquifer is presented to demonstrate the efficiency and effective-
ness of the BMcMC method. Figure 2(A) shows the spatial distribution of the reference
16 x 16 [cells] InK field generated by LUSIM (Deutsch and Journel, 1998), having a multi-
Gaussian characteristic. The mean and standard deviation of the InK are set to zero and one
[md 1], respectively. The spatial correlation structure is specified as an exponential function
with a correlation length A, equal to 16 [cells], which means that the field is highly corre-
lated. An obvious pattern of the InK distribution is that the lower values, mainly located
near the left-lower corner, are spread along the north-west direction while the higher values
are mostly located around the right-lower corner and the left-upper corner.

An assumed steady flow experiment is performed on this aquifer. The left and right
boundary conditions are set as a prescribed head with fixed values equal to ten and zero [m],
respectively. Both the upper and the lower bounds are set as non-flow. A block-centered
finite-difference method is employed to solve the flow problem and the resulting head field
is shown in the Figure 2(C). Nine head observations as the conditioning data set of state
variables are sampled from the head field as shown in Figure 2(D). Nine InK observations
as hard data to be conditioned are also sampled from the InK field at the same locations as
head data, which are shown in Figure 2(B).

3.2 An inverse-conditioning experiment

The objective of the inverse-conditional simulation is to generate i.i.d realizations inverse-
conditional to the nine head samples using the proposed BMcMC method. Assume that the
flow boundary conditions and the mean and covariance of InK are correctly observed, i.e.
p=0,02=1.0,and A\y = A\, = A\, = 16 [cells]. The relative measurement error of state
variables is set as 0.1, i.e. 03 = 0.1. Figure 3 shows a typical BMcMC realization of InK and
the corresponding head field. Both fields reveal some of main patterns of reference models.

Figure 4 shows the most probable estimate which is obtained by averaging over 3000
BMcMC realizations. The estimated InK distribution shown in Figure 4(A) well matches
the distribution of the reference InK field: the lower values, mainly locating at the left-lower
corner, spread along the north-west direction while the higher values locate mainly at the
right-lower corner, although the reproduction of the left-upper corner is not that so clear.



(A) InK Field (reference) (B) InK Data to be Conditioned

16|
1 2.0
12_] @) @ @
A 1.0
- ]
g 8_] 0.0
z | (@) [} o
1 -1.0
4_|
| ) o °
| 2.0
00 16 0 T T T T T T T T T T T T T T T
Fast 0 4 8 12 16
(C) Head Field (reference) . (D) Head Data to be Conditioned
16|
1 10.0
A 9.0
12_| o © ] 80
| 7.0
] 6.0
- ]
s 8| 50
z @) (6} [}
1 4.0
1 3.0
4| 2.0
1 © © b 1.0
1 0.0
00 16 0 T T T T T T T T T T T T T T T
Fast 0 4 8 12 16

Figure 2: Conditioning data sets and reference fields: (A) reference InK field, (B) nine
hard data (InK), (C) reference head field, and (D) nine head data. The unit of hydraulic
conductivity and head is in [md~!] and [m], respectively.



(A) InK Field (No.1135) (B) Head Field (No.1135)
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Figure 3: A typical BMcMC realization (A) and the simulated head field (B) from (A): The
unit of hydraulic conductivity and head is in [md~'] and [m], respectively.

The precision of such estimate is plotted in Figure 4(B). One can find that the regions close
to the non-flow boundaries have the most uncertainties. The mean head field shown in
Figure 4(C) reasonably reflects the main characteristics of the reference head field (Figure
2(C)). The distribution of head uncertainty as plotted in Figure 4(D) also demonstrates that
the regions near the non-flow boundaries have the most uncertainties.

The realizations generated closely follow the prior configuration for model parameters.
For example, the experimental mean and variance of the InK are -0.13 and 0.98, respectively
(Figure 5(A)), which approximate to the corresponding prior specifications, i.e. u = 0 and
02 =1, and those of the reference field, i.e. = —0.05 and 02 = 0.84. Figure 5 shows that
the InK distribution obeys on the Gaussian assumption and the squared head mismatch
follows the log-Gaussian assumption as implied in Equation (2)-(3).

