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Instituto de Ingenieŕıa del Agua y Medio Ambiente
Universidad Politécnica de Valencia
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Cover illustration: Various slices of a three-dimensional realization of a
hydraulic conductivity field conditioned to flowmeter measurements at the
Macrodispersion Experiment site, Columbus Air Force Base, Mississipi, USA,
generated using sequential Gaussian simulation. Columns represent the bore-
hole locations where flowmeter measurements were performed.



“Thesis” — 2006/8/11 — 11:41 — page iii — #5

To Alicia



“Thesis” — 2006/8/11 — 11:41 — page iv — #6

iv

Abstract

The need to quantify and/or reduce uncertainty associated with transport
model predictions as well as the ongoing research on solute transport up-
scaling require a numerical method for simulating transport which is highly
computational efficient even for models with millions of grid cells and which is
not prone to numerical errors. One valuable alternative tool for this purpose
is the random walk particle tracking method. This thesis attempts to examine
its fundamental concepts, extend its capacities, and illustrate its applicability
to field problems.

The first paper reviews and assesses the basic mathematical concepts of
the random walk methodology as well as its limitations and advantages. Dif-
ferent numerical implementation methods to overcome the problem of local
solute mass conservation are examined using a simple two-layer case as well as
synthetic heterogeneous two-dimensional conductivity fields and it is demon-
strated that the interpolation method using a hybrid scheme, i.e., linear inter-
polation for velocities and tri/bilinear interpolation for the dispersion tensor
field, provides a local as well as global divergence-free velocity field and that
it approximates well mass balance at grid interfaces of adjacent cells with
contrasting hydraulic conductivities.

The second paper presents a new approach to include multirate mass trans-
fer processes into random walk particle tracking. Performing a Bernoulli trial
on the appropriate phase transition probabilities, derived using the normal-
ized zeroth spatial moments of the multirate transport equations, the par-
ticle distribution between the mobile domain and any immobile domain can
be determined. Examples for the first-order mass transfer and the multirate
mass transfer are illustrated and compared satisfactorily with analytical and
semi-analytical solutions. Various implementation criteria are investigated to
assure a proper simulation of the mass transfer processes. The applicability
of this method is furthermore demonstrated using a synthetic example of the
effects of a heterogeneous intraparticle pore diffusion distribution. The major
advantages of this newly developed approach are its flexibility in the sense
that it does not impose any restrictive assumptions on the spatial variability
of advection, dispersion, and mass transfer, its low computational cost even
for highly discretized models, and the capacity to describe a multiplicity of
different mass transfer processes.

The third paper presents the simulation of tracer transport using the ran-
dom walk methodology at the Macrodisperison Experiment (MADE) site,
where the strong aquifer heterogeneity requires a highly discretized model
grid. A geostatistical analysis of the flowmeter data is performed and results
demonstrate the existence of a hole effect structure indicating an increased
occurrence of clustered lenses or facies in the aquifer. Indicator variogra-
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phy did not show an increased connectivity of extreme conductivity values.
Tracer transport is modeled in three kriged fields as well as for three sequen-
tial simulations all of them using a high grid-resolution with a grid block size
similar to the flowmeter measurement support scale. The kriged fields were
not able to reproduce the anomalous tracer spreading based on an insufficient
representation of the variance of lnK. The sequential Gaussian simulations
generally demonstrated a better tailing than the sequential Indicator simula-
tion indicating that a multiGaussian distribution of lnK approximates well
the field conditions. Using the hole effect structure for the spatial model of
the Gaussian simulations resulted in an increased tailing of the tracer, caused
by the enhanced occurrence of lenses/facies, and a good reproduction of the
non-Gaussian plume shape for various realizations. Thus, when small-scale
variability of hydraulic conductivity is correctly modeled at the flowmeter
measurement support scale, the advection-dispersion equation is capable of
reproducing the anomalous tracer spreading. It furthermore suggests that the
heterogeneity at the flowmeter measurement scale is the main contributor to
the non-Gaussian plume behavior and that mass transfer effects, claimed to
be responsible for the anomalous transport at the MADE site, are principally
the consequence of the use of an inadequate model grid block scale.
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step sizes for a Damköhler number of DaI,1 = 200. . . . . . . . 66

3.5 Absolute error tolerance δ versus matrix 1-norm of ‖ (A−1B)t ‖
when using a Taylor Series approximation for the matrix expo-
nential with three terms. . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Evaluation of the root mean of squared residual errors in de-
pendency of the number of terms used for the multirate series. 68

3.7 Breakthrough curves obtained using the example outlined in
Section 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.8 Relative total mass fraction remaining in the aquifer not having
passed the control plane located at x = 78 using the example
outlined in Section 3.4. . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Model domain used for the simulations. Circles denote flowme-
ter well locations. Triangles denote the five solute injection wells. 87

4.2 Frequency distribution and univariate statistics of the 2495 flowme-
ter measurements. . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Omnidirectional horizontal and vertical isotropic variograms
and fitted spherical model for the lnK flowmeter data. . . . . . 89



“Thesis” — 2006/8/11 — 11:41 — page xiii — #15

LIST OF FIGURES xiii

4.4 Directional horizontal and vertical variograms and fitted model
with hole effect for the lnK flowmeter data. The rotation angle
of the directional variograms is measured in degrees clockwise
from the positive y-axis . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Standardized indicator variograms for the following directions
and deciles: a) Directional horizontal indicator variogram and
fitted model for 0.1 decile b) Directional horizontal indicator
variogram and fitted model for 0.4 decile c) vertical indicator
variogram and fitted model for 0.4 decile d) Directional hori-
zontal indicator variogram and fitted model for 0.9 decile. The
rotation angle of the directional variograms is measured in de-
grees clockwise from the positive y-axis. . . . . . . . . . . . . . 93

4.6 Longitudinal mass distribution profiles of the tritium plume
and predictions using ordinary and indicator kriging to gen-
erate a hydraulic conductivity field. The ordinary kriged fields
are generated using Eq. (4.2) and (4.4), respectively, as ran-
dom function model with the parameters given in Table 4.2.
The indicator kriged field was obtained using Eq. (4.7) with
the parameters of Table 4.2. . . . . . . . . . . . . . . . . . . . . 96

4.7 Longitudinal mass distribution profiles of the tritium plume
and predictions using sequential Gaussian simulation using Eq.
(4.2) as random function model with the parameters given in
Table 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.8 Longitudinal mass distribution profiles of the tritium plume
and predictions using sequential Gaussian simulation using Eq.
(4.4) as random function model with the parameters given in
Table 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.9 Longitudinal mass distribution profiles of the tritium plume and
predictions of six realizations of the sequential Gaussian simu-
lation exhibiting a strong tailing (using Eq. (4.4) as random
function model). . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.10 Horizontal slice of the hydraulic conductivity field #80 for z =
8.1 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.11 (a) Depth integrated normalized concentration distribution af-
ter 328 days for realization #80 (b) Laterally integrated nor-
malized concentration distribution after 328 days for realization
#80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.12 Longitudinal mass distribution profiles of the tritium plume and
predictions using sequential Indicator simulation. . . . . . . . . 103

A.1 Flowchart of the RW3D program structure. Part A. . . . . . . 120
A.2 Flowchart of the RW3D program structure. Part B. . . . . . . 121



“Thesis” — 2006/8/11 — 11:41 — page xiv — #16

xiv LIST OF FIGURES



“Thesis” — 2006/8/11 — 11:41 — page xv — #17

List of Tables

2.1 Velocity Interpolation Schemes (see Figure 2.1) . . . . . . . . . 16
2.2 Parameters for the random function models C and D (where zk

corresponds to the 9 decile cutoffs of the marginal cumulative
distribution function F (zk)) . . . . . . . . . . . . . . . . . . . . 30

3.1 Input parameters for one-dimensional solute transport in Fig-
ures 3.1 and 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Multirate Series for Diffusion (after Haggerty and Reeves, 2002) 59
3.3 Final Terms of Truncated Multirate Series (after Haggerty and

Reeves, 2002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4 Input parameters for solute transport examples in Figures 3.3,

3.4, and 3.6. Note that α was varied to change the ratio between
advection and mass transfer timescale. . . . . . . . . . . . . . . 68

3.5 Grain sizes and diffusion rate coefficients for a Borden sand
sample measured by Ball and Roberts (1991) for PCE desorp-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Geostatistical model parameters for Figures 4.3 and 4.4. . . . . 90
4.2 Geostatistical model parameters for the indicator variogram

model according to Eq.(4.7). . . . . . . . . . . . . . . . . . . . . 92
4.3 Statistical characteristics for generated hydraulic conductivity

fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.1 Name file for RW3D . . . . . . . . . . . . . . . . . . . . . . . . 122
A.2 Input parameter file for RW3D . . . . . . . . . . . . . . . . . . 122

xv



“Thesis” — 2006/8/11 — 11:41 — page xvi — #18

xvi LIST OF TABLES



“Thesis” — 2006/8/11 — 11:41 — page 1 — #19

1
General Context

1.1 Motivation and Objectives

Solute transport models have become an essential tool for assessing environ-
mental risks to groundwater resources, remediation engineering, or the design
of underground repositories of nuclear waste. This development was mainly
driven by an increasing interest in groundwater quality and a rapid evolu-
tion of computer technology making transport simulations widely available
to engineers and consultants. However, although numerical models of solute
transport have undergone a significant improvement over the last decades, the
claims made from the users have also increased. While users initially intended
to simply have a rough idea of, for example, the potential threat of a contam-
inant source on a drinking water well using homogenous parameters for their
solute transport model, the failure of many of these models has lead the mod-
eling community to recognize that solute transport models need to be able to
account for the complexity of parameters found in field problems.

The complexity of solute transport in subsurface systems is based on a mul-
tiplicity of processes: the occurrence of a variety of chemical, physicochemical,
and biochemical mechanisms often varying spatially, the temporal variability
of the flow field, and the heterogeneity of hydraulic conductivity. Unfortu-
nately, exhaustive knowledge of all these parameters will never be available
and hence solute transport models need to be able to quantify the uncertainty
associated with the model predictions. One possibility to achieve this is the
use of a stochastic approach, where, due to the lack of detailed knowledge

1
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about the aquifer properties, multiple equally plausible representations are
generated and analyzed.

A further issue when using solute transport models is the problem of scales.
Numerical models are usually discretized into model grid blocks which are al-
most always much larger than the scale of heterogeneity of the corresponding
parameter and/or the measurement support scale. Upscaling methods have
been developed to overcome this problem, although principally focussing on
flow. Less research has been done on the upscaling of solute transport. The
problem of scales for solute transport was first recognized by the apparent
scale dependance of dispersivity raising the question whether the classical
advection-dispersion equation is capable of correctly simulating solute trans-
port for strongly heterogeneous aquifers using coarse model grid blocks in
comparison to the small-scale variability of aquifer properties. In fact, more
recent research on solute transport upscaling has demonstrated that, when
moving from a highly discretized model to a coarsely discretized one, we need
to account additionally for mass transfer between model grid blocks and hence
either a mass transfer process has to be added to the advection-dispersion
equation or even a different solute transport equation, e.g., continuous time
random walk, fractional advection-dispersion equation, etc., has to be used.

Thus, the exigency of analyzing solute transport for hundreds or even
thousands of different aquifer realizations to quantify uncertainty and/or re-
duce uncertainty by inverse modeling techniques and the ongoing research of
solute transport upscaling require a numerical approach which is highly com-
putational efficient even for models with millions of grid cells and is virtually
free of numerical dispersion. For these cases the random walk particle track-
ing method represents a valuable alternative and the objectives of this thesis
are to review the basic concepts of the random walk approach, to present its
limitations and advantages, to extend its capacities to include mass transfer
processes, possibly significant when upscaling solute transport, and to demon-
strate its applicability for field problems.

1.2 Thesis Organization

The first chapter of this dissertation provides an introduction. It is intended
to present the issues motivating this research and it briefly discusses the im-
portance of solute transport modeling tools, capable of dealing with complex
aquifer heterogeneity at a small-scale and at the same time being computa-
tionally efficient and avoiding numerical errors. Each of the following three
chapters is comprised of a separate, self-contained paper which is published or
is currently being revised for publication in international journals.
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Chapter 2 provides an extensive review of the random walk particle track-
ing method, discusses its advantages and limitations, and evaluates different
numerical approaches to overcome the problem of local solute mass conserva-
tion of the random walk methodology.

In Chapter 3 the random walk particle tracking method is extended to
be capable of modeling a variety of mass transfer processes, ranging from
simple first-order mass transfer, to diffusion into different geometries or any
combination of these mass transfer processes. The new approach is compared
with analytical and semi-analytical solutions and a three-dimensional synthetic
example is presented to demonstrate its applicability.

Finally, Chapter 4 provides a field case application of the random walk
method demonstrating its advantages especially for solute transport in advection-
dominated cases with a large number of model grid cells. For this purpose
a detailed geostatistical analysis of the flowmeter data at the Macrodisperi-
son Experiment site at the Columbus Air Force Base, Mississippi, USA, is
performed and a variety of high-resolution hydraulic conductivity fields are
generated using kriging and Monte Carlo simulations. Solute transport is an-
alyzed in these fields and the effects of the model support scale in comparison
with the scale of heterogeneity, as well as the existence and effects of prefer-
ential flow pathways caused by a possible connectivity of high conductivity
values are discussed.

Chapter 5 summarizes the principal conclusions of this thesis and identifies
the new possibilities opened up for future research as well as questions raised
during this work that need further investigation.

Appendix A briefly presents the numerical code of the random walk particle
tracking method used throughout this dissertation and describes the program-
ming structure of the model as well as the necessary input files.
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2
A review and numerical

assessment of the random
walk particle tracking method

Journal of Contaminant Hydrology, in press:
doi:10.1016/j.jconhyd.2006.05.005

Abstract

We review the basic mathematical concepts of random walk particle track-
ing (RWPT) and its advantages and limitations. Three different numerical
approaches to overcome the local mass conservation problem of the random
walk methodology are examined: (i) the interpolation method, (ii) the re-
flection principle, and (iii) the generalized stochastic differential equations
(GSDE). Analytical solutions of the spatial moments for a two-layer system
are compared to model predictions using the different techniques and results
demonstrate that the interpolation method reproduces correctly average ve-
locity, but fails to reproduce macrodispersion at higher hydraulic conductivity
contrasts between the two layers. On the contrary, the reflection principle and
the GSDE approach underestimate average velocity, but reproduce macrodis-
persion better for high contrasts. The different behavior is based on an artifi-
cial shift of mass for increasing heterogeneities for the GSDE approach and the
reflection principle, whereas the interpolation method suffers from the smooth-
ing of the dispersion tensor. The behavior of these approaches was further-
more analyzed in two-dimensional heterogeneous hydraulic conductivity fields,
which are characterized by different random function models. Solute transport

5
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was simulated correctly by all three approaches for the reference fields hav-
ing Gaussian structures or non-Gaussian structures with an isotropic spatial
correlation, even for a variance of the natural log of hydraulic conductivity
of σ2

lnK = 4. However, for the non-Gaussian model with a strong anisotropic
spatial correlation and a variance of σ2

lnK = 2 and higher, the interpolation
method was the only technique modelling solute transport correctly. Further-
more, we discuss the general applicability of random walk particle tracking in
comparison to the standard transport models and conclude that in advection-
dominated problems using a high spatial discretization or requiring the perfor-
mance of many model runs, RWPT represents a good alternative for modelling
contaminant transport.

2.1 Introduction

Eulerian transport models are often plagued by numerical dispersion or arti-
ficial oscillations, especially for advection-dominated problems. To overcome
these problems a higher grid resolution and smaller time steps have to be ap-
plied, resulting in long execution times even with the CPUs available nowadays
(e.g. Liu et al., 2004).

Furthermore, many aquifers present small-scale geological features that
strongly affect solute transport (e.g. high hydraulic conductivity channels,
low permeability inclusions, abrupt facies transitions). These systems often
require a very fine spatial resolution in the numerical model. One of the most
prominent examples is the aquifer at the Columbus Air Force Base, Mississippi
(commonly referred to as the Macrodispersion Experiment, or MADE site).
Although considerable effort was invested in characterizing the heterogeneity
of the aquifer and conservative tracer transport was simulated using up to ap-
proximately 200.000 nodes, a correct model, based on the classical advection-
dispersion equation, representing the main features of transport at this site
has still not been achieved (Feehley et al., 2000). Many authors concluded
that for a proper representation of tracer transport in these types of aquifers
an even higher resolution of the spatial scale is required or a mass transfer
component has to be added to the advection-dispersion model to compensate
the loss of spatial resolution (e.g. Feehley et al., 2000; Zinn and Harvey, 2003;
Liu et al., 2004).

An alternative to solve transport in heterogeneous porous media is the La-
grangian approach. In particular, the random walk particle tracking (RWPT)
method treats the transport of a solute mass via a large number of particles.
It moves each particle through the porous medium using the velocity field ob-
tained from the solution of the flow equation to simulate advection and adds a
random displacement to simulate dispersion. This approach avoids solving the
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transport equation directly and therefore is virtually free of numerical disper-
sion and artificial oscillations. Furthermore, computational times for models
with a very large amount of cells and being characterized by strong hetero-
geneities are significantly smaller than using the traditional Eulerian, mixed
Eulerian-Lagrangian, or total variation diminishing (TVD) schemes. Hence,
computational efficiency and the absence of numerical dispersion have turned
the Lagrangian transport method into a valuable option for modelling com-
plex, high-resolution transport problems, inverse modelling, and uncertainty
assessment of contaminant transport (e.g. Tompson and Gelhar, 1990; Quin-
odoz and Valocchi, 1993; Tompson et al., 1998; Abulaban and Nieber, 2000;
Kunstmann and Kinzelbach, 2000; LaBolle and Fogg, 2001; Fernàndez-Garcia
et al., 2005b).

We emphasize, that random walk particle tracking should not be con-
fused with the so called continuous time random walk concept introduced by
Berkowitz et al. (2000). Although continuous time random walk also uses
a probabilistic approach to simulate contaminant transport in heterogeneous
porous media, it is fundamentally different to RWPT as it combines advective,
dispersive, and diffusive transport mechanisms inextricably using a generalized
master equation.

RWPT is a method from statistical physics which has been used in the
analysis of dispersion and diffusion processes in porous media for a long time
(Scheidegger, 1954; De Josselin de Jong, 1958). In the late seventies, the first
numerical codes were developed to simulate solute transport in aquifers using
the random walk theory (Ahlstrom et al., 1977; Prickett et al., 1981) and since
then gained popularity. Nevertheless, it was observed in these early studies
that particles accumulate in low permeability zones, resulting in unrealistic
concentrations. This subject was first pointed out by Kinzelbach (1987), who
noted that a slight dissimilarity between the random walk equation, better
known as the Fokker-Planck equation, and the advection-dispersion equation
exists. In mildly heterogeneous systems, where groundwater flow velocity
changes only slightly, this difference is negligible. However, in aquifers with a
high variability in groundwater flow velocity, i.e. very heterogeneous hydraulic
conductivity fields or areas with strong sink/source conditions, this difference
gains importance, and a correction term to retrieve the advection-dispersion
equation has to be included.

The problem of local solute mass conservation has been widely discussed
and various approaches have been suggested to overcome this problem. LaBolle
et al. (1996) compares various interpolation methods and the reflection prin-
ciple (Uffink, 1985) for a one-dimensional system with no advection and for
solute transport in a stratified system, concluding that both methods work well
for these cases, but that the reflection method is difficult to implement for het-
erogeneous multidimensional systems. In a later review of different reflection
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methods LaBolle et al. (1998) conclude that only the reflection techniques pre-
sented by Uffink (1985) and Semra et al. (1993) are successful in maintaining
a uniform particle number density in a closed system with a discontinuous dif-
fusion coefficient, whereas the approaches of Ackerer (1987) and Cordes and
Rouvé (1991) fail to reproduce a correct behavior. In a comment on this ar-
ticle Ackerer and Mosé (2000) disagree with these conclusions and state that
the method of Uffink (1985) does not preserve mass balance over a discontin-
uous interface. More recently, LaBolle et al. (2000) present a technique using
generalized stochastic differential equations and demonstrate that, for a closed
one-dimensional system with no advection and for a two-dimensional system
with advective-dispersive transport in composite media, this approach fulfills
local solute mass conservation. Finally, Hoteit et al. (2002) compare again
the different reflection methods and the interpolation method for a two-layer
stratified aquifer and conclude that only the approach of Semra et al. (1993)
preserves a uniform particle number density in both layers.