In summary, head observations may contain important information for the identifica-
tion of conductivity distribution. The BMcMC scheme is effective in performing stochastic
simulation inverse-conditioning to head observations.

3.3 Factors that affect the performance of BMcMC

Two important factors are considered in this section to examine their influences on the
performance of the BMcMC method: the correlation length (A;) and whether or not con-
ditioning on the hard data (x|x;). Several performance measures considered in this study
include the reproduction of reference models, the acceptance rate, and the mixing of Markov
chain.

Four scenarios of BMcMC simulations with distinct configurations are run on the basis of
the same conditioning data set as above. The most probable estimates are plotted in Figure
6. Compared to the larger prior correlation length (Figure 6(A) and (C)), the magnitude of
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(A) InK Field (ensemble mean)
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Figure 4: A BMcMC estimate by inverse-conditioning to head observations: the simulated

mean InK field (A) and its variance (B), the simulated mean head field (C') and its variance
(D). The unit of hydraulic conductivity and head is in [md~'] and [m], respectively.

11



(A) InK Distribution (B) Squared Head Misfit
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Figure 5: In K [md~] distribution (A) and squared head [m] misfit (B)

InK is underestimated by the smaller prior correlation length for both the unconditional and
the conditional cases as plotted in Figure 6(B) and (D), respectively. The identified mean
InK field for the conditional case does contain the contributions from both the kriging and
inverse-conditional estimate.

Figure 7 compares the effects of various BMcMC configurations on the performance of
Markov chain: (A)-(D) display the sequential plots of four chains with different BMcMC
configurations after the chains are convergent; (E) and (F) compare the CUSUM plots of
these four chains and their hairiness indices, respectively. The BMcMC parameter configu-
rations are marked in each figures. The mean squared head mismatch in Figure 7(A)-(D)
is calculated by averaging the 3000 independent realizations. One can find that the effect
of the prior correlation length is minor: in the unconditional case, the correct correlation
length (A, = 16) yields a slightly better mean squared head mismatch (as shown in Figure
7(A) and (B)) but a slightly worse mixing of chain (a larger excursion size in Figure 7(E)
but better hairiness indices in Figure 7(F)); in the conditional case, the shorter correlation
length produces better results (from Figure 7(C) through (F)). However, conditioning to
hard data has considerate influence on the performance of Markov chain. The error of mean
squared head misfit obviously decreases, for example, by comparing Figure 7(C) to (A), and
the chain mixes more rapidly, i.e. a smaller excursion size and a larger hairiness indices.

In addition, the acceptance rate is quite sensitive to the prior correlation length and
whether or not conditioning on hard data. Table 1 lists 14 scenarios of stochastic simula-
tions and their BMcMC configurations. One can easily find that conditioning to hard data
significantly enhances the acceptance rate (e.g. by comparing Scenario 9-14 to Scenario 3-8).
The effect of correlation length is quite complicated: for unconditional case, a correct cor-
relation length helps increase the acceptance rate; but for the conditional case, the correct
correlation length decreases the acceptance rate.
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(A) InK Field (ensemble mean)
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Figure 6: Factors affecting the reproduction of reference models: (A)x|y, Ao = 16,
(B)x|y, \e =4, (C)x|x1,y, A\ = 16, and (D)x|x1,y, \p =4
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Table 1: Summary of stochastic simulations, BMcMC configurations and performance indices
Scenario Ae 0p o) (Ay?) N,
1 x|— 16
2 x|z, 16
3 x|y 16 0.10 0.1273 1.21 0.256
4 x|y 16 0.05 0.0175 1.24 0.047
5 x|y 16 0.02 0.0030 2.75 0.101
6
7
8

x|y 4 010 0.0903 1.39 0.238
x|y 4 0.05 0.0106 1.34 0.072
x|y 4 0.02 0.0028 2.38 0.108
9 x|ry,y 16 0.10 0.8381 1.07 0.268
10 x|x;,y 16 0.05 0.1128 0.63 0.247
11 x|x;,y 16 0.02 0.0082 0.64 0.049
12 x|z, y 4 010 14622 1.06 0.281
13 x|,y 4 0.05 0.1985 0.65 0.264
14 x|z, y 4 0.02 0.0109 0.52 0.059

4 Uncertainty Assessment

On the basis of the synthetic example presented above, the uncertainty reduction obtained by
conditioning and inverse-conditioning is assessed quantitatively in terms of several measures.
Two types of uncertainties are considered in this section: model uncertainty and response
uncertainty. The model uncertainty is important at the spatiotemporal scale: not only
because the models generated form the basis for future performance prediction at the existing
wells but also because they are helpful for risk evaluation in locating new wells. The response
uncertainty directly measures the prediction ability of models at the time scale.

4.1 Model uncertainty

Although the reference model is well defined and observable in this study, we generally do
not know what it is ahead in practice. A practical way is to use the ensemble average of
simulated outputs instead of the real model. Two parameters are computed as the metrics
of performance measure to this end, the ensemble average error (I(x);) and the standard
deviation of the ensemble average error (I(x),), which are defined as the L;-norm and Ls-
norm between the simulated models and the mean models, respectively,

1 nzyzfl 1 ny—1
](33)1 = Hmsim - jsim”l - Z - Z |xi,r - j;i|a (16>
Ney= 2o " =0
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Nzyz— ny—1

niz (2ip — T3) (17)

=0 r=0

[(w>§ = [|@sim — jszmH% =

Ngyz

where n, is the number of realizations, n,,. is the number of grid cells, x4, is the vector of

simulated attribute values, and ;,, is the ensemble average vector of simulated attribute
values.

In the synthetic example considered in this study, however, the model uncertainty can
be measured by the simulated errors to validate the efficiency of the proposed method since
the real model is available (e.g. Deng at al., 1993). In such case, the Li-norm and Ly-norm
between the simulated models and the real models are defined as,

Nzyz— 1 nyp—1
I()3 = [|[@sim — ®reslh = i — x|, (18)
Ngyz— 1 ne—1
(@)} = ||Tgim — Tres|l3 = P Z sim g2, (19)
Nay= S5 ™ 550

respectively. Note that x,.; is the vector of reference attribute values. Obviously, the smaller
I(x); and I(x), are, the closer to the real model the generated realizations are.

4.2 Uncertainty of model responses

A method to examining the effect of conditioning to head data on the uncertainty reduction
of the spatial distribution of hydraulic conductivity is to examine the decrease of the Li-norm
and Lo-norm of the predicted model responses (Hoeksema and Kitanidis, 1984; Kitanidis,
1986). The four metrics for the model responses are defined,

Z Yir z (20)

Ngyz—1

1

I = sim — Ysim =
(y)1 =y Ysim||1 o

_ 1 _

n:(:yz =0 T r=0
1 nmyz_l 1 ny—1
](y)3 = ||ysim - yrele = - Z |yflrm yiref|7 (22)
nacyz =0 T r=0
1 Nyyz 1 1 ny—1
I(y)3 = [Ysim — Yrefll2 = — > i =y (23)
Ney= =5 " 10

In essence, I(x)1, I(x)s2, I(y)1, and I(y), measure the degree of precision that the McMC
simulations could render, that is, how narrow the confidence interval of McMC simulations is.
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I(x)s, I(x)4, I(y)s, and I(y), measure the degree of accuracy that the McMC simulations
may attain, that is, how they are close to the true model and its response. From the
standpoint of estimate and uncertainty, I(x)1, I(x)s, I(y)1, and I(y)s measure the reliability
of the estimated models and their responses while I(x)s, I(x)4, 1(y)2, and I(y), measure
the uncertainty of the estimates and their responses.

4.3 Results

Totally fourteen scenarios of numerical experiments (see Table 1) are carried out to systemat-
ically evaluate the uncertainty reduction obtained by conditioning the hydraulic conductivity
field on InK (hard) data and head data.

Table 2 summarizes the model uncertainty reduction in terms of four model metrics,
I(x)1, I(x)s, I(x)s, and I(x),. First, one can observe that the real uncertainties indicated
by I(x); and I(x), are uniformly larger than the estimated uncertainties represented by
I(x); and I(x)s. This indicates that the model uncertainty is always underestimated by
the BMcMC simulation. However, the latter two metrics can be used as a substitute of the
former two for uncertainty assessment since they completely reflect the common rules that
the former two reveal. Second, as the measurement errors of state variables decrease, the
model accuracy does not increase much.