In this article we first present an overview of the mathematical equa-
tions of the random walk methodology, its advantages and limitations, and
we briefly discuss the general applicability of the random walk methodology
in comparison with the standard transport models. Then, the different nu-
merical approaches to conserve local solute mass balance using the random
walk methodology are reviewed and evaluated numerically. For this purpose,
a two-layer stratified aquifer system will be used in order to observe the effect
of the different approaches on particle transport in a simple scenario. The
numerical results of the first- and second-order moments are compared with
analytical solutions. In a second step, four two-dimensional heterogeneous
hydraulic conductivity fields are generated using stochastic simulation tech-
niques. These fields are characterized by having multi-Gaussian or non-multi-
Gaussian random distributions as well as by a different spatial correlation
structure. Increasing the variance of these fields (i.e., degree of heterogene-
ity), the importance of the correction term increases and the effects of the
different numerical approaches can be demonstrated. The output is compared
with simulations using a highly discretized TVD scheme. Finally, the main
results from this paper are summarized.

2.2 Basic Concepts of Random Walk Particle Track-
ing

2.2.1 Mathematical Formulation

The well known transport equation of a conservative solute in an aquifer is
given at the representative elemental volume scale by the following equation
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∂c

∂t
+∇ · (uc) = ∇ · (D∇c) (2.1)

where D is the dispersion coefficient tensor, usually defined as

D = (αT |u|+ Dm)I + (αL − αT )
uut

|u| (2.2)

c is the dissolved concentration, t is the time, αL and αT is the longitudinal
and transverse dispersivity, respectively, Dm is the molecular diffusion coeffi-
cient, u is the velocity vector obtained from the solution of the steady-state
flow equation, and |u| is the magnitude of the velocity vector. Here, porosity is
assumed constant and velocity fluctuations are mainly attributed to a spatially
varying hydraulic conductivity. This represents a second-order partial differ-
ential equation, which can be solved using an Eulerian approach by standard
finite-difference or finite-element methods. In order to overcome the problem of
artificial oscillation and numerical dispersion, the Peclet and Courant number
have to be sufficiently small as shown, for example, by Huyakorn and Pinder
(1983). This limitation results, especially for advection-dominated problems,
in a required grid resolution that often strongly increases computational times.

RWPT simulates solute transport by partitioning the solute mass into a
large number of representative particles. The evolution in time of a particle is
driven by a drift term that relates to the advective movement and a superposed
Brownian motion responsible for dispersion. The displacement of a particle
is written in its traditional form given by the Itô-Taylor integration scheme
(Gardiner, 1990)

Xp(t + ∆t) = Xp(t) + A(Xp, t)∆t + B(Xp, t) · ξ(t)
√

∆t (2.3)

where ∆t is the time step, Xp(t) is the position of a particle at time t, A is a
“drift” vector, B, the displacement matrix, is a tensor defining the strength of
dispersion, and ξ(t) is a vector of independent, normally distributed random
variables with zero mean and unit variance.

Itô (1951) demonstrated that the particle density distribution f(Xp, t), de-
fined as the probability of finding a particle within a given interval [Xp,Xp +
dXp] at a given time t, obtained from Eq. (2.3) fulfills, in the limit of large
particle numbers and an infinitesimally small step size, the Fokker-Planck
equation. This equation describes the motion of the particle density distribu-
tion f and is given by

∂f

∂t
+∇ · (uf) = ∇∇ : (Df) (2.4)

where the colon refers to the outer product for multiplying two tensors and
thus



“Thesis” — 2006/8/11 — 11:41 — page 10 — #28

10 CHAPTER 2. A REVIEW AND NUMERICAL ASSESSMENT . . .

∇∇ : (Df) ≡
n∑

i=1

n∑

j=1

∂2Dij

∂xi∂xj
f (2.5)

where n denotes the number of dimensions.
Both of the equations, the advection-dispersion and the Fokker-Planck

equation, are similar to each other as both of them are composed of an advec-
tion/drift term and a dispersion/diffusion term. However, in order to establish
an analogy between them, Eq. (2.1) has to be modified as follows (Kinzelbach,
1987)

∂c

∂t
+∇ · (uc) +∇ · (c∇ ·D) = ∇∇ : (Dc) (2.6)

Using a modified velocity

u∗ = u +∇ ·D (2.7)

it can be demonstrated that the solute transport equation for heterogeneous
porous media can be transformed into an equivalent of the Fokker-Planck
equation:

∂c

∂t
+∇ · (u∗c) = ∇∇ : (Dc) (2.8)

Substituting now the drift vector A in Eq. (2.3) with the modified velocity
vector of Eq. (2.7), the RWPT scheme is obtained:

Xp(t + ∆t) = Xp(t) + (u(Xp, t) +∇ ·D(Xp, t))∆t +B(Xp, t) · ξ(t)
√

∆t (2.9)

where the displacement matrix B is related to the dispersion tensor according
to the following relationship

2D = B ·BT

Note that D is defined in terms of u and not of u∗. For isotropic porous
media the three-dimensional form of the displacement matrix B can be ex-
pressed as:

B =


ux
|u|

√
2(αL|u|+ Dm) − uxuz

|u|
√

u2
x+u2

y

√
2(αT |u|+ Dm) − uy√

u2
x+u2

y

√
2(αT |u|+ Dm)

uy

|u|
√

2(αL|u|+ Dm) − uyuz

|u|
√

u2
x+u2

y

√
2(αT |u|+ Dm) ux√

u2
x+u2

y

√
2(αT |u|+ Dm)

uz
|u|

√
2(αL|u|+ Dm)

√
u2

x+u2
y

|u|
√

2(αT |u|+ Dm) 0




(2.10)
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Other forms of the dispersion tensors and displacement matrices for non-
isotropic media can be found in Burnett and Frind (1987) and Lichtner et
al. (2002). As we will use only two-dimensional examples in the following
sections, the displacement matrix B reduces to

B =

(
ux
|u|

√
2(αL|u|+ Dm) −uy

|u|
√

2(αT |u|+ Dm)
uy

|u|
√

2(αL|u|+ Dm) ux
|u|

√
2(αT |u|+ Dm)

)
(2.11)

However, in stochastic theory two different interpretations exist to demon-
strate that the particle density distribution converges to a solution of the
Fokker-Planck equation. Using Itô’s interpretation of a stochastic integral,
the modified velocity u∗ and the matrix B are evaluated prior to the particle
displacement (see Eq.(2.9)). Stratonovich (1966) showed that using the fol-
lowing particle motion scheme leads also to the Fokker-Planck equation (2.4):

Xp(t + ∆t) = Xp(t) + u∗(Xp, t +
∆t

2
)∆t + B(Xp, t +

∆t

2
) · ξ(t)

√
∆t (2.12)

with

u∗ = u +
1
2
B · ∇ · (BT ) (2.13)

and the dispersion tensor D defined as above.
Here, the drift vector and the dispersion tensor are evaluated at a moment

halfway along the time step to the next particle position. The modified velocity
still contains a derivative term, however, reduced by a factor of 1/2. From a
computational point of view, Itô’s procedure is more attractive as Eq. (2.12)
is implicit and therefore requires an iterative procedure for each time step.

Numerical implementation of the random walk equations is relatively sim-
ple with one exception. When solving the flow equation using numerical meth-
ods, the resulting hydraulic heads and the associated velocity field are usually
given as a discrete point information. Yet simulation of solute transport by the
random walk methodology requires “continuous” information of the velocity
field. Therefore, a map of velocities from this discrete information has to be
generated. This velocity map should fulfil the local fluid mass balance at any
location and the local solute mass conservation at any grid-cell interface. In
general, there is not a simple solution to this problem, but several approaches
have been proposed in the literature, which will be presented in Section 2.3.

2.2.2 Advantages

Besides the above-mentioned computational efficiency and the absence of nu-
merical dispersion, random walk particle transport offers some further ad-
vantages. Based on the simplicity of the explicit equations it can be easily
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implanted over any type of flow model and due to the use of particles as dis-
crete mass parcels, global mass conservation is automatically satisfied. Fur-
thermore, using a constant-displacement scheme (Wen and Gómez-Hernández,
1996), which adjusts automatically the time step for each particle according
to the local velocity, computational time is decreased significantly, especially
for highly heterogeneous aquifers.

Equilibrium sorption using a linear isotherm can be incorporated by re-
placing the velocity u∗ with a retarded velocity u∗/R and D with D/R in Eq.
(2.9). In this case, it must be remembered that, when calculating the total
aqueous or sorbed solute mass, each particle with a total mass of mp moving at
the modified retarded velocity u∗/R has to be divided into an aqueous phase
mass and a sorbed phase mass. A detailed analysis of the implementation of
equilibrium sorption into random walk particle tracking has been presented
by Tompson (1993). Various authors have also introduced algorithms, which
permit the simulation of kinetic sorption (Kinzelbach, 1987; Andričević and
Foufoula-Georgiu, 1991; Quinodoz and Valocchi, 1993; Michalak and Kitani-
dis, 2000) or first-order mass transfer (Huang et al., 2003) within the random
walk particle tracking method. Furthermore, first-order degradation reactions
can be included into the model by assigning to every particle a variable pollu-
tant mass, which develops in time according to first-order kinetics (Kinzelbach,
1987).

Random walk theory can also be used for the calculation of the so-called
backward probability density, where the positive velocities are exchanged with
negative velocities and vice versa, so that particles are tracked backward. This
allows, for example, to determine capture zones around groundwater wells
taking into account dispersion (Uffink, 1989; Frind et al., 2002).

2.2.3 Limitations

One of the problems of the random walk method are the random fluctuations
of computed concentrations. Although these can be diminished by increas-
ing the number of particles, the statistical fluctuation is inversely propor-
tional to the square root of the number of particles in a cell (Kinzelbach,
1987). Hassan and Mohamed (2003) demonstrated that in a homogeneous,
two-dimensional aquifer with 20000 cells approximately 2.5 million particles
were needed to achieve the same smoothness for the concentration contours
as that achieved by the TVD method. A different method to solve this prob-
lem, instead of increasing the number of particles, is the use of projection
functions, which ”smooth” the random fluctuations of the computed concen-
trations (Bagtzoglou et al., 1992).

A desirable property of the random walk method is that during particle
tracking computation of solute concentration may not be necessary, which
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implies that statistical errors associated to the calculation of concentrations
do not propagate to the next time step. Unfortunately, this also means that
concentration-dependent chemical processes, like non-linear equilibrium sorp-
tion, reactions between different chemical species, or sequential decay reac-
tions are not easily incorporated or have to be implemented with a significant
trade-off with respect to computational efficiency (see Abulaban et al., 1998;
Tompson et al., 1996). Similar problems are to be expected for the applica-
tion of RWPT to heat or density-dependent transport. However, currently no
literature exists addressing these issues.

Further problems can be observed in the simulation of particle capture by
pumping wells (e.g. Zheng, 1994). Wells are usually incorporated by defining
a circle around the well center such that when a particle enters the circle
it is removed from the aquifer. The choice of the radius and an incorrect
representation of the radial velocity field in the proximity of the well, due to
a coarse discretization, may therefore influence the breakthrough curve at the
well. This problem can be resolved by using a higher discretization for the
flow field, so that the velocity vectors in all cells adjacent to the well point
towards the well (Kinzelbach, 1987) or by using an analytical solution of the
velocity field for the cell in which the well is located (Zheng, 1994).

Finally, as random walk is based on moving particles it is susceptible to
numerical difficulties in the presence of highly distorted grids, e.g. when using
a vertically deformed grid associated with a varying layer thickness. This
problem is known from the classical particle tracking approach and correction
procedures have been presented by Zheng (1994) and Pollock (1988).

2.2.4 Comparison with Other Approaches

Most numerical methods used nowadays for solving solute transport can be
grouped into four classes: Eulerian, Lagrangian, mixed Eulerian-Lagrangian,
and TVD methods. Unfortunately, no single numerical technique has been
effective for all transport conditions as each of those has its own strengths and
limitations. Hence, the choice of the proper approach for solving a specific
transport problem with efficiency and accuracy is important.

For the case of RWPT the limitations concerning the simulation of non-
equilibrium processes and multispecies kinetic reactions as mentioned above
are undoubtedly one of the greatest disadvantages in comparison to the other
numerical methods. Accounting for these processes is essential in many prob-
lems and the Eulerian, mixed Eulerian-Lagrangian, and TVD methods offer a
greater flexibility and efficiency in treating such problems. Furthermore, due
to the difficulties concerning discontinuous properties and in the presence of a
highly distorted grid, RWPT is not an optimal approach when using a zoned
hydraulic conductivity distribution. In addition, the advantage concerning
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computational efficiency gets less important as computational hardware gets
more and more powerful.

However, for advection-dominated problems that are present in many field
situations, RWPT offers a good alternative to the other existing methods.
Eulerian methods are typically susceptible to excessive numerical dispersion
and artificial oscillation for advection-dominated problems. Although numer-
ical dispersion or artificial oscillations can be limited by using a sufficiently
fine spatial grid, the computational effort required for a field-scale problem
may become prohibitive. The mixed Eulerian-Lagrangian method combines
the advantages of Eulerian and Lagrangian methods, in treating the advection
term with a Lagrangian approach and the dispersion and other terms with
an Eulerian approach. However, most Eulerian-Lagrangian schemes do not
guarantee mass conservation and they are computationally not as efficient as
RWPT. The TVD methods are higher-order finite-difference methods, which
essentially belong to the Eulerian family of solution techniques (Zheng and
Wang, 1999). These methods are mass conservative and reduce numerical
dispersion and artificial oscillations, but unfortunately are much more compu-
tationally demanding than the Lagrangian methods.

Generally speaking, for dispersion-dominated cases, or aquifers with a rea-
sonable number of grid cells and/or complex chemical processes, the standard
transport models are a more appropriate choice for simulating contaminant
transport, whereas advection-dominated problems, using a high spatial dis-
cretization or requiring the performance of many model runs, e.g. Monte-Carlo
simulations, are more efficiently solved using RWPT.

2.3 Implementation Methods for the Local Solute
Mass Conservation

As was mentioned above, the RWPT method requires a velocity field that con-
serves the local fluid mass balance for each grid-cell and the local solute mass
balance at any interface. In aquifers with homogeneous properties both condi-
tions are met, but for heterogeneous aquifers, where discontinuities in effective
subsurface transport properties occur, it is especially difficult to fulfill the local
solute mass balance. In practice, this means that we need a divergence-free
velocity interpolation scheme and a continuous dispersion tensor in space.

2.3.1 The Interpolation Method

The interpolation method is certainly the most often used approach to ad-
dress the problem of discontinuities in the dispersion tensor. This technique
smoothes the dispersion tensor in the vicinity of the interfaces in order to



“Thesis” — 2006/8/11 — 11:41 — page 15 — #33

CHAPTER 2. A REVIEW AND NUMERICAL ASSESSMENT . . . 15

(i,j)

ux,(i-1/2,j) ux,(i+1/2,j)

uy,(i,j+1/2)

uy,(i,j-1/2)

(i+1,j)

(i,j+1)

ux,(i-1/2,j+1) ux,(i+1/2,j+1)

(i+1,j+1)

Dx

Dy
Fy

Fx Particle ux,y

Figure 2.1. Velocity interpolation for a finite-difference flow scheme (LaBolle et al.,
1996). Velocities at the particle position can be calculated according to Table 2.1.

produce a continuous gradient term in the drift vector at the interface. It
requires not only that the time steps are sufficiently small, but also that the
aquifer is sufficiently discretized, in order to minimize errors introduced by the
smoothing of the dispersion tensor. LaBolle et al. (1996) presented a detailed
analysis of this method.

When the flow equation is solved using a block-centered finite-difference
scheme, the usual way to estimate velocity components is to use Darcy’s law
to obtain velocities for the cell interfaces from hydraulic heads given at the
center of each cell. The interface velocities can then be used to calculate the
velocity components at any location within the cell by linear interpolation,
as shown in Fig. 2.1 and Table 2.1. Using this method the local fluid mass
balance ∇ · u = 0 is fulfilled.

Local mass conservation at the cell interfaces is given as follows (Gardiner,
1990)

n · J|s+ = n · J |s− (2.14)

where s+/− indicate the limits of the quantities from the left and the right
hand sides of the interface between two neighboring cells, n is the outward
normal to the interface s, and J is the solute mass flux, which is given as

J = u∗c−D · ∇c (2.15)
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Interpolation Scheme
Linear
ux = (∆x− Fx)ux,(i−1/2,j) + Fxux,(i+1/2,j)

uy = (∆y − Fy)uy,(i,j−1/2) + Fxuy,(i,j+1/2)

Bilinear
ux = (∆x− Fx)(∆y − Fy)ux,(i−1/2,j−1/2) + Fx(∆y − Fy)ux,(i+1/2,j−1/2)+

+(∆x− Fx)Fyux,(i+1/2,j−1/2) + FxFyux,(i+1/2,j+1/2)

uy = (∆x− Fx)(∆y − Fy)uy,(i−1/2,j−1/2) + Fx(∆y − Fy)uy,(i+1/2,j−1/2)+
+(∆x− Fx)Fyuy,(i+1/2,j−1/2) + FxFyuy,(i+1/2,j+1/2)

Table 2.1. Velocity Interpolation Schemes (see Figure 2.1)

where the first term on the right-hand side represents the advective mass flux
and the second term the dispersive mass flux.

In order to fulfill Eq. (2.14) a continuous velocity field is required. When
using linear interpolation, velocities are calculated considering only one direc-
tion (see Table 2.1) and consequently do not change regarding the orthogonal
direction within one cell (Pollock, 1988). Hence, approaching the cell interface
between two neighboring cells, e.g. (i,j) and (i,j+1), as shown in Fig. 2.1,
when assuming that we have different horizontal velocities ux in each cell, re-
sults in different dispersive solute mass fluxes across the boundary. Neglecting
this effect results in an artificial accumulation of particles in low conductivity
zones, as was pointed out by Kinzelbach (1987).

In the bilinear approach the velocities are first linearly interpolated in one
direction and then in the orthogonal direction using its neighboring grid-cells,
so that velocities are obtained for each corner of the cell. The velocity at any
point can then be calculated as a weighted average of these four velocities as
is shown in Table 2.1. Approaching now the cell interface of cells (i,j) and
(i,j+1) from either side, results in a smooth transition of the velocity ux and
thus in an equal dispersive solute mass flux from either side. Nevertheless,
bilinear interpolation has two disadvantages: firstly, the interpolated velocity
field does not satisfy local fluid mass balance and secondly, bilinear interpo-
lation introduces greater smoothing than linear interpolation. The effect of
the second disadvantage can be significant especially in highly heterogeneous
aquifers, as will be shown in the following sections.

Considering the condition given in Eq. (2.14), it is sufficient to use bilinear
interpolation for the term ∇·D and the matrix B in the particle displacement
scheme (Eq.(2.9)), whereas the actual velocity vector u can be calculated us-
ing linearly interpolated velocity components. This raises the possibility of
a so called ”hybrid“ scheme where bilinear interpolation is used only for the
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Figure 2.2. A two-layer system with a discontinuous diffusion coefficient across the
interface (Uffink, 1990)

dispersion terms and the advective term is obtained applying linear interpo-
lation. LaBolle et al. (1996) demonstrated that this scheme is able to solve
solute transport in a heterogeneous aquifer quite accurately.

A hybrid scheme can also be applied to the RWPT method when the
Stratonovich interpretation of a stochastic integral is used. Thus, in Eqs.
(2.12) and (2.13) the term 1

2B · ∇ · (BT ) and the matrix B are calculated
using bilinear interpolation, whereas the remaining term is obtained using
linear interpolation. In the following sections, where the different numeri-
cal approaches will be evaluated, the hybrid scheme is always used with the
interpolation method.