Table 2: Mean absolute error and mean variance of In X
x x|z zly zlr,y  zly  z|T,y

02 I(®) Ae=16 Ap=16 A=16 A, =16 A\, =4 )\, =4
0.10 I(®); 10454 0.8089 0.8686 0.7287 0.9259 0.8684
0.10 I(z)? 13072 1.0120 1.0839 0.9216 1.1570 1.1048
0.10 I(xz);  0.7978  0.6205 0.6930  0.4838 0.7525 0.7026
0.10 I(x)? 09992 0.7929 0.8690 0.6238 0.9439 0.8977
0.05 I(xz); 10454 0.8089 0.8623 0.7174 0.9222 0.8631
005 I(xz)? 13072 10120 1.0757 09072 1.1531 1.0985
0.05 I(xz); 0.7978  0.6205 0.6871 0.4743 0.7517 0.6961
005 I(xz)? 09992 07929 0.8615 0.6119 0.9437 0.8900
002 I(xz); 10454 0.8089 0.8766 0.7156 0.9375 0.8583
0.02 I(z)? 13072 1.0120 1.0954 0.9056 1.1726 1.0924
0.02 I(m); 0.7978  0.6205 0.7040 04718 0.7648 0.6925

2

002 I(z)? 009992 0.7929 0.8850  0.6095 0.9602 0.8865
Ranking 6 2 3 1 5 4

Third, the bottom line in Table 2 ranks the importance of BMcMC configurations on the
model uncertainty reduction. Compared to the unconditional case, conditional simulations
do reduce the model uncertainty. The case with a correct specification of model structure,
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e.g. A\g = 16, conditioning to InK and inverse-conditioning to head data reduces the model
uncertainty to the largest extent. Conditioning to In/K reduces the uncertainty more effi-
ciently than inverse-conditioning to head data, which reveals that direct measurements of
InK are more effective for the model parameter estimation than indirect measurements of
dependent state variables. However, a correct configuration of the spatial model, e.g. the
correlation length \., plays the most important role in the model uncertainty reduction.
Due to the wrong specification of the correlation length, i.e. A\, = 4, the conditional and
inverse-conditional result only ranks the fourth, while the correct one ranks the first. In
summary, the correct configuration for model structure plays a crucial role in model estima-
tion. The direct measurement of parameters plays a more important role than the indirect
measurement of dependent state data for the model parameter estimation.

Table 3 summarizes the uncertainty reduction of model response in terms of four response
metrics, 1(y)1, I(y)q, [(y)s3, and I(y)s. First, just as the observation for the model uncer-
tainty, I(y); and I(y), are generally larger than I(y)s; and I(y)s, which also shows that
the response uncertainty is always underestimated by the BMcMC simulation. Second, as
the measurement errors of state variables decrease, the model accuracy does not increase as
much. Third, the bottom line in Table 3 ranks the importance of BMcMC configurations on
uncertainty reduction of model response. Again, conditional and/or inverse-conditional sim-
ulations reduce the response uncertainty. The case that has a correct specification for model
structure, conditioning to InK and inverse-conditioning to head data reduces the response
uncertainty to the largest extent. However, different from the model uncertainty, inverse-
conditioning to head data reduces the uncertainty more efficiently than conditioning to Ink,
which indicates that indirect measurements of dependent state variables are more helpful
to reduce the response uncertainty than direct measurements of InK. Moreover, a correct
configuration of the spatial covariance plays a less important role in reducing the response
uncertainty. In summary, the response uncertainty is more sensitive to the measurements of
model response than those of model parameters.

It is worth mentioning that, even though the configurations for model parameter are not
correct, the realizations generated well reproduce the crucial patterns of reference models
(e.g. Figure 6 (B) and (D)) and both the model uncertainty and the response uncertainty
are reduced by inverse-conditioning and/or conditioning (Table 2 and Table 3), which proves
the robustness of the proposed BMcMC method.

5 Summary

Aiming at preserving spatial structure for inverse stochastic simulation, a blocking Markov
chain Monte Carlo method is presented to generate i.i.d realizations which are conditional to
hard data and inverse-conditional to state data. The proposal kernel for the construction of
Markov chain is an appropriate (blocking) approximation to the target posterior distribution
in the Bayesian framework. The generation of candidate realizations is very fast on the basis
of the LU-decomposition of the covariance matrix. A numerical experiment on a synthetic
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Table 3: Mean absolute error and mean variance of predicted head
x x|z, zly xlz,y  zly  zlTy
o2 I(y) de =16 Npg=16 Mpy=16 A\p=16 No=4 N\, =4

010 I(y); 09220 0.4943 03072 02725 0.3583 0.3049
010 I(y)?  1.3217  0.7192 04347  0.3815 0.5053  0.4289
0.10 I(y);  0.6806 0.3836  0.2524  0.2252 0.2834 0.2624
0.10 I(y)? 09516 0.5525 0.3580  0.3160 0.3992  0.3692
0.05 I(y); 09220 04943 0.2946  0.2383 0.3446 0.2771
0.05 I(y)? 1.3217 0.7192 04453  0.3363  0.5054 0.3951
0.05 I(y)s 0.6806 0.3836  0.2436  0.1983 0.2825 0.2393
0.05 I(y)? 09516 05525 0.3749  0.2797 0.4121 0.3400
0.02 I(y); 09220 04943 0.3616 0.2317 0.3945 0.2621
0.02 I(y)? 1.3217 0.7192  0.5885  0.3425 0.5957 0.3846
0.02 I(y)s 0.6806 0.3836 0.3146  0.1923 0.3265 0.2280
0.02 I(y)? 09516 0.5525 05103  0.2881 0.4838 (0.3327

Ranking 6 ) 3 1 4 2

aquifer is carried out to demonstrate the efficiency of the proposed method in performing
inverse-conditional simulation. The performance of this method is also widely evaluated
based on the synthetic aquifer. Numerical experiments show that the degree of heterogeneity
of aquifer, e.g. correlation length (\;), and whether or not conditioning on the hard data
(x|x;) may play important roles in the results of inverse-conditional simulations and also
affect the performance of BMcMC itself.

The model uncertainty and the response uncertainty are also assessed. Both types of un-
certainties are reduced due to conditioning on hard data and/or inverse-conditioning on state
data. However, their influences on the uncertainty reduction may have different weights. As
for the effect of the piezometric head (state data) and the hydraulic conductivity (hard data)
upon the model uncertainty of InK, the measurement of InK plays a major role in reducing
such uncertainty compared to the head data. Conditioning to head data, however, does
improve the model estimation of InK compared to conditioning to InK solely. This conclu-
sion is completely consistent with the result of Dagan (1985). The measurement of head
is informative on the large-scale configuration of In/K. As for the effect of the piezometric
head and the hydraulic conductivity upon the prediction uncertainty of head distribution,
the measurement of head plays a major role in reducing such uncertainty compared to that
of InK. Although the prediction of head is quite insensitive to local InK values, the joint
conditioning to InK does improve the prediction of head compared to inverse-conditioning
to head data solely. The local measurement of InK does not carry too much information
about the spatial trend of InK.

However, the efficiency and applicability of the proposed BMcMC method for conditional
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and inverse-conditional simulation suffers from several shortcomings. First, the fast gener-
ation of proposal kernel is totally based on the LU-decomposition of the covariance matrix
which makes it very limited in dealing with the high-resolution cases. Second, the computa-
tion of the likelihood is extremely time-consuming since the forward simulation g(x) is CPU
expensive. These two bottlenecks limit this method to the extensive application in practice
for the conditional and inverse-conditional simulation. In addition, this study only shows
the capability of the proposed BMcMC method conditioning on head data. Actually, the
BMcMC method has a great flexibility in incorporating various data from different sources,
e.g. the concentration data. An improved version of BMcMC method is expected to handle
with the high-resolution case for the integration of various data.
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6 An LU-decomposition-based Sampler

The BMcMC computation needs a fast sampler to generate a large number of candidate
realizations. The joint prior density of a multi-Gaussian random field is,

(@) = (20) HICalFexp { 3@~ e - )}

where 7(x) denotes the prior pdf of @ C R™; n is the length of the vector x; u C R" is the
prior mean of the random field; and C, C R™*"™ is the positive-definite covariance matrix of
the vector . Note that & may be partly observed, say, @, C R™, but seldom fully known,
i.e. m < n. In such case, the sample is called a conditional simulation on linear hard data,
i.e. @]z, where, &1 = T C R™, © = (x1,T2)7, and o C R*™.