2.3.2 The Reflection Method

The reflection method was first presented by Uffink (1985) and is based on
the idea of diffusion across a boundary with different diffusion coefficients. If
a system of infinite spatial extent as shown in Fig. 2.2 is considered, where Ω1

and Ω2 are the two subdomains, D1 and D2 are the diffusion coefficients, and
c1 and c2 are the concentrations on either side of the boundary, the following
equations have to be fulfilled

∂c1

∂t
= D1

∂2c1

∂x2
x < 0 (2.16)

∂c2

∂t
= D2

∂2c2

∂x2
x > 0 (2.17)

Conservation of mass requires that
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lim
x→0−

D1
∂c1

∂x
= lim

x→0+
D2

∂c2

∂x
(2.18)

lim
x→0−

c1 = lim
x→0+

c2 (2.19)

The concentration distribution functions for each subdomain for an instan-
taneous point source at x0 (delta input) can be described using the method
of images (Feller, 1957). Carslaw and Jaeger (1959) demonstrate that the
concentration distribution functions for subdomain Ω1 can be calculated as
the sum of two functions, where superscripts s and r, respectively, denote the
source and reflected components

c1(x, t) = cs
1(x, t) + cr

1(x, t) x < 0 (2.20)

cs
1(x, t) =

1
2
√

πD1t
exp

(x− x0)2

4D1t
(2.21)

cr
1(x, t) =

R1

2
√

πD1t
exp

(x + x0)2

4D1t
(2.22)

Eqs. (2.21) and (2.22) represent the diffusion in a homogeneous, infinite
system with D1 for a source located at x0 (see Eq. (2.21)) and for a source
located at −x0 and being modified by a reflection coefficient R1. The concen-
tration distribution function for subdomain Ω2 is calculated with an adjusted
starting point x∗0 = x0

√
D2/

√
D1 and using 1−R1

c2(x, t) =
1−R1

2
√

πD2t
exp

(x− x∗0)
2

4D2t
x > 0 (2.23)

In order to satisfy (2.18) and (2.19) R1 has to be chosen as

R1 =
√

D1 −
√

D2√
D1 +

√
D2

(2.24)

For a source located on the other side of the interface, R1 has to be replaced
with R2 = −R1 and x∗0 with x∗0 = x0

√
D1/

√
D2. In the RWPT method the

dispersive movement is simulated by drawing a random number from a normal
distribution ξ(t) and multiplying it with B

√
∆t (see Eq. (2.3)). Therefore,

the probability density distribution for the dispersive particle movement corre-
sponds to a concentration distribution function for a point source diffusion in
a homogeneous medium. When using random walk theory to simulate solute
transport across a discontinuous interface, Uffink (1985) suggested to substi-
tute the normal distribution ξ(t) with a modified probability distribution for
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particles crossing the interface according to Eqs. (2.20) - (2.24) and thereby
to account for the local mass balance at the interface.

Ackerer (1987) suggested a similar, yet slightly different method. It con-
sists in splitting up the time step of a random walk particle into two smaller
steps for all the particles that would cross an interface over a time span
∆t. The first step ∆t1 moves the particle to the interface. The second step
∆t2 = ∆t−∆t1 is performed such that there is a 50% probability for the par-
ticle to enter either Ω1 or Ω2. If it enters Ω2 it will move using the dispersion
in Ω2. Otherwise, the particle is reflected and it continues its trajectory in Ω1.

Cordes and Rouvé (1991) stated that both of the above-mentioned reflec-
tion methods fail, based on the fact that the particle density in the vicinity of
the interface is not balanced. Therefore, they proposed that for each particle
crossing from a cell with high dispersion to a cell with low dispersion, for ex-
ample, a random number from a uniform distribution over the interval from
0 to 1 should be drawn. If this number is less than (

√
D1 −

√
D2)/

√
D1, the

particle is reflected at the interface with no loss of momentum. For the other
case the particle continues its trajectory into the other domain.

The most recent variation of the reflection method was presented by Semra
et al. (1993) and Hoteit et al. (2002). They use the same time step split-
ting procedure as presented by Ackerer (1987) in combination with a fully
reflecting interface as introduced by Cordes and Rouvé (1991). Nevertheless,
the probability that a particle goes into Ω1 (respectively Ω2) is calculated
slightly different and corresponds to P1 = (

√
D1)/(

√
D1 +

√
D2) (respectively

P2 = 1 − P1 = (
√

D2)/(
√

D1 +
√

D2)). In the following sections which eval-
uate the different techniques for a random walk simulation in heterogeneous
media the method presented by Semra et al. (1993) and Hoteit et al. (2002)
was chosen from the reflection approaches described here.

2.3.3 Generalized Stochastic Differential Equations

The most commonly used stochastic differential equation (SDE) to simulate
random walk transport in aquifers is the one presented by Itô (1951). Numer-
ical integration of this SDE leads to Eq. (2.9), which requires the gradient of
the disperson tensor and therefore requires a numerical approach to fulfil local
fluid and solute mass conservation. LaBolle et al. (2000) used a Taylor se-
ries expansion in order to derive an alternative Itô-SDE for composite porous
media and obtained, for the case of constant porosity and isotropic pore-scale
dispersion, the following equation

Xp(t + ∆t) = Xp(t) + u(Xp, t)∆t + B(Xp + ∆Y, t) · ξ(t)
√

∆t (2.25)

∆Y = B(Xp, t) · ξ(t)
√

∆t (2.26)
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Figure 2.3. Schematic illustration of the two-step process of a random walk simula-
tion in a composite porous media (LaBolle et al., 2000)

It can be observed that the advective step consists only of the actual ve-
locity and therefore linear interpolation can be used to determine the velocity
field. Local solute mass balance is included by a two-step procedure: First, the
displacement considering only diffusion, denoted as ∆Y in Eq. (2.26), is calcu-
lated. The velocity at this location is evaluated and used in the B(Xp+∆Y, t)
term in Eq. (2.25). Then, the actual particle movement is calculated, start-
ing from the particle’s original position Xp(t) according to Eq. (2.25). The
simulation method is graphically illustrated in Fig. 2.3.

This approach can also be extended to the case of a heterogeneous porosity
field and anisotropic pore-scale dispersion. However, due to the complexity of
the equations for these cases, implementation into a numerical code is not sim-
ple. A detailed derivation of the generalized stochastic differential equations
can be found in the work presented by LaBolle et al. (2000).

2.4 Method of Moments

In order to evaluate the following numerical simulations, the method of mo-
ments approach developed by Aris (1956) is applied. The spatial moments
serve as a simple, physically meaningful description of overall plume behavior
(e.g. Freyberg, 1986; Garabedian et al., 1991). Usually only the first three
moments are considered: the zeroth moment represents the total solute mass
contained in the plume, the first moment measures the location of the center
of mass of the plume and the second moment corresponds to the spreading of
the plume around the center of mass. The general formula to calculate the
spatial moments of a plume is given as

Mp(t) =
∫ ∫ ∫ ∞

−∞
Θxpc(x, y, z, t)dxdydz (2.27)

where Mp is the moment of pth order, Θ is the porosity, and c is the concen-
tration at location x,y,z at time t. In the subsequent cases we will consider
only the moments in x-direction, hence mixed moments are not shown.

The center of mass as a function of time can be calculated as
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XG(t) =
M1

M0
(2.28)

In addition, the second spatial moment in x-direction is defined as

Sxx(t) =
M2

M0
−

(
M1

M0

)2

(2.29)

Using these moments the apparent average velocity U(t) of the plume cen-
ter of mass, the apparent longitudinal macrodispersion DL(t), and the appar-
ent longitudinal macrodispersivity AL(t) can be calculated with the following
formulas

U(t) =
∆XG

∆t
=

XG(t)−XG(0)
t

(2.30)

DL(t) =
1
2

∆Sxx

∆t
=

1
2

Sxx(t)− Sxx(0)
t

(2.31)

AL(t) =
DL(t)
U(t)

=
1
2

∆Sxx

∆XG
=

1
2

Sxx(t)− Sxx(0)
XG(t)−XG(0)

(2.32)

Apparent parameters as calculated in Eqs. (2.30) - (2.32) are viewed as
equivalent values in homogeneous porous media that, when used with the
classic advection-dispersion equation, lead to the same spatial moments of the
plume as observed in the simulations for heterogeneous porous media.

2.5 Numerical Evaluation

All three approaches presented in Section 2.3 were numerically implemented
into the random walk transport model RW3D (Fernàndez-Garcia et al., 2005a).
Solute transport in the following synthetic cases is conservative and two-
dimensional, and pore-scale dispersion is assumed to be isotropic. Molecular
diffusion is neglected in all of the subsequent cases. A constant-displacement
scheme is used as it is computationally more efficient than the constant time
step scheme. MODFLOW (McDonald and Harbaugh, 1988) was used to solve
the flow equation and to compute the cell-interface velocities.

Two problems are considered: (1) transport in a two-layer stratified aquifer
and (2) transport in a two-dimensional heterogeneous aquifer with different
conceptual random field models. The first problem was chosen to compare the
development of first- and second-order moments with analytical solutions and
serves as a simple scenario to illustrate the effect of a discontinuous disper-
sion tensor on particle transport for each of the different numerical approaches.
The second problem simulates heterogeneous conditions by creating synthetic,
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Figure 2.4. Schematic representation of the two-layer aquifer system

two-dimensional aquifers using stochastic simulation. It demonstrates the ef-
fects of the different approaches especially with regard to highly heterogeneous
aquifers.

2.5.1 Solute Transport in a Two-Layer Stratified Aquifer

Problem Description

The stratified system shown in Fig. 2.4 contains two equally thick horizontal
layers with different hydraulic conductivities, a homogeneous porosity of Θ =
0.2, and an isotropic and homogeneous pore-scale dispersivity of α = 0.01 m.
The system represents a confined aquifer with no flow boundaries at the top
and the bottom sides and constant-head boundaries at the left and right-hand
sides. Particles were distributed uniformly on a line transverse to the flow
direction. The particle source is located on the left-hand side of the aquifer
and spans the whole width of the aquifer. A total number of 2000 particles
were used in the simulations. The aquifer was chosen to be 0.3 m wide and
1000 m long in order to be able to obtain constant values for the growth
of the first- and second-order moments before the particles exit the domain.
The system has a hydraulic gradient of 0.01. The natural log of hydraulic
conductivity of layer 2 is lnK = −4.605 (where K is in m/s), whereas several
alternatives for lnK in layer 1 were considered between lnK = −4.605 and
lnK = −11.513 in order to increase the contrast between the two layers. For
the system shown in Fig. 2.4, the explicit Itô-random walk equations reduce
to the following simple set of equations
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xp(t + ∆t) = xp(t) + ux(t)∆t + ξx

√
2α · ux(t)∆t (2.33)

yp(t + ∆t) = yp(t) +
∂Dyy(t)

∂y
∆t + ξy

√
2α · ux(t)∆t (2.34)

where ux(t) denotes the velocity and Dyy(t) the component of the dispersion
tensor in y-direction at the actual position of the particle xp(t), yp(t). Using
Stratonovich’s interpretation of a stochastic integral, the equations for the
two-layer system can be written as

xp(t + ∆t) = xp(t) + ux(t∗)∆t + ξx

√
2α · ux(t∗)∆t (2.35)

yp(t + ∆t) = yp(t) +
1
2
Byy(t∗)

∂Byy(t∗)
∂y

∆t + ξy

√
2α · ux(t∗)∆t (2.36)

where ux(t∗) and Byy(t∗) denote the velocity and the component of the dis-
placement matrix in y-direction at the position xp(t + ∆t/2), yp(t + ∆t/2)
of the particle. The partial derivatives in Eqs. (2.34) and (2.36) represent
the gradient of D and B with respect to the y-direction resulting from the
bilinear interpolation as outlined in Section 2.3.1. Given the two-layer case
presented here, the gradient of the dispersion tensor and the displacement
matrix, respectively, in x-direction are zero and hence these terms are not
included.

When applying the reflection method, the expression for the random walk
particle transport is given as

xp(t + ∆t) = xp(t) + ux(t)∆t + ξx

√
2α · ux(t)∆t (2.37)

yp(t + ∆t) = yp(t) + ξy

√
2α · ux(t)∆t (2.38)

In Eqs. (2.37) and (2.38) the velocity of a particle is not corrected to pre-
serve local solute mass conservation at interfaces with discontinuous dispersive
coefficients as in Eqs. (2.33) to (2.36). Instead, a reflection probability for a
particle, which wants to move from layer 1 to layer 2 and vice versa, will be
calculated using

P12 = (
√

Dyy1)/(
√

Dyy1 +
√

Dyy2) (2.39)

P21 = (
√

Dyy2)/(
√

Dyy1 +
√

Dyy2) (2.40)

in order to account for the local solute mass conservation at the interface.
Therefore, every time a particle crosses an interface with discontinuous dis-
persive coefficients during ∆t a Bernoulli trial on the appropriate reflection
probability is performed, deciding whether a particle is reflected or not.
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Finally, using the generalized stochastic differential equations method, first
the particle is moved only using dispersion according to

Yx(t) = xp(t) + ξx

√
2α · ux(t)∆t (2.41)

Yy(t) = yp(t) + ξy

√
2α · ux(t)∆t (2.42)

Then, to calculate the final particle movement, the velocities at xp(Yx, Yy; t),
yp(Yx, Yy; t) are used to determine the dispersive step as shown in the following
equations

xp(t + ∆t) = xp(t) + ux(t)∆t + ξx

√
2α · ux(Yx, Yy; t)∆t (2.43)

yp(t + ∆t) = yp(t) + ξy

√
2α · ux(Yx, Yy; t)∆t (2.44)

Comparison with Analytical Results

In the following simulations several scenarios were analyzed, in which the
hydraulic conductivity contrast between the two layers was increased. The
effect of this increasing heterogeneity was assessed using long-time first- and
second-order spatial moments. The analytical solution for the apparent aver-
age velocity can be written as the arithmetic mean of the two-layer velocities
(Marle et al., 1967)

U(t →∞) =
ux1 + ux2

2
(2.45)

The analytical solution for the macrodispersion is somewhat more compli-
cated. Marle et al. (1967) presented a general solution for a stratified aquifer
at large travel times, which can be rewritten for the case presented above as

DL(t →∞) =
Dxx1 + Dxx2

2
+

∆y2

24

(
1

Dyy1
+

1
Dyy2

)
(ux1 − ux2)2 (2.46)

where Dxx1 = αux1, Dxx2 = αux2, Dyy1 = αux1, and Dyy2 = αux2.
In the following section results are additionally compared with the standard

MT3DMS model (Zheng and Wang, 1999) using the TVD scheme.

Results

Fig. 2.5 shows the analytical values calculated using Eq. (2.45) and the ap-
parent average velocity obtained from the different random walk approaches
and the TVD scheme with increasing hydraulic conductivity contrast between
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Figure 2.5. Behavior of the average velocity with increasing heterogeneity. (ux2 is
kept constant and ux1 is decreased)

the two layers. As can be observed, the interpolation method for both, the
Itô and the Stratonovich interpretation of a stochastic integral, and the TVD
scheme are able to reproduce the correct apparent average velocity, even for
high hydraulic conductivity contrasts between the two layers. The General-
ized Stochastic Differential Equations (GSDE) approach shows an increasingly
lower apparent average velocity for contrasts higher than five, whereas the re-
flection method reproduces an even lower apparent average velocity starting
from a hydraulic conductivity contrast of two.

Fig. 2.6 represents the evolution of the late-time longitudinal macrodis-
persion with increasing velocity differences between the two layers. The TVD
scheme and both interpolation methods demonstrate similar behavior, failing
to reproduce the analytical macrodispersion for velocity contrasts larger than
five between the two layers. On the contrary, the reflection method and the
GSDE method represent the macrodispersion fairly good even at high veloc-
ity differences up to a contrast of approximately 50. One should note that we
have chosen for the two-layer case a vertical discretization that coincides with
the width of the layers, for the purpose of a simple example on the effects
of a discontinuous dispersion coefficient using the different numerical random
walk approaches. Thus, when using a higher vertical discretization, the TVD
scheme would correctly approximate the analytical solution.

In order to understand the behavior shown in Figs. 2.5 and 2.6 of the
different methods better, we will look at the movement of the centre of mass
in the y-direction with respect to time. Gueven et al. (1984) proved that in a
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Figure 2.6. Behavior of the longitudinal macrodispersion with increasing hetero-
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layered aquifer system with conditions given as described above the mass in a
layer is constant with respect to time. Hence, the centre of mass with respect
to the y-direction YG(t) should always be located at the interface of the two
equally thick layers in our system.

The behavior of the centre of mass with respect to the y-axis for the dif-
ferent methods is presented in Figs. 2.7, 2.8, 2.9, and 2.10. The interpolation
method for both, the Itô and the Stratonovich interpretation, shows an excel-
lent behavior with respect to conserving the centre of mass at the interface even
for strong velocity contrasts. Further, the average velocity of the particle cloud
agrees well with the analytical solution, corroborating that particle transfer
between layers is accurately captured. Yet due to the increased smoothing of
the dispersion tensor introduced by the bilinear interpolation, macrodispersive
behavior is not simulated correctly for strong velocity contrasts.

The other two methods display an increasing shift of the centre of mass
into the low velocity layer with increasing velocity differences, as they are
missing the gradient term forcing the particles into the high velocity layer
and it seems that neither the reflection of particles nor the evaluation of the
particle’s velocity shifted by a dispersive step, as used in the GSDE method,
are able to compensate for the missing drift term. Furthermore, both of these
methods result in an average velocity much lower than in the interpolation
method, but a better representation of the macrodispersion. This behavior
is generated by the artificial transfer of particles into the low conductivity
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Figure 2.11. The four models generated using Sequential Gaussian and Indica-
tor Simulation with different spatial correlation. Circles in Models B and D denote
observation well locations.

layer, and thus, the underlying physical processes are not well reproduced and
ultimately will lead to an erroneous mass distribution.

2.5.2 Solute Transport in a Heterogeneous Aquifer

Problem Description

Four reference hydraulic conductivity fields were stochastically generated us-
ing different random function models, denoted as A, B, C, and D (Fig. 2.11).
All of the reference fields have the same mean lnK value of -6.908 and variance
σ2

lnK = 0.5. In order to simulate increasing heterogeneity the lnK variance of
these fields was increased to values of 2, 3, and 4 by scaling the reference real-
ization. All the reference fields have a spatial discretization of ∆x = ∆y = 0.3
m and a total length and width of 60 m and 21 m respectively. Reference lnK
fields associated with models A and B were simulated by choosing a realization
from a Sequential Gaussian Simulation (GCOSIM3D; Gómez-Hernández and
Journel, 1993). Model A is characterized by an isotropic spatial correlation
with a correlation length of λx = λy = 1.2 m and can be described by the
following standardized exponential semivariogram

γ(h)
σ2

lnK

= 1− exp

(−h

1.2

)
(2.47)

Model B shows a strong anisotropic spatial correlation parallel to the x -
axis and was simulated using the following standardized semivariogram, where
the anisotropy axes are aligned with the principal coordinate axes and the
correlation length in x is λx = 20.0 m and in y is λy = 1.2 m.
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λx λy

Threshold Model Model Model Model
zk F (zk) F (zk)[1− F (zk)] C D C D

-8.195 0.1 0.09 1.2 1.2 1.2 60.0
-7.758 0.2 0.16 1.2 1.2 1.2 60.0
-7.44 0.3 0.21 1.2 1.2 1.2 60.0
-7.165 0.4 0.24 1.2 1.2 1.2 60.0
-6.9137 0.5 0.25 1.2 1.2 1.2 60.0
-6.66 0.6 0.24 1.2 1.2 1.2 60.0
-6.386 0.7 0.21 1.2 1.2 1.2 60.0
-6.07 0.8 0.16 1.2 1.2 1.2 60.0
-5.633 0.9 0.09 1.2 1.2 1.2 60.0

Table 2.2. Parameters for the random function models C and D (where zk corre-
sponds to the 9 decile cutoffs of the marginal cumulative distribution function F (zk))

γ(hx, hy)
σ2

lnK

= 1− exp


−

√(
hx

20.0

)2

+
(

hy

1.2

)2

 (2.48)

The reference hydraulic conductivity fields associated with models C and
D were generated by choosing a realization from a Sequential Indicator Sim-
ulation (ISIM3D; Gómez-Hernández and Srivastava, 1990). A mosaic model
was used for the corresponding random function as the nine thresholds have
all the same standardized exponential semivariogram (Eq.(2.48)). Both of the
models have, as with models A and B, a different spatial correlation. The pa-
rameters for the indicator variograms used in model C and D are summarized
in Table 2.2.

There are two main reasons for choosing these four reference fields. Firstly,
the strong anisotropic spatial correlation was chosen in order to study the ef-
fects of artificial mass shift into low conductivity zones caused by an incorrect
numerical approximation of discontinuous dispersion coefficients as shown in
Section 2.5.1. It is expected, especially for the reference fields with a strong
variance, that the GSDE approach shows a lower average velocity but a bet-
ter macrodispersion than the interpolation technique. Secondly, heterogeneous
hydraulic conductivity fields generated by Gaussian simulation techniques usu-
ally show a smooth transition from high conductivity values to low conduc-
tivity values, and vice versa, based on the characteristics of the Gaussian
random function (Gómez-Hernández and Wen, 1998). This spatial smoothing
will diminish the significance of a correct implementation of the local solute
mass balance condition. However, in aquifers formed by alluvial deposits for
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example, abrupt changes between different facies with a strong hydraulic con-
ductivity contrast can occur (Heinz et al., 2003). Contrasts between high
and low conductivity values in these fields are generally stronger and it is ex-
pected that differences in solute transport behavior for the different RWPT
approaches will become even more apparent, as a correct implementation of
the conservation of the local solute mass balance is more important in these
systems. It should be noted that in the following study the reflection princi-
ple was not included, as the approach demonstrated a similar behavior as the
GSDE approach for the two-layer case and because the correct implementa-
tion into a three-dimensional transport model is rather complex as particles
can be reflected from different cell interfaces during one time step.

The TVD scheme was, again, used for comparison with the RWPT method.
To prevent numerical dispersion and artificial oscillations, the hydraulic con-
ductivity fields were refined to a cell size of ∆x = ∆y = 0.1 m. Flow and
transport was then solved for both, the TVD scheme and the RWPT method,
on the refined grid. Although the TVD scheme has proven to be essentially
oscillation-free and without excessive numerical dispersion, the reference field
for model D (for σ2

lnK = 2) was further refined to decrease the Peclet number
from 10 to a value of 7.5. The results were compared with the coarser dis-
cretized model and neither artificial oscillations nor numerical dispersion were
observed for this case.

The aquifer was assumed to be confined and with constant-head boundaries
at x = 0 m and x = 60 m, a head gradient of 0.0833, and with no-flow
boundaries at y = 0 m and y = 21 m. Particles were distributed uniformly on
a line transverse to the main flow direction. The source is located 0.45 m away
from the constant-head boundary on the left-hand side and 2.25 m from either
side of the no-flow boundaries which leaves a total width of the source of 16.5
m. A total number of 2000 particles, a homogeneous porosity of Θ = 0.2, and
an isotropic pore-scale dispersion of α = 0.01 m was used in all simulations.

Results

In the following figures mass flux breakthrough curves, apparent average ve-
locities, and apparent longitudinal macrodispersivities are used to compare
the different numerical approaches to overcome the problem of discontinuous
material properties in the RWPT method. Figs. 2.12 and 2.13 present the
results for models A and B generated using Sequential Gaussian Simulation,
where λ corresponds to λ = 1.2 m for models A and C and λ = 20 m for
models B and D, respectively. It can be observed that, even for extreme het-
erogeneities (σ2

lnK = 4) and anisotropic spatial correlation, all the approaches
produce a similar plume behavior, indicating that all the different numerical
implementation methods perform well in aquifers, where a gradual transition
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Figure 2.12. Normalized mass flux breakthrough curve, average velocity, and lon-
gitudinal macrodispersivity using Model A with σ2

lnK = 2.0 and σ2
lnK = 4.0
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Figure 2.13. Normalized mass flux breakthrough curve, average velocity, and lon-
gitudinal macrodispersivity using Model B with σ2

lnK = 2.0 and σ2
lnK = 4.0
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between high and low conductivity zones exist, despite the strong anisotropic
geometry of the aquifer. Similar observations are made for model C gener-
ated using Sequential Indicator Simulation (Fig. 2.14). Although contrasts
between the different conductivity zones are more abrupt, all of the meth-
ods were able to reproduce the correct plume behavior. Only for model D,
with a variance of σ2

lnK = 2.0 or higher, a difference in the average velocity
between the various approaches is noticeable (Figs. 2.15 and 2.16). For this
case only the interpolation method using Itô’s or Stratonovich’s interpretation
of a stochastic integral is able to reproduce the correct apparent average ve-
locity, whereas the GSDE method tends to underestimate the velocity. This
observation coincides with the results achieved in the two-layer stratified case.
Furthermore, macrodispersivity in Model D, with a variance of σ2

lnK = 2.0 or
higher, is overestimated by the GSDE approach. This is caused by an artificial
transfer of particles into lower hydraulic conductivity regions already observ-
able in the two-layer scenario. Hence, this artificial mass shift occurring at
strong lnK variances for the GSDE method results in an overall plume retar-
dation, lower peak concentrations, and an increased tailing of the contaminant
breakthrough curves.

Fig. 2.17 presents the breakthrough curves obtained in two observation
wells located in high-conductivity channels in model B and model D as de-
picted in Fig. 2.11. The models are characterized by a natural log hydraulic
conductivity variance of σ2

lnK = 3.0 and the observation wells have a diameter
of 0.4 m. In order to recover a representative number of particles in a well and
to obtain smoother breakthrough curves, particle numbers for these simula-
tions have been increased to 50000. Fig. 2.17 illustrates that all approaches
produce similar outputs for the Gaussian random function, as expected. When
looking at the breakthrough curves in model D it can be observed that, al-
though early particle arrival times agree for all three approaches, the total
number of particles arriving at the well is significantly lower when using the
GSDE method, since particles are artificially moved to lower lnK regions. As
in real world situations solute mass arrival is measured usually in observation
wells and is then compared with numerical simulations, employing the GSDE
method can result in a possible underestimation of contaminant breakthrough
curves.

In order to examine the performance of the RWPT methods for the case
where pore-scale dispersion has a stronger impact on solute transport, the
pore-scale dispersion was increased to a value of α = 0.05 m. Fig. 2.18 depicts
the results for these cases. Although the apparent plume average velocity
in model B with a variance of σ2

lnK = 4.0 is slightly underestimated for the
GSDE approach, the overall plume behavior agrees well with the results ob-
tained using the TVD scheme. However, Model D presents a lower apparent
average velocity for a variance higher than σ2

lnK = 2.0 using the GSDE tech-
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Figure 2.14. Normalized mass flux breakthrough curve, average velocity, and lon-
gitudinal macrodispersivity using Model C with σ2

lnK = 2.0 and σ2
lnK = 4.0
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Figure 2.15. Normalized mass flux breakthrough curve, average velocity, and lon-
gitudinal macrodispersivity using Model D with σ2

lnK = 0.5 and σ2
lnK = 2.0
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Figure 2.16. Normalized mass flux breakthrough curve, average velocity, and lon-
gitudinal macrodispersivity using Model D with σ2

lnK = 3.0 and σ2
lnK = 4.0
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Figure 2.17. Breakthrough curves for an observation well in Model B with σ2
lnK =

3.0 and in Model D with σ2
lnK = 3.0

nique and the interpolation method in combination with the Itô-Fokker-Planck
equation. The interpolation method in combination with the Stratonovich-
Fokker-Planck equation seems to represent the best approach for the average
velocity for the case of a variance σ2

lnK = 2.0 and higher. Macrodispersivity
is represented well by the interpolation method, and is overestimated by the
GSDE method. Increasing pore-scale dispersion results in a stronger artificial
mass shift for the GSDE method and therefore overestimation of macrodis-
persivity and underestimation of the apparent average velocity of the plume
is emphasized.

2.6 Conclusions

We have presented the fundamental concepts of the RWPT method and its
advantages and limitations. The different numerical approaches for the ran-
dom walk methodology to conserve local solute mass balance at interfaces
with discontinuous properties were reviewed and evaluated numerically using
synthetic test cases. Solute transport in a two-layer stratified aquifer demon-
strated that both of the interpolation methods, using Itô’s or Stratonovich’s
interpretation of a stochastic integral, are able to reproduce the apparent av-
erage velocity even for high hydraulic conductivity contrasts. The reflection
principle and the GSDE method underestimate the apparent average velocity
at conductivity contrasts between the two layers of higher than five and two,
respectively. Macrodispersion is represented insufficiently by both of the inter-
polation methods at contrasts higher than five between the two layers, whereas
the GSDE and the reflection method reproduce macrodispersion fairly well up
to velocity contrasts of 50. The different behavior of the RWPT approaches is
based on an artificial shift of mass for increasing heterogeneities for the GSDE
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Figure 2.18. Average velocity and longitudinal macrodispersivity using a local-
scale dispersion of α = 0.05m with Model B for σ2

lnK = 4.0 and with Model D for
σ2

lnK = 2.0 and σ2
lnK = 4.0
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and the reflection approach, whereas the interpolation method suffers from
the smoothing of the dispersion tensor introduced by bilinear interpolation.

However, the experiments with heterogeneous hydraulic conductivity fields
created by sequential Gaussian simulation did not demonstrate any differences
for the various approaches, even for highly heterogeneous aquifers with a strong
anisotropic spatial correlation and a large pore-scale dispersivity value. This
indicates that, when the transition between zones with high and low hydraulic
conductivities is relatively gradual, as occurs in Gaussian random function
models, differences in the implementation approaches for the conservation of
local solute mass balance are not significant.

In fields generated by sequential indicator simulation, only for the case of a
strong anisotropic spatial geometry of the aquifer and variances of σ2

lnK = 2.0
or higher, a discrepancy in the first-order moment was observed for the differ-
ent approaches. For these cases only the interpolation method, using Itô’s or
Stratonovich’s interpretation of a stochastic integral, demonstrated a good rep-
resentation of the apparent average velocity and macrodispersion of the plume.
Apparent average velocity is underestimated and longitudinal macrodispersiv-
ity is overestimated by the GSDE approach for these cases. Various authors
(LaBolle et al., 1996, 1998; Ackerer and Mosé, 2000; LaBolle et al., 2000)
demonstrated that the interpolation technique, the reflection principle, and
the GSDE method are all able to simulate correctly diffusive processes in dis-
continuous media with no advection. Nevertheless, advective and dispersive
solute transport for highly heterogeneous cases with abrupt transitions be-
tween different hydrogeological units and strong anisotropic spatial correlation
seems to be represented better using the interpolation method.

Concerning the numerical implementation, the interpolation method in
combination with the Itô-Fokker-Planck equation is the easiest method. While
the Stratonovich-Fokker-Planck equation requires the implementation of an
iterative procedure, the GSDE method becomes especially complex for the
case when pore-scale dispersion is anisotropic and porosity is heterogeneous.
The reflection principle turns out to be difficult to implement for general three-
dimensional problems, where particles can be reflected by various interfaces
within one time step as was already mentioned by LaBolle et al. (1996).
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Ackerer, P., Mosé, R., 2000. Comment on “Diffusion theory for transport in
porous media: Transition-probability densities of diffusion processes corre-
sponding to advection-dispersion equations” by Eric M. LaBolle et al. Water
Resources Research, 36(3), 819-821.

Ahlstrom, S.W., Foote, H.P., Arnett, R.C., Cole, C.R., Serne, R.J., 1977.
Multi-component mass transport model: theory and numerical implemen-
tation (discrete parcel random walk version). Rep. BNWL-2127, Battelle
Pacific Northwest Lab., Richland, Washington.
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3
Modeling Mass Transfer

Processes Using Random
Walk Particle Tracking

Water Resources Research, in press.

Abstract

The complexity of mass transfer processes often complicate solute transport
simulations. We present a new approach for the implementation of the mul-
tirate mass transfer model into random walk particle tracking. This novel
method allows for a spatially heterogeneous distribution of mass transfer co-
efficients as well as hydrodynamic parameters in three dimensions, and it is
well suited for avoiding numerical dispersion and solving computationally de-
manding transport simulations. For this purpose the normalized zeroth spatial
moments of the multirate transport equations are derived and used as phase
transition probabilities. Performing a simple Bernoulli trial on the appropriate
phase transition probabilities the particle distribution between the mobile do-
main and any immobile domain can be determined. The approach is compared
satisfactorily to analytical and semi-analytical solutions for one-dimensional,
advective-dispersive transport with different types of mass transfer. Aspects of
the numerical implementation of this approach are presented and it is demon-
strated that two restrictive criteria for the time step size have to be considered.
Adjusting time step size for each grid cell based on the cell specific velocity
field and mass transfer rate a correct simulation of solute transport is assured,
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while at the same time computational efficiency is preserved. Finally, an ex-
ample is presented evaluating the effect of a heterogeneous intraparticle pore
diffusion in a synthetic aquifer. The results demonstrate, that for this specific
case the heterogeneous distribution of mass transfer rates has not a significant
influence on mean solute transport behavior, but that at low concentration
ranges differences between the different mass transfer models become visible.

3.1 Introduction

Mass transfer processes occur in almost all porous media and over various
scales ranging from pore diffusion at the grain scale and diffusion into low
hydraulic conductivity inclusions at the centimeter to meter scale to ma-
trix diffusion into fractured rocks. The significance and diversity of these
processes has been recognized already for a long time (e.g., van Genuchten
and Wierenga, 1976; Neretnieks, 1980) due to its important effect on solute
transport observed in laboratory and field studies. More recent experimental
findings showed that, for example, the sorption/desorption mechanism is often
limited by the diffusive transport within the fluid phase of the intraparticle
pores of the sediment grains (e.g., Ball and Roberts, 1991; Pignatello and Xing ,
1996; Luthy et al., 1997; Rügner et al., 1999). Furthermore, various authors
(e.g., Guswa and Freyberg , 2002; Zinn and Harvey , 2003; Liu et al., 2004) have
demonstrated, that solute transport through heterogeneous aquifers with con-
nected high-conductivity pathways and/or lenses of low-conductivity material
is often better upscaled using an advection-dispersion model including a mass
transfer component. This is believed to be the reason, why a successful mod-
eling of the tracer test at the Macrodispersion Experiment (MADE) site using
the classical advection-dispersion model and the hydraulic conductivity data
obtained in the field has still not been achieved (Harvey and Gorelick , 2000;
Feehley et al., 2000). In fact, various authors (Berkowitz and Scher , 1998;
Schumer et al., 2003) demonstrated that a certain form of a multirate mo-
bile/immobile model reproduces the anomalous tracer plume spreading at the
MADE site better than a classical single rate mass transfer model. Thus, the
proper modeling of these processes for groundwater risk assessment is critical,
especially when assessing the persistence of contaminants in aquifers and the
long-term performance of remediation technologies.

Unfortunately, mass transfer processes complicate solute transport simu-
lations and therefore many of the studies performed up to now consider only
a simple first-order mass transfer model. This is from a mathematical and
numerical point of view a very convenient approach. Yet it does not represent
correctly the underlying physical process in many cases, which can lead to a
misinterpretation of the fitted values (Young and Ball , 1995; Haggerty et al.,
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2004) and therefore lead to noticeable different results when used for predic-
tion. Moreover, mass transfer processes might not be correctly described by
using a spatially homogeneous coefficient and only a small number of authors
have investigated the effects when mass transfer rates are treated as a spatial
random variable (e.g., Li and Brusseau, 2000; Huang and Hu, 2000; Huang et
al., 2003). Hence, modeling all these different mass transfer processes requires
the implementation of a possibly spatially heterogeneous, small-scale physical
process into a coarse-scale numerical model without loosing computational ef-
ficiency, but yet approximating reality which is often being limited by these
small-scale diffusion processes.

In order to encompass all these different mass transfer processes within one
mathematical model which is still based on the classical advection-dispersion
equation, two formulations have been presented in literature. The first ap-
proach was introduced by Carrera et al. (1998) and consists of using a source-
sink term in the advection-dispersion equation to represent the rate of loss or
gain of concentration to or from the immobile domain. The source-sink term
is expressed as a convolution product of a memory function. Choosing the
adequate memory function simple first-order mass transfer, diffusion using a
distribution function of mass transfer rates, e.g., gamma or power law distri-
bution, and diffusion into different geometries, e.g., sphere, layer, or cylinder,
can be modeled (Carrera et al., 1998; Haggerty et al., 2000).

The second approach was presented by Haggerty and Gorelick (1995) and
is based on the idea of using the conventional first-order mass transfer equa-
tion (Nkedi-Kizza et al., 1984) but superimposing multiple first-order mass
transfer rates to represent various diffusion processes. In fact, by choosing a
certain infinite sum of first-order rates the model permits the simulation of
diffusion into different geometries. It is interesting to note that the memory
function used by Carrera et al. (1998), necessary when using the convolution
approach, has also the form of an infinite sum with the same mass transfer
rates as required by the multirate approach. The parallelism between these
two formulations was already pointed out by Carrera et al. (1998).

Note that similar models trying to capture the anomalous behavior of
solute plumes in heterogeneous aquifers caused by mass transfer processes have
been developed recently. For example, continuous time random walk models
particle transport in a heterogeneous medium as a random walk in space and
time (e.g., Berkowitz and Scher , 1998; Dentz and Berkowitz , 2003; Dentz et
al., 2004) and can be formulated to be generally equivalent to the multirate
mass transfer approach of Haggerty and Gorelick (1995). Furthermore, fractal
models have also been expanded to include a mobile/immobile domain for the
purpose of a better description of anomalous transport (Schumer et al., 2003).
Although both approaches have proven to be flexible and have been applied
successfully to a variety of field studies (e.g., Berkowitz and Scher , 1998), we
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do not discuss them here in detail as the method presented here is based on
the classical advection-disperison equation as opposed to the continuous time
random walk and the fractal models.

Due to the mathematical complexity of the formulations presented by Hag-
gerty and Gorelick (1995) and Carrera et al. (1998) only a few numerical solu-
tions exist, which do not impose any restrictive assumptions on the spatial vari-
ability of advection, dispersion, and mass transfer rates in a three-dimensional
numerical model (e.g., Carrera et al., 1998; Wang et al., 2005). In this pa-
per we will present a new numerical method to implement the multirate mass
transfer approach into random walk particle tracking. Random walk particle
tracking has been used to model solute transport in aquifers for a long time
(e.g., Prickett et al., 1981; Kinzelbach, 1987). It consists in moving a cloud
of particles advectively according to the flow-pathlines and adding a random
displacement for each time step to simulate dispersion. Its main advantages,
i.e., the non-existence of numerical dispersion, computational efficiency, and
local as well as global mass conservation, have turned random walk particle
tracking into a valuable tool for inverse modeling, uncertainty assessment, and
solute transport in highly discretized, heterogeneous aquifers (e.g., Tompson,
1993; Salamon et al., 2006).

Various methods to include simple linear mass transfer into random walk
particle tracking have been presented in literature. Valocchi and Quinodoz
(1989) compared three techniques for modeling kinetic sorption which is math-
ematically equivalent to first-order mass transfer as pointed out by Haggerty
and Gorelick (1995): (1) the continuous time step method which simulates
the history of phase changes of a particle for each time step; (2) the arbitrary
time step method which uses probability density functions to calculate the
time spent in the aqueous/sorbed phase of a particle during a time step; (3)
the small time step method originally introduced by Kinzelbach (1987), which
performs a Bernoulli trial using transition probabilities to determine if the par-
ticle will be in the aqueous or sorbed phase for the next time step. Andricevic
and Foufoula-Georgiu (1991) present a method similar to the arbitrary time
step method, however using a different approach to calculate the fraction of
time a particle spends in a certain phase. Michalak and Kitanidis (2000) again
review the methods presented by Valocchi and Quinodoz (1989) and add the
semi-analytical moment method, which performs a Bernoulli trial using phase
transition probabilities, obtained by the method of moments to determine
the phase of a particle for the next time step. Huang et al. (2003) develop
a first-order mass transfer model based on the phase transition probabilities
of Valocchi and Quinodoz (1989). Finally, a method for the diffusion into
fractures using particle tracking was presented by Tsang and Tsang (2001).
They use analytical solutions to calculate the residence time caused by matrix
diffusion into homogeneous finite or infinite matrix blocks.
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In this work we will present the implementation of the multirate mass
transfer approach with the random walk particle tracking method. Section
3.2 first outlines the general mathematical framework for the multirate mass
transfer approach and the calculation of the zeroth spatial moment, required
to determine the phase transition probabilities. In the following subsections
examples for first-order mass transfer, multirate mass transfer, and diffusion
into various geometries are given. Section 3.3 outlines some numerical imple-
mentation details with respect to the choice of the time step size for particle
tracking, the approximation of a matrix exponential using Taylor series, and
the truncation of the series for diffusion into different geometries. Section 3.4
illustrates a numerical example for the influence of a heterogeneous distribu-
tion of intraparticle pore diffusion on contaminant transport. Finally, Section
3.5 summarizes the main results and conclusions from this paper.