The objective is to draw randomly i.i.d realizations from the distribution & ~ N(u, Cy).
The LU-decomposition algorithm is quite efficient and effective in generating a large number
of realizations as required by the BMcMC computation since the LU-decomposition of the
covariance matrix can be done once for all ( Davis, 1987; Alabert, 1987). The simulated results
are rather more precise and accurate than some of others, e.g. the sequential simulation
algorithm.

6.1 Unconditional sampler

Sample Algorithm 1. Unconditional sample @ ~ N(u,Cy) , where ©,u C R", and
C, C Rv™

1) Cholesky decompose C, = LL”, where L C R™™;

)
2) Randomly draw z ~ N(0,1) C R";
3) Calculate v = Lz C R"

)

(
(
(
(4

Generate an unconditional sample x = p + v.
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Note that the step 1 is only needed to be done once, which takes most of computational
time. More realizations can be obtained by repeating from the step 2 to the step 4. The
computational effort lies in the matrix-vector multiplication, i.e. Lz, as in the step 3.

6.2 Conditional sampler

The joint distribution of = (x, 2)7 is,

(o)) e &l)
D) p2 )| Coy Cp ’

where @1 C R™ is the (normalized) conditioning dataset; x; C R" ™ is the (normal-
ized) conditional simulated values; Cj; C R™™ is the data-to-data covariance matrix;
Cyy C R(=m*x(n=m) i5 the unknowns-to-unknowns covariance matrix; and Cy; = C;‘g is the
unknowns-to-data covariance matrix, Cy; C R ™™ It can be shown that the expected
value of x5 is po + (1210;11(@ — 1), which is known as the simple kriging estimate, and the
covariance matrix of €y is Cay — 0210;11 C'5. Therefore, the conditional realizations can be
drawn from zy ~ N(p*, C*), where pu* = py+Co1C11 (21— 1) and C* = Cyy—Cy C;' Clo.

The covariance matrix for all n grid nodes including m conditioning data can be decom-
posed into the product of a lower triangular matrix and an upper one,

C = |: Cll 012 :| — LU = |: L11U11 L11U12

C21 C22 L21U11 L21U12+L22U22 ‘

Therefore, L1, Lo;, and Loy can be obtained by C; = L11U;1, Cy = Ly1Uqq, and Cayy =

Lo Us+ LosUss, respectively. Note that the matrix multiplication, the matrix minus and the

LU-decomposition are involved in the procedure of calculating the lower triangle matrices.
A conditional realization @ is obtained by the multiplication of L with a column vector

z C R"™,
Ty — L, O Z1
= LZ = N
(332—#2) {Lm L22}(Z2>
where the sub-vector z; C R™ is set as z; = L' (¢, — p1) and the sub-vector z, C

R™™ consists of the n —m independent standard normal deviates. Therefore, a conditional
realization can be obtained by,

@y = py + Loy z1 + Lyozo = po + Lot Ly (21 — p1) + Lagzo.
Sample Algorithm 2. Conditional sample x;|x;, where the unknowns & C R"™™ and

the hard data ©; C R™, and £ ~ N(u,Cy), in which z = (1, x2)T € R", p C R", and
C, C R™™:

(1) Calculate Li; C R™™ from Cy; = Ly LY};
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2) Calculate Ly, € R=™X™ from Cyy = LglLlTl;
3) Calculate Lyy C R™X(=m) from Cyy = Ly Uyy + Ly LLy;

4) Calculate the simple kriging field v; = Ly L' (21 — py) C R*™™;

6

)

)

)

5) Randomly draw z, ~ N(0,1) C R"™™;

) Calculate vy = Logzy C R
)

(
(
(
(
(
(

7) Generate a conditional sample s = o + v1 + v5.

Note that the step 1 through the step 4 are only needed to be done once which consumes
the largest part of the computational efforts of this algorithm. More realizations can be
obtained by repeating from the step 5 to the step 7. The computational effort focuses on
the matrix-vector multiplication, i.e. Los2o, as in the step 6.
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