3.2 Mathematical Framework

3.2.1 The Multirate Model

The multirate model describes mass transfer between a mobile domain and
any number of immobile domains with varying properties. The advection-
dispersion equation for this model can be written as follows (according to
Haggerty and Gorelick , 1995):

θmRm
∂cm

∂t
+

N∑

j=1

θim,jRim,j
∂cim,j

∂t
= ∇ · (θmD∇cm)−∇ · (θmvcm) (3.1)

where cm[M/L3] is the aqueous concentration in the mobile domain; cim,j [M/L3]
is the aqueous concentration in the jth immobile domain; D[L2/T ] is the hy-
drodynamic dispersion tensor; v[L/T ] is the velocity vector; θm and θim,j [−]
are the porosities of the mobile and the jth immobile domain, respectively; Rm

and Rim,j [−] are the retardation factors for the mobile and the jth immobile
domain, respectively; and N [−] is the number of distinct immobile phases.
Here, changes in porosities with time are assumed negligible as typically used
in subsurface hydrology. The retardation factors are given as

Rm = 1 +
ρbKdfm

θm
Rim,j = 1 +

ρbKdfim,j

θim,j
(3.2)

where ρb[M/L3] is the bulk density of the porous medium; Kd[L3/M ] is the
distribution coefficient; and fm and fim,j [−] are the mass fractions of the
sorbed phase in sorption equilibrium with the mobile domain and the jth
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immobile domain, respectively. The sum of all fm and fim,j is 1. The mass
transfer equations for the multirate model are given as

∂cim,j

∂t
= αj(cm − cim,j) j = 1, 2, . . . , N (3.3)

with

αj =
α′j

Rim,j
(3.4)

where α′j [T
−1] is the first-order mass transfer rate associated with the jth

immobile zone.
As can be seen from equations (3.1) and (3.3) the model permits not only

to use a spatial heterogeneous distribution of mass transfer rates, but also a
distribution of various diffusion processes within one grid cell. Haggerty and
Gorelick (1995) argue that at the grain scale a contaminant may diffuse into
stagnant zones of water, intraparticle pores, and larger aggregates of grains
and therefore a numerical model should be able to account for these different
processes.

3.2.2 Development of Phase Transition Probabilities

The term transition probability has its origin in the context of continuous time
Markov chains and denotes the probability that a process presently in state
i will be in state j a time t later (e.g., Ross, 2003). Using this principle in
particle tracking and provided that we know the transition probability func-
tion we can determine if a particle is in the mobile phase and thus susceptible
to advection and dispersion or in the immobile phase after a time step ∆t by
simply performing a Bernoulli trial on the appropriate phase transition prob-
ability. Valocchi and Quinodoz (1989) demonstrated the analogy between the
first-order, reversible, linear rate expression for kinetic sorption and a homo-
geneous, continuous-time, two-state Markov chain and used the corresponding
phase transition probability functions to simulate kinetic sorption.

A second idea important for the development of the following method was
introduced by Michalak and Kitanidis (2000). They state, that when the
spatial moments of concentrations are interpreted as those of particles, the
normalized zeroth spatial moment, which describes the distribution of mass
in the different phases, can be used as a phase transition probability function.
Applying this idea, Michalak and Kitanidis (2000) obtained the same phase
transition probability functions for the kinetic sorption case as Valocchi and
Quinodoz (1989).

In this section we will outline the derivation of the zeroth spatial moment
for the multirate model. The spatial moments are generally calculated in three
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dimensions (Aris, 1956). For the sake of simplicity we will present them here
only in one dimension:

µn(t) =
∫ ∞

−∞
xnθmRmcm(x, t)dx (3.5)

νn,j(t) =
∫ ∞

−∞
xnθim,jRim,jcim,j(x, t)dx (3.6)

where µn and νn,j are the nth mobile and immobile phase moments, respec-
tively.

The concentrations for the mobile and immobile phases are now substi-
tuted with their Fourier transforms in order to be able to calculate the zeroth
moment in the Fourier domain. The following definition of the Fourier trans-
form and its inverse will be used here

C̃(p, t) =
∫ ∞

−∞
c(x, t)e−i2πpxdx (3.7)

c(x, t) =
∫ ∞

−∞
C̃(p, t)ei2πpxdp (3.8)

Using equation (3.8) and assuming spatially uniform coefficients within a
grid block, equations (3.1) and (3.3) can be rewritten as

θmRm
∂C̃m

∂t
+

N∑

j=1

θim,jRim,j
∂C̃im,j

∂t
+ θmv2πipC̃m + θmDL4π2p2C̃m = 0 (3.9)

∂C̃im,j

∂t
= αj(C̃m − C̃im,j) j = 1, 2, . . . , N (3.10)

We note that our objective here is to find the mechanism by which the
particle is exchanged between the mobile/immobile domain in the random
walk method. Thus, according to Kitanidis (1994) we view each particle as a
very small plume compared to the grid block so that the effects of boundaries
are negligible in equation (3.9).

The spatial moments of the concentration in the real domain can be eval-
uated from the concentration Fourier coefficients (Goltz and Roberts, 1987):

µn(t) =
θmRm

(−2πi)n

∂nC̃m

∂pn
|p=0 (3.11)

νn,j(t) =
θim,jRim,j

(−2πi)n

∂nC̃im,j

∂pn
|p=0 (3.12)
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In this work we only require the zeroth moments, hence from equations
(3.11) and (3.12) follows

µ0(t) = θmRmC̃m |p=0 (3.13)
ν0,j(t) = θim,jRim,jC̃im,j |p=0 (3.14)

Substituting equations (3.13) and (3.14) into (3.9) and (3.10) and setting p = 0
yields

∂µ0

∂t
+

N∑

j=1

∂ν0,j

∂t
= 0 (3.15)

∂ν0,j

∂t
= αjβjµ0 − αjν0,j j = 1, 2, . . . , N (3.16)

with

βj =
θim,jRim,j

θmRm
(3.17)

where βj [−] is the so called capacity ratio associated with the jth immobile
zone. Equations (3.15) and (3.16) represent a system of linear differential
equations, which can be written in matrix form as

A
dM
dt

= BM (3.18)

where

A =




1 1 · · · 1
0 1 0 0
... 0

. . . 0
0 · · · 0 1




B =




0 0 · · · 0
α1β1 −α1 0 0

... 0
. . . 0

αNβN 0 0 −αN




M =




µ0

ν0,1
...

ν0,N
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The general solution to this problem is given by (e.g., Haggerty and Gore-
lick , 1995)

M = exp[(A−1B)∆t]M0 (3.19)

where

A−1B =




−∑N
j=1 αjβj α1 · · · αN

α1β1 −α1 0 0
... 0

. . . 0
αNβN 0 0 −αN


 (3.20)

∆t[T ] is the time step, and M0 is a vector containing the initial distribution
of mass in the different phases.

A general solution to the exponential matrix of equation (3.19) and thus
to the vector M containing the zeroth spatial moments for each domain is not
easy to find. This is especially the case when a large number of mass transfer
rates is modeled and therefore the corresponding matrices are of a high order.
The evaluation of the exponential of a matrix has been subject to intensive
research over the last decades and in the work by Moler and van Loan (2003)
a comprehensive overview of the existing approaches is presented. However,
computing the whole exponential matrix numerically for every time step and
each particle would decrease computational efficiency of the particle tracking
significantly. Fortunately, using particle tracking to simulate contaminant
transport provides two important advantages: Firstly, we do not always need
to compute the entire matrix (i.e., when no phase transition occurs). Secondly,
we can use a low order Taylor series to approximate the exponential matrix,
as the time steps used in particle tracking are usually small.

The reader should keep in mind that using a polynomial series as shown
in the following sections is not the only way to compute the exponential of a
matrix. Methods employing the matrix eigenvalues, differential equations, or
approximation theory have been proposed in literature. However, in practice
computational stability and accuracy indicate that some of the methods are
preferable to others but that none are completely satisfactory (Moler and van
Loan, 2003). We chose the Taylor series method due to the above mentioned
advantages and its simplicity regarding the mathematical formulation and the
numerical implementation. Other methods might lead to the same results
requiring however different stability and accuracy criteria as given in Sections
3.3.2 and 3.3.3.
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Simple first-order mass transfer

The simplest case of mass transfer is described by a single first-order rate
coefficient. When using the multirate approach this is done by setting N = 1.
This results in square matrices of second-order in equation (3.18). For this
case an analytical solution for the exponential matrix of equation (3.19) can
be found

exp[(A−1B)∆t] =




1+βe−(1+β)α∆t

1+β
1−e−(1+β)α∆t

1+β

β−βe−(1+β)α∆t

1+β
β+e−(1+β)α∆t

1+β


 (3.21)

On the basis of this analytical solution for the zeroth spatial moments the
particle phase transition probabilities can be derived easily. Assuming that at
the beginning of the time step all the solute mass M is in the mobile domain
and setting the solute mass M = 1 (µ0(0) = 1 and ν0(0) = 0) the phase
transition probabilities can be written as

Pm→m = µm
0 (∆t) =

1 + βe−(1+β)α∆t

1 + β
(3.22)

Pm→im = νm
0 (∆t) =

β − βe−(1+β)α∆t

1 + β
(3.23)

where the superscripts m represent solute originating in the mobile domain,
and Pm→m and Pm→im refer to the probability of a particle starting in the
mobile phase and ending in the mobile/immobile phase, respectively.

Conversely, assuming that at the beginning of the time step all the solute
mass is in the immobile domain (µ0(0) = 0 and ν0(0) = 1) the phase transition
probabilities are

Pim→m = µim
0 (∆t) =

1− e−(1+β)α∆t

1 + β
(3.24)

Pim→im = νim
0 (∆t) =

β + e−(1+β)α∆t

1 + β
(3.25)

where the superscript im represents solute originating in the immobile domain,
and Pim→m and Pim→im refer to the probability of a particle starting in the
immobile phase and ending in the mobile/immobile phase, respectively. It can
be seen from equations (3.22) to (3.25) that Pm→m = 1−Pm→im and Pim→im =
1−Pim→m. Valocchi and Quinodoz (1989) and Michalak and Kitanidis (2000)
obtained equivalent expressions for the case of kinetic sorption, as mentioned
above.
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Figure 3.1. Comparison of breakthrough curves obtained with CXTFIT (Toride et
al., 1995) and random walk particle tracking.

Having calculated the phase transition probabilities, numerical implemen-
tation into particle tracking is done easily. For each time step a uniform [0, 1]
random number Y is drawn for each particle and is compared to the corre-
sponding probability. The state of a particle being in the mobile phase is
adjusted according to

Xp(t + ∆t) =

{
mobile if Y < Pm→m

immobile if Y ≥ Pm→m

(3.26)

where Xp is the position of the particle at time t + ∆t. For a particle being
in the immobile domain the final state is adjusted according to

Xp(t + ∆t) =

{
immobile if Y < Pim→im

mobile if Y ≥ Pim→im

(3.27)

Having finished the trial a particle is only allowed to move when being in
the mobile phase.
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Parameter First-Order Spherical Diffusion
Mass Transfer

Model Length 5.0 m 5.0 m
vx 0.0864 m/d 0.0864 m/d
αL 0.05 m 0.05 m
θm 0.2 0.2
θim 0.1 0.1
α 0.01728 1/d 0.00432 1/d a

Nr. of Particlesb 20000 20000
Nr. of Multirate Series - 8 b/ 100 c

Courant number 0.01 0.01
a for Spherical Diffusion α = Da

a2 is the diffusion rate coefficient
b only Random Walk Particle Tracking
c STAMMT-L

Table 3.1. Input parameters for one-dimensional solute transport in Fig-
ures 3.1 and 3.2

Figure 3.1 and Table 3.1 show the breakthrough curve and input para-
meters obtained for a one-dimensional system with simple, first-order mass
transfer using the random walk model. The curve is compared with the re-
sults obtained using the well-known CXTFIT Code (Toride et al., 1995).

Multiple mass transfer and diffusion into various geometries

One of the main advantages of the multirate model is the possibility not only
to simulate a certain number of linear mass transfer processes, but to model
diffusion into spheres, cylinders, and layers by choosing appropriate values for
the first-order rates and capacity coefficients (Haggerty and Gorelick , 1995).
The series of these coefficients for the different geometries are shown in Tables
3.2 and 3.3. However, modeling these processes usually requires a relatively
large number of mass transfer rates resulting into high order matrices in equa-
tion (3.18). Analytical solutions, as presented in Section 3.2.2, for equation
(3.19) do not exist and thus the exponential matrix has to be calculated using
a numerical approach.

In this work we will employ the following Taylor series approximation of
exponential matrices

exp[(A−1B)∆t] = I + (A−1B)∆t + (A−1B)2
∆t2

2
+ . . .

. . . + (A−1B)n ∆tn

n!
+ . . . (3.28)
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where I is the identity matrix.
Due to the fact that in random walk particle tracking the time step chosen

is normally small, as already mentioned above, we do not require to use a
lot of terms in equation (3.28) to approximate the exponential of the matrix
[(A−1B)∆t]. Instead, using only the terms up to the third-order the zeroth
spatial moments for each domain are sufficiently well approximated.

Diffusion Geometry Multirate Seriesa

αj βj

for j = 1, . . . , N − 1 for j = 1, . . . , N − 1

Layered Diffusion (2j−1)2π2

4 α 8
(2j−1)2π2 βtot

Cylindrical Diffusionb r2
0,jα

4
r2
0,j

βtot

Spherical Diffusion j2π2α 6
j2π2 βtot

a α = Da
a2 is the diffusion rate coefficient; βtot = θimRim

θmRm
is the capacity coeffi-

cient.
b r0,j is the jth root of J0(x), where J0 is the zero-order Bessel function of the
first kind.

Table 3.2. Multirate Series for Diffusion (after Haggerty and Reeves, 2002)

Using these spatial moments the phase transition probabilities for a particle
are calculated with a similar procedure as outlined in Section 3.2.2. Assuming
that at the beginning of the time step all the solute mass M is in the mobile
domain and setting the solute mass M = 1 (µ0(0) = 1 and ν0,j(0) = 0) the
probability of a particle originating in the mobile phase and being in the mobile
phase Pm→m at the elapsed time ∆t can be approximated as follows

µ0(∆t)|mm ≈ 1−



N∑

j=1

αjβj


∆t +







N∑

j=1

αjβj




2

+
N∑

j=1

α2
jβj


 ∆t2

2

−






N∑

j=1

αjβj




3

+
N∑

j=1

αjβj

N∑

j=1

α2
jβj

+
N∑

j=1

[
α2

jβj

[
N∑

k=1

αkβk

]
+ α3

jβj

]
 ∆t3

6
(3.29)

The probability of a particle originating in the mobile phase and changing
into the ith immobile phase Pm→im,i can be written as
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ν0(∆t)|mim,i ≈ αiβi∆t−

αiβi




N∑

j=1

αjβj


 + α2

i βi


 ∆t2

2

+


αiβi




N∑

j=1

αjβj




2

+ α2
i βi




N∑

j=1

αjβj




+α3
i βi + αiβi

N∑

j=1

α2
jβj


 ∆t3

6
(3.30)

Conversely, assuming that at the beginning of the time step all the solute
mass is in the ith immobile domain (µ0(0) = 0, ν0,i(0) = 1, and ν0,j(0) = 0 for
all j 6= i) the phase transition probability for a particle to move from the ith
immobile domain to the mobile domain Pim,i→m is

µ0(∆t)|im,i
m ≈ αi∆t−


αi




N∑

j=1

αjβj


 + α2

i


 ∆t2

2

+


αi







N∑

j=1

αjβj




2

+
N∑

j=1

α2
jβj




+α2
i




N∑

j=1

αjβj


 + α3

i


 ∆t3

6
(3.31)

The probability of a particle to stay in the ith immobile domain Pim,i→im,i

can be approximated as

ν0(∆t)|im,i
im,i ≈ 1− αi∆t + [α2

i βi + α2
i ]

∆t2

2
−


α2

i βi




N∑

j=1

αjβj




+2α3
i βi + α3

i

] ∆t3

6
(3.32)

Although the different immobile domains are not connected with each other
there exists still the possibility that a particle moves first from the ith immobile
domain to the mobile domain and from there into the kth immobile domain
Pim,i→im,k within one time step, as transition probabilities only describe the
initial and the final state during the elapsed time ∆t, but do not account for
state changes within ∆t. The probability for this case can be calculated as
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Diffusion Geometry Final Term in Multirate Series

αN βN

Layered Diffusion
3α

"
1−

N−1P
j=1

8
(2j−1)2π2

#

1−
N−1P
j=1

96
(2j−1)4π4

[
1−

N−1∑
j=1

8
(2j−1)2π2

]
βtot

Cylindrical Diffusion
8α

"
1−

N−1P
j=1

4

r2
0,j

#

1−
N−1P
j=1

32

r4
0,j

[
1−

N−1∑
j=1

4
r2
0,j

]
βtot

Spherical Diffusion
15α

"
1−

N−1P
j=1

6
j2π2

#

1−
N−1P
j=1

90
j4π4

[
1−

N−1∑
j=1

6
j2π2

]
βtot

Table 3.3. Final Terms of Truncated Multirate Series (after Haggerty and Reeves,
2002)

ν0(∆t)|im,i
im,k ≈ [αkβkαi]

∆t2

2
−


αkβkαi




N∑

j=1

αjβj




+α2
kβkαi + αkβkα

2
i

] ∆t3

6
for k 6= i (3.33)

It can be observed from equation (3.33) that the probability for this case
is very small, as we would expect, because the first-order term is canceled
out. Therefore, particles will move from one immobile zone to another only
for considerably large time steps.

Numerical implementation is, again, similar to the simple first-order mass
transfer case. However, we will now have to keep track of in which immobile
domain the particle is currently located. The state of a particle being located
in the mobile phase is adjusted according to
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Figure 3.2. Comparison of breakthrough curves obtained with STAMMT-L (Hag-
gerty and Reeves, 2002) and random walk particle tracking.

Xp(t + ∆t) =





mobile if Y < Pm→m

immobile,1 if Pm→m ≤ Y < Pm→m + Pm→im,1

. . . . . .

immobile,N if Y ≥ Pm→m +
N−1∑
j=1

Pm→im,j

(3.34)

For a particle being located in the ith immobile phase the final state is
being adjusted as follows

Xp(t + ∆t) =





immobile,i if Y < Pim,i→im,i

mobile if Pim,i→im,i ≤ Y <

Pim,i→im,i + Pim,i→m

immobile,k if Pim,i→im,i + Pim,i→m ≤ Y <

Pim,i→im,i + Pim,i→m + Pim,i→im,k

. . . . . .

immobile,N if Y ≥ Pim,i→im,i + Pim,i→m

+
N−1∑
k=1

Pim,i→im,k for k 6= i

(3.35)

A breakthrough curve obtained using random walk and a multirate series
for spherical diffusion is presented in Figure 3.2. The input parameters are
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shown in Table 3.1. The curve is compared with the results obtained using
STAMMT-L (Haggerty and Reeves, 2002). STAMMT-L is a code that pro-
vides a semi-analytical solution to one-dimensional, dual porosity, advective-
dispersive transport, where mass transfer between the mobile and immobile
domains is generalized to include multiple immobile domains.

3.3 Numerical Implementation Details

3.3.1 Random Walk Particle Tracking

Random walk particle tracking simulates solute transport by partitioning the
solute mass into a large number of representative particles. The evolution
in time of a particle is driven by a drift term that relates to the advective
movement and a superposed Brownian motion responsable for dispersion. The
displacement of a particle is calculated as follows (e.g., Tompson, 1993)

Xp(t + ∆t) = Xp(t) + B1(Xp, t)∆t + B2(Xp, t) · ξ(t)
√

∆t (3.36)

where B1 is a “drift” vector, B2, the displacement matrix, is a tensor defin-
ing the strength of dispersion, and ξ(t) is a vector of independent, normally
distributed random variables with zero mean and unit variance. In expression
(3.36) B1 corresponds to

B1 =
v +∇ ·D

Rm
(3.37)

and the displacement matrix B2 is related to the dispersion tensor as

2D
Rm

= B2 ·BT
2 (3.38)

The displacement matrix used here has the form given by Lichtner et al.
(2002).

The velocity vector is computed using linear interpolation of interface ve-
locities. The dispersion tensor field is obtained by first extrapolating interface
velocities to surrounding nodes. This gives all three components of the vector
pore-velocity to each grid node, which is then used to estimate the dispersive
component of the random walk using trilinear interpolation. Various authors
have demonstrated (LaBolle et al., 1996; Salamon et al., 2006), that this hy-
brid scheme yields local as well as global divergence-free velocity fields within
the solution domain and a continuous dispersion tensor field that approxi-
mates well mass balance at grid interfaces of adjacent cells with contrasting
hydraulic conductivities. Furthermore, a constant-displacement scheme (Wen
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Figure 3.3. Evaluation of the root mean of squared residual errors in dependency of
the time step size for different DaI,1 numbers. Solute transport for this case is only
subject to advection and first-order mass transfer.

and Gómez-Hernández , 1996) which modifies automatically the time step size
for each particle according to the local velocity is employed in order to decrease
computational effort.

For the examples presented in this article the numerical random walk par-
ticle tracking code developed by Fernàndez-Garcia et al. (2005) was extended
to simulate mass transfer according to the procedure outlined in Section 3.2.

3.3.2 Choice of Time Step Size

One important problem, when simulating mass transfer processes using par-
ticle tracking is, that the phase transition probabilities do not describe the
number of phase changes occurring within one time step, but only determine
the initial and final state of a particle during the elapsed time ∆t (Parzen,
1962). Thus, the time a particle actually spends in the mobile/immobile phase
can differ significantly within a time step for the case of high mass transfer
rate in relation to the time step size. This problem is complicated further
when using a constant displacement scheme which adjusts automatically the
time step size according to the particle displacement in the mobile phase. For
the case of having various linear mass transfer processes acting at the same
time it is therefore possible that a particle moves from the immobile phase i
to the mobile phase and from there into the immobile phase k as shown in
Section 3.2.2.
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One simple way to overcome this problem is to choose a time step size
small enough so that the probability of various phase changes within one time
step is negligible (Valocchi and Quinodoz , 1989; Kinzelbach, 1987). In order to
determine the proper time step size we will look at the case of advective solute
transport with first-order mass transfer in a one-dimensional, homogeneous
column. Particles will be released at a point on the left border of the column
and arrival times will be measured at the right column border. ∆t is given
here as a function of the Courant number (Cr = (v∆t)/L, where L is the
column length). By varying Cr and comparing the cumulative breakthrough
curves with a reference curve obtained using the random walk approach with a
very small time step (Cr = 0.00001) the root mean of squared residual errors
(RMS) is calculated

RMS =

[
1
N

N∑

i=1

(cali − refi)2
] 1

2

(3.39)

where N is the total number of observations, cali [M/L3] and refi [M/L3]
are the calculated and the reference concentration values of the breakthrough
curves at a certain time. An overview of the input parameters for the following
examples is given in Table 3.4.

To characterize the ratio of the mass transfer timescale to the advection
timescale the Damköhler number is used. In the case of one-dimensional flow
and transport and using the multirate model, each mass transfer reaction has
a Damköhler number associated, which can be expressed as follows

DaI,j = [αj(βj + 1)RmL]/v (3.40)

where L [L] is the length scale, which for this case corresponds to the column
length.

Figure 3.3 shows the RMS for different Damköhler numbers. As expected,
increasing the first-order mass transfer rate requires a smaller time step, in
order to represent solute transport correctly. Figure 3.4 illustrates the effects
of large time steps on the breakthrough curves for the case of a high mass
transfer-advection ratio (DaI,1 = 200). If time step size is not sufficiently
small the detention of particles in the immobile compartments is too large
and artificial dispersion and an increased tailing in the breakthrough curve is
introduced.

However, Bahr and Rubin (1987) stated that for a Damköhler value greater
than approximately 100 the mass transfer relationship is effectively at equi-
librium and therefore practical problems usually have Damköhler numbers
smaller than 100. Thus, for most cases a Cr of 0.01 is sufficient for a correct
simulation of mass transfer using random walk.
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Figure 3.4. Cumulative breakthrough curves obtained using different time step sizes
for a Damköhler number of DaI,1 = 200.

3.3.3 An Approximation Criteria for the Exponential Matrix

A further difficulty concerns the fact that equations (3.29) to (3.33) only rep-
resent an approximation to the matrix exponential exp[(A−1B)∆t]. Choosing
a very large time step or increasing the number of multirate parameters can re-
sult in an erroneous approximation of the phase transition probabilities when
only three terms are employed. A variety of restrictive criteria have been sug-
gested in literature concerning the truncation of Taylor series (e.g., Everling ,
1967; Bickart , 1968). Here, the criterion established by Liou (1966) will be
used

δ ≡ ‖ (A−1B)∆t ‖D+1

(D + 1)!
· 1
1− ‖ (A−1B)∆t ‖ /(D + 2)

≤ δmax (3.41)

where D[−] is the number of terms used for the approximation, and δ and
δmax[−] are the truncation error bound function and the prescribed absolute
error tolerance, respectively. The matrix norm used here is a 1-norm or also
called the maximum absolute column sum norm:

‖ A ‖1= max
j

n∑

i=1

|aij | (3.42)

In case of exceeding δmax either the number of multirate parameters or
the time steps have to be adjusted. Figure 3.5 shows the relation between the
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Figure 3.5. Absolute error tolerance δ versus matrix 1-norm of ‖ (A−1B)t ‖ when
using a Taylor Series approximation for the matrix exponential with three terms.

matrix norm and the error tolerance for a matrix exponential approximation
with terms up to the third order. Experience has shown, that when choosing
δmax = 0.1 the matrix exponential is well approximated and for most cases
the matrix norm does not exceed the restriction criterion.

3.3.4 Truncation of the Multirate Series

A final issue concerns the truncation of the multirate series when simulating
diffusion into different geometries, which was already addressed by Haggerty
and Reeves (2002). They found that very precise results can be obtained with
truncated series as long as appropriate expressions for the final term of the
series are used (see Table 3.3). According to Haggerty and Reeves (2002)
usually less than 30 terms are sufficient for the representation of a diffusion
process into a specific geometry.

Unfortunately, when using a multirate series to simulate diffusion, some
immobile domain compartments will always have relatively high Damköhler
numbers, hence requiring a small Courant number for the random walk simu-
lations. Figure 3.6 shows the root mean square error (see equation (3.39)) for
comparing cumulative breakthrough curves obtained using STAMMT-L and
the method presented here for one-dimensional, advective-dispersive solute
transport with diffusion into spherical grains (input parameters are illustrated
in Table 3.4). The curves simulated with STAMMT-L employ 30 terms for the
multirate series. It should be noted that the DaI values presented in Figure
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Figure 3.6. Evaluation of the root mean of squared residual errors in dependency
of the number of terms used for the multirate series.

3.6 represent the ratio of mass transfer and advective timescale of the spherical
diffusion and are calculated using the diffusion rate constant (α = Da

a2 ).

Parameter Figures 3.3 and 3.4 Figure 3.6

Model Length 5.0 m 5.0 m
vx 0.0864 m/d 0.0864 m/d
αL - 0.05 m
θm 0.2 0.2
θim 0.1 0.2
α 0.001152 / 0.01152 8.64 ×10−5

0.1152 / 1.152 8.64 ×10−4

2.304 / 5.76 1/d 8.64 ×10−3 1/d a

Number of Particlesb 5000 5000
Number of Multirate Series - 2 - 14 b/ 30 c

Courant number -d 0.01
a for Spherical Diffusion α = Da

a2 is the diffusion rate coefficient
b only Random Walk Particle Tracking
c STAMMT-L
d see Figures 3.3 and 3.4

Table 3.4. Input parameters for solute transport examples in Figures 3.3, 3.4,
and 3.6. Note that α was varied to change the ratio between advection and mass
transfer timescale.
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It can be observed that the error in general is very small and that with
significantly less than 30 terms no further improvement is visible. This is not
surprising as the capacity ratios of the multirate series approach rapidly very
small values whereas the mass transfer rates for the different immobile com-
partments approximate large DaI,j values. These compartments can therefore
be lumped together and modeled with a single equilibrium mass transfer re-
lationship (according to Haggerty and Gorelick , 1995). Furthermore, when
using particle tracking, an increase in the number of terms used for the mul-
tirate series does not necessarily result in a higher precision of the outcome as
there are two restrictive constraints to the time step size ∆t: the rate of mass
transfer and the approximation of the exponential matrix using a third-order
Taylor series.

3.4 The Effect of a Heterogeneous Intraparticle Pore
Diffusion Distribution - An Example

One of the main advantages of the method presented here is that it does not
impose any spatial restrictions on the different types of mass transfer while
preserving computational efficiency. To illustrate this a synthetic example of
the effect of heterogeneous distribution of intraparticle pore diffusion rates is
presented in this section. Some of the parameters of this synthetic example,
i.e., spatial correlation, pore-scale dispersivities, mobile/immobile porosities,
and diffusion rates, are representative of the Borden aquifer. However, the
objective of this example is not to reproduce solute transport at the Borden
site, but to illustrate the application of the presented random walk approach
in a realistic setting.

For this purpose one realization of a sequential gaussian simulation (Gómez-
Hernández and Journel , 1993) was chosen. The following standardized expo-
nential semivariogram was applied for the simulation of the hydraulic conduc-
tivity field

γ(hx,y,z)
σ2

ln K

= 1− exp

[
−

√
(
hx

λx
)2 + (

hy

λy
)2 + (

hz

λz
)2

]
(3.43)

where λx,y,z[L] are the directional correlation length scales, hx,y,z[L] are the
directional lag spaces, and σ2 is the variance of the natural logarithm of the
hydraulic conductivity lnK[L/T ]. According to Woodbury and Sudicky (1991)
a correlation length of λx = λy = 5.1 m (horizontal) and λz = 0.21 m (vertical)
was selected. It should be noted that the variance of lnK was increased with
respect to the Borden aquifer in this example to a value of σ2

ln K = 2.5 and the
average hydraulic gradient to a value of 0.043. The computational domain is
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parallelepipedic with dimensions of x = 80 m, y = 15 m, and z = 4 m and a
discretization of ∆x = ∆y = 0.5 m, and ∆z = 0.04 m was chosen, resulting
in a total of 480,000 grid cells. The aquifer was assumed to be confined and
with constant head boundaries at x = 0 m and x = 80 m and with no-flow
boundaries at the remaining model faces. A total of 20,000 particles randomly
distributed in a plane shaped, rectangular area of 10 m width and 3 m height
located orthogonal to the principal flow direction at a distance of x = 5 m were
released at t = 0. All particles were initially released in the mobile domain.
Mass arrival was measured at a control plane located at x =78 m. Pore-scale
longitudinal and transverse dispersivities were assumed to be αL = 0.0005 m
and αT = 0.00005 m (Brusseau and Srivastava, 1997), and mobile/immobile
domain porosities were selected to be θm = 0.293 and θim = 0.037, respectively
(Brusseau and Srivastava, 1997).

We considered here the following four different models: Solute transport in
Model A was purely influenced by advection and dispersion, whereas in mod-
els B, C, and D different types of mass transfer were added to the advection-
dispersion equation. Model B utilizes a spatially heterogeneous intraparticle
pore diffusion. Model C has a uniform coefficient for intraparticle pore diffu-
sion. Finally, model D employs a uniform first-order mass transfer coefficient.
Intraparticle diffusion was modeled employing diffusion into a spherical geom-
etry.

In order to obtain the field of intraparticle pore diffusion rates for Model
B the Kozeny-Carmen relationship (Bear , 1972) was used to calculate a rep-
resentative grain size diameter for each cell:

K = (
ρwg

µ
)

θ3

(1− θ)2
(
d2

50

180
) (3.44)

where ρw[M/L3] is the fluid density, g[L/T 2] is the gravitational constant,
µ[M/(LT )] is the fluid viscosity, d50[L] is the grain size diameter, and θ is the
total porosity, which corresponds to the sum of mobile and immobile porosity.
The grain sizes were then employed to assign the corresponding diffusion rate
coefficients to each grid cell pursuant to Ball and Roberts (1991), which esti-
mated diffusive PCE uptake into different size fractions of a Borden sample
(see Table 3.5). The reader should keep in mind that we are not suggesting
that d50 is necessarily the representative length scale for intraparticle diffusion.
In fact, intraparticle diffusion might even be better represented with several
grain sizes (e.g., Haggerty and Gorelick , 1995). However, in this example we
consider the assumptions taken as valid.

The uniform coefficient for Model C was calculated by applying (3.44)
to the geometric mean of the conductivity field K = 6.182 m/d (Burr and
Sudicky , 1994) resulting in a grain size diameter of d50 = 0.128 mm and thus
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Size range (d50 = 2a) Da/a2

0.85− 1.7 mm 3.1× 10−8s−1

0.42− 0.85 mm 9.2× 10−8s−1

0.25− 0.42 mm 2.3× 10−7s−1

0.18− 0.25 mm 2.7× 10−7s−1

0.125− 0.18 mm 9.4× 10−7s−1

0.075− 0.125 mm 1.7× 10−6s−1

< 0.075 mm 1.4× 10−6s−1

Table 3.5. Grain sizes and diffusion rate coefficients for a Borden sand sample
measured by Ball and Roberts (1991) for PCE desorption

into a diffusion rate of Da/a2 = 9.4 × 10−7s−1 (see Table 3.5). Model D in
turn uses the following relationship to calculate the first-order mass transfer
rate

α = 15Da/a2 (3.45)

which has shown to be the best effective rate coefficient used in ”equivalent”
first-order models of mass transfer (e.g., Young and Ball , 1995; Haggerty et
al., 2000). To calculate α in this example the uniform diffusion rate coefficient
of Model C is used resulting in a first-order mass transfer coefficient of α =
1.41× 10−5s−1.

Concerning the numerical implementation of the presented approach the
following issues had to be addressed: (1) the negative correlation between hy-
draulic conductivity and mass transfer rates in Model B lead to high Damköhler
numbers in low velocity zones; (2) due to the constant displacement scheme
employed ∆t was considerably large in high hydraulic conductivity areas, thus
exceeding the criteria for the matrix norm for Models B and C in some grid
cells established in Section 3.3.3. Therefore, the Courant number was adapted
for each grid cell before starting the solute transport based on the cell specific
velocity field and mass transfer rate, in order to avoid defining one maximum
time step size for the entire model domain and therewith decreasing compu-
tational efficiency.

The breakthrough curves and the relative mass fraction remaining in the
aquifer of the four models are presented in Figures 3.7 and 3.8. It can be
seen clearly that the diffusion process acts as a retardation factor on solute
transport. However, it can also be observed that Models B, C, and D pro-
duce similar results for this example, indicating that the heterogeneous rep-
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Figure 3.7. Breakthrough curves obtained using the example outlined in Section
3.4.
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Figure 3.8. Relative total mass fraction remaining in the aquifer not having passed
the control plane located at x = 78 using the example outlined in Section 3.4.
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resentation of mass transfer rates does not influence mean transport behavior
significantly for the given input parameters. Instead, it even seems that using
an ”equivalent” first-order model, is able to reproduce correctly the main fea-
tures of solute transport. Nevertheless, Model D appears to underestimate the
low concentration tailing in comparison to Model B, whereas Model C slightly
overestimates the tailing. This indicates that the choice of mass transfer type
as well as the spatial distribution of mass transfer rates can potentially have
a significant effect on low concentration tailing. Similar observations on the
effect of heterogeneous rate-limited mass transfer were also made by Li and
Brusseau (2000) and Cunningham and Roberts (1998).

3.5 Conclusions

We have developed a new numerical method to solve dual-domain multirate
mass transfer coupled with advective-dispersive transport using the random
walk particle tracking method. Phase transition probabilities which are cal-
culated based on the zeroth spatial moments of the multirate mass transfer
equations are used to simulate the particle distribution between the mobile
and various immobile domains. The two major advantages of this approach
are the flexibility in the sense that it does not impose any restrictive assump-
tions on the spatial variability of advection, dispersion, and mass transfer and
its low computational cost even for highly discretized models having a spa-
tially heterogeneous mass transfer rate. The flexibility of the multirate model
to describe a variety of different mass transfer processes is preserved using
this approach as well as the advantages of the random walk method: the non-
existence of numerical dispersion even for highly advection-dominated solute
transport and the local as well as global mass conservation.

However, there are also two disadvantages when using this approach: Firstly,
high mass transfer rates require an increasingly smaller time step size. Sec-
ondly, using a third-order Taylor series to approximate the matrix exponential
can possibly result in an incorrect calculation of the phase transition probabili-
ties when either a large number of immobile domains to simulate diffusion into
various geometries is used or the time step is not sufficiently small. Neverthe-
less, introducing a restrictive criteria for the time step size, which can be ad-
justed for each grid cell separately instead of defining one maximum time step
for the whole model domain, a correct simulation of mass transfer processes
can be assured. Hence, the herein presented approach constitutes a valuable
tool for the evaluation of the effects of a variety of mass transfer processes on
solute transport especially in highly heterogeneous three-dimensional systems.
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4
Modeling tracer transport at

the Macrodispersion
Experiment (MADE) site:

Only a problem of scales?
submitted to Water Resources Research.

Abstract

We present a detailed geostatistical analysis of the flowmeter data at the
Macrodisperion Experiment (MADE) site and simulate tracer transport in
high-resolution conductivity fields, generated on the basis of this analysis.
Evaluating the spatial continuity of the hydraulic conductivity data revealed
a hole effect structure indicating an increased occurrence of clustered lenses or
facies in the aquifer which appears to improve preferential flow. Furthermore,
indicator variography did not show an increased connectivity of high/low hy-
draulic conductivity values. Tritium transport was modeled in three kriged
fields as well as for three sequential simulations all of them using a high grid-
resolution with a grid block size similar to the flowmeter measurement sup-
port scale to explicitly represent small scale heterogeneity. The kriged fields
were not able to simulate anomalous tracer spreading as observed in the field
based on an insufficient representation of the variance of lnK. The sequential
Gaussian simulations generally demonstrated a better tailing than the sequen-
tial Indicator simulation indicating that a multiGaussian distribution of lnK
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approximates field conditions better at the Columbus aquifer. Neglecting the
hole effect structure for the spatial model of the Gaussian simulations resulted
in a reduced tailing of the tracer illustrating the importance of preferential flow
on anomalous solute transport. We conclude that, when small-scale variability
of hydraulic conductivity is correctly modeled at the flowmeter measurement
support scale, the advection-dispersion equation is capable of reproducing the
anomalous tracer spreading at the MADE site and that mass transfer effects
are principally the results of the use of an inadequate model grid block scale.
Furthermore, the model chosen for the spatial correlation of the hydraulic con-
ductivity plays a crucial role in reproducing the anomalous tracer spreading.

4.1 Introduction

Characterizing the spatial variation of hydrogeologic properties in an aquifer
and its proper representation in numerical models is a key issue for environ-
mental risk assessment, remediation engineering of contaminated groundwater
or the design of underground repositories for radioactive material. Although
significant advances were made using stochastic and/or deterministic/analytic
approaches in the last decades, heterogeneity of hydrogeologic properties still
remains as one of the major areas of concern in hydrogeology (Carrera, 1993;
de Marsily et al., 2005; Gómez-Hernández , 2006). In order to enhance the un-
derstanding of solute transport in geologic formations several natural-gradient
tracer tests were performed and detailed data sets were collected. Whereas the
majority of the experiments focused on relatively homogeneous aquifers with
σ2

ln K ≈ 0.2 (e.g. Mackay et al., 1986; LeBlanc et al., 1991), hydraulic conduc-
tivity measurements at the Columbus Air Force Base in Mississippi, commonly
known as the Macrodispersion Experiment (MADE) site, revealed a strongly
heterogeneous system with σ2

ln K ≈ 4.5 (Rehfeldt et al., 1992). Two tracer
tests were conducted at this site (Boggs et al., 1992; Adams and Gelhar , 1992;
Boggs et al., 1993) and both of them resulted in a strong non-Gaussian behav-
ior, i.e., a highly asymmetric spreading of the plume with high concentrations
maintained near the source and a far reaching tail with low concentrations.

A variety of modeling studies using many different approaches ranging from
the classical advection-dispersion equation (ADE) to continuous time random
walk has been performed, resulting in successful/unsuccessful reproduction
of the spreading of the tracer plume. All of these studies give a range of
arguments and hypotheses on why the tracer movement at the MADE site
could or could not be predicted employing a certain model. This paper intends
to examine some of the arguments presented and to give some new insights
concerning the tracer transport at the MADE site. Therefore, we first briefly
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summarize the previous studies performed and the conclusions presented in
the following paragraphs.

During the first series of articles describing the MADE tracer test, Adams
and Gelhar (1992) performed a spatial moment analysis of the concentration
measurements. They found that the plume shape is strongly non-Gaussian
and that, although the lower order moments could be reproduced reasonably
well with two different analytical transport models (advection only from a con-
tinuous source in a uniform flow field and advection-dispersion in a converging
nonuniform flow field), the rapidly advancing leading tracer plume edge and
the decline of solute mass given by the zeroth spatial moment were not cap-
tured by the models. Though not referring directly to the strong asymmetry
of the plume Adams and Gelhar (1992) concluded that the representation of
large-scale flow nonuniformity is essential when trying to account for plume
spreading and dilution at this site.

Eggleston and Rojstaczer (1998) examined the large-scale spatial trends
in hydraulic conductivity and their influence on contaminant transport at the
MADE site using flowmeter measurements of hydraulic conductivity and a
three-dimensional transport model considering advection only. None of their
different hydraulic conductivity fields could recreate the non-Gaussian shape
of the tracer plume successfully. Eggleston and Rojstaczer (1998) attributed
this failure to three possible factors: (1) failure of the trend estimation meth-
ods to capture large-scale trends present in the aquifer, (2) use of incorrect
model parameters other than hydraulic conductivity, or (3) local-scale hy-
draulic conductivity variations exerting significant control over tracer move-
ment. Although all three factors possibly contribute to the failure of the model,
Eggleston and Rojstaczer (1998) conclude that it is the local-scale variability
of hydraulic conductivity not being captured by their model, which exerts the
most significant control over the observed plume behavior.

Finally, the most recent attempt to model the MADE site tracer plume
using the macrodispersion model was presented by Barlebo et al. (2004). Using
only hydraulic head and concentration measurements for the calibration of an
inverse flow and transport model, they reproduced reasonably well the highly
irregular plume shape. However, calibrated hydraulic conductivities for their
zoned distribution were generally as much as a factor of 5 higher than the
measured hydraulic conductivities in the field using a flowmeter. Barlebo et al.
(2004) conclude therefore that the macrodispersion model is able to reproduce
the extensive plume spreading, but that flowmeter measurements of hydraulic
conductivity could be biased and that random errors in these measurements
obscure abrupt lateral variations of hydraulic conductivity.

Another approach used to explain solute transport at the MADE site is
the dual-domain mass transfer model. Feehley et al. (2000) compare this
model with the ADE using two heterogeneous hydraulic conductivity fields
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obtained by ordinary kriging and by choosing one realization of a conditional
geostatistical simulation based on fractional Brownian motion. The results
demonstrated that tracer spreading using the ADE with a numerical grid scale
of 2×2×0.5m was not modeled correctly with neither of the two heterogeneous
fields. Feehley et al. (2000) attribute this to the fact that preferential flow
pathways, which strongly influence asymmetric tracer spreading, may exist at
a scale smaller than the grid spacing. To overcome this inability they suggest
the use of the dual domain approach which, after calibrating the immobile
porosity and the mass transfer rate, was able to recreate the non-Gaussian
shape of the tracer plume.

A similar study was performed by Harvey and Gorelick (2000). They at-
tempt to predict one-dimensional concentration profiles of the MADE experi-
ment using the macrodispersion model and an analytical homogeneous solution
of the mass transfer model. Results indicate that the mass transfer model ac-
counts better for the dominant behavior of the system. Harvey and Gorelick
(2000) argue that this is based on large contrasts in hydraulic conductivity at
the centimeter to decimeter scale. They support their argument demonstrat-
ing that the conductivity profiles obtained with the permeameter, which has
a smaller measurement support scale (7.6 cm) as the flowmeter (15 cm), show
a significantly higher variability than the flowmeter measurements. They fur-
thermore argue that physical mass transfer caused by the intragranular pore
diffusion and diffusion into dead-end pores might significantly influence the
non-Gaussian behavior of the tracer plume.

The MADE site experiment was also analyzed by Berkowitz and Scher
(1998) using the continuos time random walk formalism. They compare the
field experiment with the dominant aspects of anomalous solute transport
in fracture networks. Characterizing key features of fracture properties (i.e.
segment length and fluid flow) and mapping them on probability distributions,
the spatial distribution of the plume concentration as well as breakthrough
curves can be calculated analytically using the continuous time random walk
approach. Comparing the results of the fracture network to the MADE site
Berkowitz and Scher (1998) demonstrate that time-dependent anomalous, i.e.
non-Gaussian, transport also exists in other geological formations than rock
fractures. They conclude that when mapping preferential flow paths and high
flow variability of the heterogeneous aquifer at the Columbus Air Force Base
to a series of channels or ”fractures” tracer transport can be reproduced using
the continuos time random walk method.

Finally, fractional derivatives were applied either using a fractional ADE
(Benson et al., 2001), a fractal mobile/immobile equation (Schumer et al.,
2003), or a subordination model governed by a fractional partial differentia-
tion (Baeumer et al., 2001) to simulate the MADE experiment. These ap-
proaches were developed having all the same underlying assumption that the
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small-scale variability of the hydraulic conductivity induces the non-Gaussian
behavior and anomalous spreading of the plume, and hence using the classical
ADE approaches would not lead to a successful reproduction of the tracer
experiment. All of these approaches were able to provide a good fit to the
observed field data after calibrating the necessary additional parameters.

The reader should note that a few other articles exist dealing with the
MADE site (MacIntyre et al., 1993; Zheng and Jiao, 1998; Julian et al., 2001;
Brauner and Widdowson, 2001; Bowling et al., 2005, 2006). However, as some
of these studies focus on other aspects of the MADE aquifer or do present
similar results as the ones outlined above we do not review them here for the
sake of conciseness.

Considering the reviewed articles the principal reason why the macrodis-
persion model is not successful in reproducing the tracer plume appears to
be the inadequate representation of the small scale heterogeneities. Some au-
thors claim that the grid resolution used is not sufficiently small, implying
that with an adequately high grid-resolution and the flowmeter measurements
solute transport could be reproduced correctly. Others state that the mea-
surement scale for the flowmeter measurements is too large, hence leading to
a smaller variance in the hydraulic conductivity data set or even to a measure-
ment bias, which in turn results into an incorrect reproduction of the spatial
variability of the conductivity field. In fact, if this would be the case, one
would even have to question the usefulness of the flowmeter technique to eval-
uate local-scale hydraulic conductivity distribution in highly heterogeneous
aquifers. Finally, some authors maintain that heterogeneity at the pore-scale
has a significant impact via pore-scale mass transfer and therefore even the
use of an extremely small grid-scale in combination with the ADE cannot re-
produce the non-Gaussian features of the plume and hence one has to employ
different types of models, e.g. dual domain, continuous time random walk, or
fractional derivatives.

Another often used hypothesis for the failure of the macrodispersion model
is the possible existence of connected, small scale high-conductivity channels
at the MADE site aquifer. In a variety of synthetic studies (Wen and Gómez-
Hernández , 1998; Zheng and Gorelick , 2003; Zinn and Harvey , 2003; Liu et
al., 2004) it was demonstrated that these preferential flowpaths can create
extensive downstream spreading of low concentrations while maintaining high
concentrations near the source. These flowpaths might even exist in aquifers,
which have a near-identical lognormal conductivity distribution as is the case
for the MADE site. Furthermore, results showed that when describing the
upscaled flow and solute transport for these cases, only the mobile-immobile
domain mass transfer model was able to model solute transport well. It is
interesting to note that all these issues are still the topic of a controversial
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discussion amongst hydrogeologists as published in a comment and its corre-
sponding reply by Molz et al. (2006) and Hill et al. (2006).

In this study we intend to examine the question whether the flowmeter
measurement support scale is small enough to correctly simulate tracer spread-
ing at the MADE site using the ADE or if it is the heterogeneity below this
scale dominating tracer spreading. In contrast to other studies we utilize to
this end a model grid block scale which has the same size as the flowmeter
measurement support scale and hence explicitly includes small-scale variabil-
ity of hydraulic conductivity. We first perform an extensive univariate and
bivariate geostatistical analysis of the flowmeter measurements in order to in-
fer the two-point statistics (i.e., mean, variance, variogram) of the lnK field
and its associated indicator variables for different thresholds. We present sev-
eral forms of variogram models and analyze the use of indicator variables.
Then, the modeling approach is briefly outlined and the simulation results of
the hydraulic conductivity fields, using kriging and Monte Carlo simulations
are presented. Limitations of the kriging interpolation at the MADE site are
shown and the benefits of stochastic simulations at the measurement scale are
illustrated. Furthermore, we investigate the possible existence of connected
high-conductivity channels and comment on the effects of upscaling of the
model grid block scale on the simulated tracer plume. Finally, we discuss the
results in the light of the previously mentioned hypotheses and summarize the
main results and conclusions of this paper.

4.2 Geostatistical Analysis

This geostatistical analysis is based on 2495 flowmeter measurements of the
hydraulic conductivity performed in 62 boreholes (see Figure 4.1). Note that in
contrast to the analysis presented by Rehfeldt et al. (1992) only measurements
located within the model domain plus 11 additional locations for the MADE-
2 test are used and hence the mean and the variance differ slightly from the
values presented by Rehfeldt et al. (1992). The frequency distribution and the
univariate statistics of the data set are illustrated in Figure 4.2.

To determine the spatial continuity for lnK we employ the commonly used
experimental semivariogram (e.g. Journel and Huijbregts, 1978)

γ(h) =
1

2N(h)

N(h)∑

α=1

[z(uα)− z(uα + h)]2 (4.1)

where N(h) is the number of data pairs within the class of distance and
direction, h is the separation vector, and z(uα) denotes a measurement with uα

being the vector of spatial coordinates of the αth individual. In the following
study we assume that depositional structures in the aquifer, e.g. clay lenses,
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Figure 4.1. Model domain used for the simulations. Circles denote flowmeter well
locations. Triangles denote the five solute injection wells.
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Figure 4.2. Frequency distribution and univariate statistics of the 2495 flowmeter
measurements.

high permeability zones, are approximately horizontal, as sustained by various
other authors (e.g. Rehfeldt et al., 1992; Bowling et al., 2005). Hence, only
horizontal and vertical spatial continuity will be analyzed.

Figure 4.3 shows the omnidirectional horizontal and vertical experimental
semivariogram and the corresponding fitted spherical model, which has the
following equation

γ(h) = c0+c1 ·Sph(‖r(h)‖) =

{
c1 · [1.5‖r(h)‖ − 0.5‖r(h)‖3] if ‖h‖ ≤ ‖r(h)‖
c1 if ‖h‖ ≥ ‖r(h)‖

(4.2)
where c0 is the nugget, c1 is the sill, and r(h) is the corresponding separation
vector for an analog variogram model, oriented parallel to the correlation
structure and with unitary ranges, that is obtained by rotation and translation
of coordinates as

r(h) = T ·R · h (4.3)

The translation matrix T and the rotation matrix R are given as

T =




1
a1

0 0
0 1

a2
0

0 0 1
a3


 R =




cosα sinα 0
−sinα cosα 0

0 0 1
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Figure 4.3. Omnidirectional horizontal and vertical isotropic variograms and fitted
spherical model for the lnK flowmeter data.

where a1,2,3 are the ranges of the corresponding axes of anisotropy and α is
the rotation angle. Note that the rotation matrix only includes one rotation
of the y-axis in the horizontal plane, where the rotation angle is measured in
degrees clockwise from the positive y-axis, as the presented variogram models
in this section solely consider geometric anisotropy in the horizontal plane.
Table 4.2 presents the parameters for the model used in Figure 4.3. Similarly
to Rehfeldt et al. (1992) the directional analysis did not reveal a horizontal
anisotropy and the parameters for the isotropic spherical model fit of Figure 4.3
are comparable to the exponential semivariogram model obtained by Rehfeldt
et al. (1992).

However, it can be observed that the omnidirectional horizontal experi-
mental semivariogram in Figure 4.3 shows a non-monotonic behavior with a
cyclic pattern for separation distances larger than ∼ 40m, which is not cap-
tured well by the corresponding model. Rehfeldt et al. (1992) accounted for
this uncertainty defining upper and lower confidence limits for the sill values.
Another approach to include this periodic behavior is using a variogram model
consisting of a nested structure which contains a spherical and a so called ”hole
effect” model (see Figure 4.4):

γ(h) = c0 + c1 · Sph(‖r1(h)‖) + c2 · [1− cos(‖r2(h)‖π)] (4.4)

Hole effect structures most often indicate a form of periodicity, e.g. lenses
of high/low conductivity, which is a common spatial characteristic in geology
(Journel and Huijbregts, 1978; Pyrcz and Deutsch, 2003). It was demonstrated
by various authors (e.g. Ritzi , 2000; Barrash and Clemo, 2002) that aquifers
dominated by distinct hydrofacies, as is also the case for the fluvial aquifer at
the MADE site, often exhibit periodic structures in their variograms.
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Model Nugget Ranges [m] Structure
∑n

i=0 ci Rotation
c0 a1 a2 a3 sill ci angle α

Spherical 0.4669 38 38 4.2 3.5657 4.0326 0◦

(Eq.(4.2))

Nested structure
(Eq.(4.4))
Spherical 0.4245 80 32 4.1 3.8204 0◦

Hole effect - 80 - - 0.8914 5.1363 0◦

Table 4.1. Geostatistical model parameters for Figures 4.3 and 4.4.

In order to be positive definite the chosen cosine model may only exist in
one direction (Journel and Huijbregts, 1978). Directional variogram analysis
demonstrated that a good fit is obtained when the y-axis coincides with the
principal direction of correlation. Figure 4.4 illustrates the disappearance of
the hole effect in the direction orthogonal to the y-axis. Parameters values for
the matched model of Eq.(4.4) are presented in Table 4.2.

When evaluating spatial uncertainty the conditional cumulative distribu-
tion function (cdf) for each location of the aquifer has to be determined. The
most widely used method to infer the parameters of the conditional cdf is to
assume a multiGaussian distribution of the lnK random field. However, this
approach has several shortcomings possibly significant to the site characteris-
tics of the MADE aquifer. Firstly, it assumes not only that the one-point cdf
of the data is normally distributed, but also that multiple-point distributions
of the data exhibit multi-normality. Unfortunately, although the univariate
frequency distribution shows a near-identical lognormal behavior (see Figure
4.2 and also Rehfeldt et al. (1992)) multiple point experimental cdfs cannot be
checked in practice. Secondly, under the multiGaussian approach, extremely
large/small values are spatially uncorrelated. However, as already mentioned
above, connectivity of high hydraulic conductivity values may play a crucial
role for tracer transport at the MADE site. To overcome these shortcomings
the indicator approach, which does not assume any particular shape of the
conditional distributions, can be applied.

The first step in the indicator approach is the selection of the number of
thresholds and their values. In order to provide a reasonable discretization
of the local distribution the nine deciles of the sample cumulative distribu-
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Figure 4.4. Directional horizontal and vertical variograms and fitted model with hole
effect for the lnK flowmeter data. The rotation angle of the directional variograms is
measured in degrees clockwise from the positive y-axis

.

tion were chosen and transformed to the corresponding indicator categories
according to

i(uα; zk) =

{
1 if z(uα) ≤ zk

0 otherwise
(4.5)

where zk are the threshold values. Spatial continuity for the different thresh-
olds is then evaluated using the standardized indicator semivariogram (e.g.
Goovaerts, 1997):

γI(h; zk)
σ2

I

=
1

2N(h)

N(h)∑

α=1

[i(uα; zk)− i(uα + h; zk)]2 (4.6)

where σ2
I is the indicator variance given as σ2

I = F (zk)[1 − F (zk)]. Direc-
tional variogram analysis of the indicator categories demonstrated that the
best fit was obtained using a nested structure consisting of a spherical and an
exponential model according to

γI(h; zk)
σ2

I

= c0 + c1 · Sph(‖r1(h)‖) + c2 · [1− exp(−3‖r2(h)‖)] (4.7)

Figure 4.5 illustrates the experimental variograms and the corresponding model
fit of the 0.1, 0.4, and 0.9 decile cutoffs. The complete set of matched indi-
cator model parameters is presented in Table 4.2. It can be observed that
the spatial continuity increases from the 0.1 decile to the 0.7 decile and then
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Threshold Model Nugget Ranges [m] Structure Rotation
zk F (zk) c0 a1 a2 a3 sill ci angle α

-7.948 0.1 Spherical 0.2 10 10 1.2 0.26 0◦

Exponential 15 15 4.0 0.57 0◦

-7.212 0.2 Spherical 0.2 50 50 4.5 0.37 0◦

Exponential 2.8 2.8 1.8 0.49 0◦

-6.556 0.3 Spherical 0.2 65 65 4.7 0.32 0◦

Exponential 8 8 2.5 0.54 0◦

-6.066 0.4 Spherical 0.2 90 60 4.6 0.32 150◦

Exponential 20 10 2.7 0.51 150◦

-5.550 0.5 Spherical 0.2 100 85 5.4 0.32 150◦

Exponential 30 15 3.5 0.51 150◦

-5.011 0.6 Spherical 0.2 130 110 6.0 0.32 150◦

Exponential 40 25 4.0 0.51 150◦

-4.227 0.7 Spherical 0.2 150 120 6.4 0.32 150◦

Exponential 40 28 5.6 0.51 150◦

-3.339 0.8 Spherical 0.2 90 90 7.6 0.32 0◦

Exponential 20 20 3.3 0.51 0◦

-2.454 0.9 Spherical 0.2 65 40 5.8 0.32 0◦

Exponential 13 13 1.4 0.51 0◦

Table 4.2. Geostatistical model parameters for the indicator variogram model ac-
cording to Eq.(4.7).

decreases until the 0.9 decile. No significantly higher spatial continuity in the
horizontal direction of the 0.9 decile could be observed. A slight anisotropy in
the horizontal plane was detected for the 0.4 to 0.7, and 0.9 deciles, whereas
the anisotropy axis was additionally rotated 150◦ for the deciles 0.4 to 0.7.

Note that some authors have also performed a multifractal analysis of
the hydraulic conductivity data at the MADE site suggesting a truncated
power law variogram with fractional Brownian motion as a possible model
for the spatial variations of K (e.g. Liu and Molz , 1997; Feehley et al., 2000).
Although this might be a valid approach, we focused here on the more classical
geostatistical techniques and do not assess the ability of fractional Brownian
motion to characterize subsurface heterogeneity at the MADE site.
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Figure 4.5. Standardized indicator variograms for the following directions and
deciles: a) Directional horizontal indicator variogram and fitted model for 0.1 decile
b) Directional horizontal indicator variogram and fitted model for 0.4 decile c) vertical
indicator variogram and fitted model for 0.4 decile d) Directional horizontal indica-
tor variogram and fitted model for 0.9 decile. The rotation angle of the directional
variograms is measured in degrees clockwise from the positive y-axis.
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4.3 Modeling Approach

A three-dimensional block centered finite difference grid with a total size of
110×280×10.5 m was used for modeling the aquifer (see Figure 4.1). The grid
spacing was chosen to be of a similar magnitude or smaller than the flowmeter
measurement support scale. Hence, grid blocks are 1× 1 m in the horizontal
direction and 0.15 m in the vertical direction resulting in a total of 2,156,000
nodes. Constant head boundaries at y = 0 m and y = 280 m as well as no-flow
boundaries at x = 0 m and x = 110 m limit the model domain.

Although being aware of the possible significance of transient flow on tracer
transport at the MADE site, we simulated only steady state flow in a confined
system using the well-known MODFLOW code (Harbaugh et al., 2000) as we
focused during this work on the influence of the heterogeneity of hydraulic
conductivity. Flow model calibration was performed similarly to Feehley et
al. (2000). The hydraulic heads monitored within 1 year of the tracer test
were averaged and used as the observed steady state heads. Boundary heads
were adjusted manually to a hydraulic conductivity field created using ordinary
kriging (see the following section for details) until a satisfactory match between
observed and modeled heads was obtained. These boundary heads were then
used for the remaining flow simulations.

Tracer transport using the classical, Fickian advection-dispersion trans-
port equation for conservative transport was simulated with the random walk
particle tracking code RW3D (Fernàndez-Garcia et al., 2005; Salamon et al.,
2006). We chose the random walk approach because of its computational ef-
ficiency and the non-existence of numerical dispersion especially concerning
advection-dominated cases with a high spatial discretization as is the case
here. The random walk code uses a hybrid scheme for the velocity interpola-
tion which has demonstrated to provide local as well as global divergence-free
velocity fields within the solution domain and a continuous dispersion tensor
field that approximates well mass balance at grid interfaces of adjacent cells
with contrasting hydraulic conductivities (LaBolle et al., 1996; Salamon et
al., 2006). Furthermore, a constant-displacement scheme (Wen and Gómez-
Hernández , 1996) which modifies automatically the time step size for each
particle according to the local velocity is employed in order to decrease com-
putational effort. A Courant number of 0.0125 for the constant-displacement
was used for all simulations. The local-scale longitudinal dispersivity was fixed
at 0.1 m which corresponds approximately to the value calculated by Harvey
and Gorelick (2000) for a column experiment with a 1 m long soil column
from the MADE site aquifer. Transverse horizontal and vertical local-scale
dispersivity values were chosen to be one order of magnitude lower than the
longitudinal dispersivity resulting in a value of 0.01 m. Apparent diffusion for
tritium was selected to be 1.0 cm2/d according to Gillham et al. (1984). An
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average total porosity of 0.32 as determined from the soil cores by Boggs et al.
(1992) was assigned to the entire model area.

During the field experiment tritium was injected through five injection
wells for a period of 48.5 hours. However, as tracer injection generally is
strongly subject to specific local conditions which are difficult to reproduce,
e.g. well characteristics, hydraulic head cone during injections, etc., we de-
cided to employ the mass distribution measured for the 27 days snapshot as
an initial condition. For this purpose the measured concentrations of the cor-
responding snapshot were used to achieve a spatial interpolation of the tracer
concentration in the aquifer. Then the tracer mass for each cell was calculated
and a total of 50,000 particles, where each particle was assigned the same mass,
was allocated according to the total amount of mass in each cell.

In the following section longitudinal mass profiles of the tritium plume
(MADE-2 tracer experiment, Boggs et al., 1993) and the simulated plumes at
328 days are compared. These profiles were obtained by integrating the mass
of 28 equally spaced zones, each of 10 m width, along the general flow direction
(the y axis) and normalizing it by the total injected mass.

mean variance
Model ln K [cm/s] lnK

Flowmeter Measurements -5.35 4.245
Ordinary Kriging

Sph. Model (Eq. (4.2)) -5.218 1.676
Sph. + Hole Effect Model (Eq. (4.4)) -5.3024 2.0433

Indicator Kriging
Sph. + Exp. Model (Eq. (4.7)) -5.217 2.376

Sequential Gaussian Simulation
Sph. Model (Eq. (4.2)) < −5.169 > a < −4.652 > a

Sph. + Hole Effect Model (Eq. (4.4)) < −5.281 > a < 4.736 > a

Realization #7 -5.1589 5.3814
Realization #19 -4.914 4.754
Realization #26 -4.8234 4.6195
Realization #47 -5.229 4.54
Realization #56 -5.343 4.969
Realization #80 -5.2897 5.166

Sequential Indicator Simulation
Sph. + Exp. Model (Eq. (4.7)) < −5.237 > a < 3.815 > a

aensemble mean

Table 4.3. Statistical characteristics for generated hydraulic conductivity fields.
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Figure 4.6. Longitudinal mass distribution profiles of the tritium plume and predic-
tions using ordinary and indicator kriging to generate a hydraulic conductivity field.
The ordinary kriged fields are generated using Eq. (4.2) and (4.4), respectively, as
random function model with the parameters given in Table 4.2. The indicator kriged
field was obtained using Eq. (4.7) with the parameters of Table 4.2.

4.4 Simulation Results

4.4.1 Kriging

The most common approach to interpolate sparse hydraulic conductivity data
is the kriging algorithm, which was also applied by various authors to the
MADE site (e.g. Eggleston and Rojstaczer , 1998; Feehley et al., 2000). These
methods are basically variations of a least-squares linear regression incorpo-
rating the ability to account for different models of spatial continuity. All
kriging algorithms have the objective to find an optimal estimate for an un-
measured location and thereby minimizing the estimation variance. In order to
evaluate the useability of this geostatistical approach for the herein examined
aquifer three conductivity fields generated by ordinary kriging and indicator
kriging conditioned to the flowmeter measurements were generated employing
the GSLIB code (Deutsch and Journel , 1998). Two ordinary kriging fields are
obtained using the random function model of Eq. (4.2) and (4.4), respectively,
with the parameter values presented in Table 4.2. The indicator kriging field
was generated using Eq. (4.7) with the parameters of Table 4.2.

Figure 4.6 illustrates the results for the tritium transport in those fields.
Clearly, none of the different kriging methods reproduces the strong non-
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Gaussian shape of the tritium plume. This is actually not surprising as it
demonstrates one of the shortcomings of this approach, which is especially
significant for highly heterogeneous aquifers: interpolation algorithms tend
to smooth out local details of the spatial variability of the random variable,
i.e. small values are overestimated and large values are underestimated (e.g.
Goovaerts, 1997). Unfortunately, solute transport is highly sensitive to the ex-
treme values of hydraulic conductivity, particularly for the anomalous tracer
spreading at the MADE site. A second disadvantage of the kriging algorithm
is that the smoothing is greater at locations being estimated farther away from
the data locations whereas smoothing gets smaller closer to the data measure-
ments. That is, in regions with scarce lnK data kriging interpolation yields
values close to the geometric mean whereas in regions with dense data points
kriging interpolation more closely follows the ”true” variability. These defi-
ciencies become evident when looking at the statistical characteristics of the
interpolated fields as shown in Table 4.3. While reproducing well the mean of
ln K, all interpolated fields severely underestimate the variance. These nega-
tive effects could only be alleviated by using an extremely dense network of
measurement points, which is not feasible in practice. Hence, kriging is an
inappropriate method for estimating the hydraulic conductivity field at the
MADE site and thus reproducing solute transport using the kriged fields in
combination with the advection-dispersion concept must fail, independently
of an incorrect choice of the model grid scale or the potential incapacity of the
ADE to simulate anomalous transport.

4.4.2 Sequential Simulation

Sequential simulation generates multiple, equally probable realizations of the
joint distribution of the hydraulic conductivity values in space. In contrast to
the kriging algorithm it closely reproduces the statistics considered decisive for
the problem in hand, i.e. a better reproduction of the histogram and the vari-
ogram model, however with the cost of having to deal with a set of tens or often
hundreds alternative representations. In this study a sequential Gaussian sim-
ulation, which assumes a multiGaussian random function model for the entire
multivariate distribution, was used as well as sequential Indicator simulation,
which does not assume any particular shape for the conditional distributions.
All simulations are conditioned to the 2495 flowmeter measurements.

Simulations performed are comprised of a total of 40 realizations. Note that
when performing Monte Carlo simulations it is desirable to have approximately
100 or more realizations in order to characterize better the uncertainty of
solute transport. However, due to the very large amounts of data created with
a model of more than 2 million nodes and limitations in computational time,
only 40 realizations for each sequential simulation were performed.
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Figure 4.7. Longitudinal mass distribution profiles of the tritium plume and predic-
tions using sequential Gaussian simulation using Eq. (4.2) as random function model
with the parameters given in Table 4.2.

Figure 4.7 illustrates the longitudinal mass distribution profiles of the
sequential Gaussian simulation generated using the GCOSIM code (Gómez-
Hernández and Journel , 1993) with the spatial model of Eq. (4.2) and the
corresponding parameters of Table 4.2. The ensemble statistics of the 40 real-
izations are presented in Table 4.3. It can be observed that the solute transport
uncertainty in this simulation is considerable and that some realizations ex-
hibit a significantly better tailing in comparison to the kriged fields as a result
of the improved representation of the variability of hydraulic conductivity (see
Table 4.3) and the variogram model. Nevertheless, none of the realizations is
able to reproduce a similarly extensive spreading as observed in the field.

Figure 4.8 presents the results of the sequential Gaussian simulation with
the spatial model of Eq. (4.4) and the corresponding parameters of Table 4.2.
Note that in this case for a better definition of the solute transport uncertainty
the Monte Carlo simulation is comprised of 80 realizations. It can be observed
that the uncertainty for the different realizations increases in comparison to
Figure 4.7 leading to six realizations which reproduce well the tailing measured
in the field (see Figure 4.9). The statistical characteristics of the sequential
simulation and the six realizations producing a strong tailing are shown in
Table 4.3. A horizontal section of the conditioned hydraulic conductivity field
of realization #80 at a relative elevation of z = 8.1 m is presented in Figure
4.10 and a horizontal, depth integrated concentration distribution as well as
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Figure 4.8. Longitudinal mass distribution profiles of the tritium plume and predic-
tions using sequential Gaussian simulation using Eq. (4.4) as random function model
with the parameters given in Table 4.2.

Figure 4.9. Longitudinal mass distribution profiles of the tritium plume and pre-
dictions of six realizations of the sequential Gaussian simulation exhibiting a strong
tailing (using Eq. (4.4) as random function model).
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a vertical, laterally integrated concentration distribution of realization #80
is shown in Figure 4.11. The concentration distribution of Figure 4.11b is
in very good agreement with the data observed in the field (see Figure 4-1,
Boggs et al., 1993), whereas the tracer plume of Figure 4.11a displays a more
narrower appearance than in the field. Evidently this is the effect of approx-
imating a transient flow field, which shows a complex temporal variability of
the direction of hydraulic gradient (Boggs et al., 1992), with a steady state
model. Furthermore, none of the realizations is able to simulate the increase in
tracer mass at a downstream distance between approximately 170 m and 240
m. This is most likely due to an artificial overestimation of the tracer mass
in this area caused by the combination of two factors: (1) rapid solute trans-
port in very narrow zones of the aquifer caused by strong preferential flow,
and (2) the sampling well network discretization is increased significantly at
downstream distances of approximately larger then 160 m. Hence, interpo-
lating the local tracer concentration measurements to the neighboring cells in
order to obtain isocontours from which the mass distribution can be calculated
leads most likely to an overestimation of mass downstream. Nevertheless and
most importantly, it is clear that a similarly anomalous tracer spreading can
be obtained with the spatial model of Eq. (4.4) and a model grid scale which
corresponds to the flowmeter measurement scale.

Finally, Figure 4.12 illustrates the results of the sequential Indicator sim-
ulation generated using the ISIM code (Gómez-Hernández and Srivastava,
1990) with the geostatistical model parameters given in Table 4.2. Clearly,
the sequential Indicator simulation using the variography obtained from the
field data is not able to create the anomalous tracer behavior. This is some-
what surprising as alluvial aquifers, where normally distinct hydrofacies with
strongly varying characteristics prevail, are generally modeled better with an
indicator approach or other structure-imitating methods (e.g. Johnson, 1995;
Koltermann and Gorelick , 1996; Zappa et al., 2006), which do not assume the
multivariate distribution to be Gaussian. However, as the hydraulic conduc-
tivity field at the MADE site appears to have a multiGaussian-like behavior
expressed by the fact that extreme threshold values of the indicator variables
exhibit decreasing integral scales, realizations of a Gaussian simulation con-
stitute a better approximation to the aquifer variability than those provided
by sequential Indicator simulation which are instead hindered by the limited
number of thresholds.

4.5 Discussion

The herein presented geostatistical analysis and the results of the transport
model support or weaken certain arguments used to explain the anomalous
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Figure 4.10. Horizontal slice of the hydraulic conductivity field #80 for z = 8.1 m.



“Thesis” — 2006/8/11 — 11:41 — page 102 — #120

102 CHAPTER 4. MODELING TRACER TRANSPORT AT THE . . .

Downstream Distance [m]

R
el

.E
le

va
tio

n
[m

]

0 40 80 120 160 200 240 2800

2

4

6

8

10

Normalized Conc.: 1.0E-05 1.0E-04 1.0E-03 1.0E-02b)

Downstream Distance [m]

X
[m

]

0 40 80 120 160 200 240 280

0

20

40

60

80

100

a)

Figure 4.11. (a) Depth integrated normalized concentration distribution after 328
days for realization #80 (b) Laterally integrated normalized concentration distribu-
tion after 328 days for realization #80.



“Thesis” — 2006/8/11 — 11:41 — page 103 — #121

CHAPTER 4. MODELING TRACER TRANSPORT AT THE . . . 103

Figure 4.12. Longitudinal mass distribution profiles of the tritium plume and pre-
dictions using sequential Indicator simulation.

tracer transport behavior at the MADE site. Our discussion will focus here on
the following issues: (1) the scale of aquifer heterogeneity versus the flowmeter
sampling scale and the model grid scale, (2) the existence and effects of pref-
erential flow pathways caused by a possible connectivity of high conductivity
values.

4.5.1 Support Scale of the Transport Model

Column permeameter studies of vertical core samples at the MADE site (Boggs
et al., 1990) indicated a significant variability of hydraulic conductivity at the
centimeter to decimeter scale. This strong small-scale variability was analyzed
and discussed in detail by Harvey and Gorelick (2000) which found a stan-
dard deviation of lnK of as high as 6.0 for one of the column permeameter
tests. Furthermore, laboratory studies of tritium transport in soil columns
with aquifer material from the Columbus aquifer demonstrated a slight re-
tardation which was attributed to the presence of intragranular porosity and
dead-end pores (Boggs and Adams, 1992; Harvey and Gorelick , 2000). Finally,
recovery of tracer from soil cores using physical and chemical extraction also
indicated the strong influence of diffusion into small immobile portions of the
aquifer material (e.g. Boggs and Adams, 1992; Molz et al., 2006). Many au-
thors concluded on the basis of this data that this is a direct evidence for a
significant storage/release of tracer from immobile/mobile pore domains at the
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Columbus aquifer and hence only a model accounting for these effects (e.g.,
continuous time random walk, fractional ADE, or dual domain model) is able
to reproduce the anomalous tracer spreading. Moreover, specifically the dual-
domain approach provides a further advantage: It offers an explanation of
the mass overestimation at early times and underestimation at late times as
observed in the field (Harvey and Gorelick , 2000).

Nevertheless, the simulation illustrated in Figure 4.8 shows that, although
heterogeneity exists at a scale smaller than the flowmeter measurement sup-
port, it appears to be sufficient to account for the hydraulic conductivity
variability which is characterized by the flowmeter data by using a similar
grid resolution as the measurement support to reproduce anomalous solute
transport at the MADE site. Note that we do not suggest that centimeter
to pore-scale heterogeneity plays no role at all. In fact, we do believe that
when accounting for these mass transfer processes additionally transport pre-
dictions might improve. However, our results suggest that the heterogeneity at
the flowmeter measurement scale is the main contributor to the non-Gaussian
plume behavior and that mass transfer effects are principally the results of the
use of an inadequate model grid block scale.

Upscaling of the model grid blocks and hence not accounting for the het-
erogeneity at this scale (using a coarser grid-scale can be considered a simple
form of upscaling), leads to the inability of the ADE to simulate the increased
solute delay and hence additional mechanisms have to be added to the ADE,
e.g. mass transfer, or even a different transport equation has to be used, e.g.
continuous time random walk or a fractional ADE. In fact, the scalability of
the mass transfer rate with the grid block size for the dual domain models
applied to the MADE site was already recognized by Feehley et al. (2000).
They noted that their estimated factor for mass transfer at the MADE site,
when accounting for local scale heterogeneity at a grid scale of 2 × 2 × 0.5
m was about one order of magnitude lower then the one obtained by Harvey
and Gorelick (2000) who used a homogeneous flow field. More recent syn-
thetic studies have also demonstrated the necessity to include mass transfer
mechanisms when upscaling solute transport in strongly heterogeneous fields
(Fernàndez-Garcia and Gómez-Hernández , 2006).

Finally, our results also indicate that the mass imbalance observed in the
field is mainly caused by a measurement bias as argued by Molz et al. (2006)
and not by the diffusion of tracer into intragranular porositiy or dead-end
pores. Water with high concentrations is preferentially sampled from high
conductivity zones leading to an overestimation of the plume mass at early
times because the same high concentrations were interpolated to the low con-
ductivity regions. At late times mass is underestimated as more mass has
spread into the low conductivity zones and is not captured by the sampling.
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4.5.2 Connectivity

Connectivity of high-conductivity values has been suggested by various au-
thors to produce the anomalous tracer spreading at the MADE site (e.g. Zinn
and Harvey , 2003; Zheng and Gorelick , 2003; Liu et al., 2004). One possibility
to evaluate patterns of continuity of a particular category, e.g. high or low
conductivity values, is the indicator variography. Considering the experimen-
tal indicator semivariograms of Section 4.2 it is evident that no significantly
larger spatial correlation of neither the 0.9 decile nor the 0.1 decile could be
observed (see Table 4.2). Rather, comparing the sequential indicator simula-
tion (Figure 4.12) with the sequential Gaussian simulations (Figures 4.7 and
4.8) it seems that a cdf assuming a multivariate Gaussian model approximates
field conditions much better. This is quite surprising as in multiGaussian
models extremely large and small values of the modeled variable are generally
spatially uncorrelated (e.g. Gómez-Hernández and Wen, 1998).

Although the indicator variography does not reveal the existence of con-
nected patches of high-conductivity values the measured tracer spreading still
suggests some form of preferential flowpaths. In fact, various authors have
demonstrated that indicator statistics is not always a good measure of connec-
tivity (e.g. Western et al., 2001; Knudby and Carrera, 2005). Furthermore,
the absence of a direct evidence of the connectivity of extreme values from
the flowmeter data does not necessarily prove that in the field these connec-
tions do not exist. The similarity of the non-Gaussian spreading observed
in various studies with synthetic aquifers having a near-identical lognormal
conductivity distribution and a connectivity of extreme values (e.g. Wen and
Gómez-Hernández , 1998; Zinn and Harvey , 2003) is a convincing argument
that similar conditions might exist at the MADE site.

Nevertheless, connectivity of extreme values is not the only way to create
strong preferential flowpaths resulting in a non-Gaussian plume spreading.
Alluvial aquifers are typically made up of lenses or facies of sand and gravel as
is also the case for the aquifer at the MADE site (e.g., Rehfeldt et al., 1992).
The strongly varying hydraulic properties of these geological structures favor
preferential flow and solute transport. One potential indication of an increased
occurrence of these lenses is the cyclic behavior, or hole effect structure, that
can be observed in the experimental semivariogram of Figure 4.4. Hole effect
structures are the most prominent signs of the existence of regular/irregular
clustered lenses or facies within an aquifer (Pyrcz and Deutsch, 2003) and
non-monotonic structures of experimental variograms have been observed in
practice especially for alluvial aquifers (e.g. Barrash and Clemo, 2002; Ritzi ,
2000). The presence of these structures increases the probability of having
realizations with strong preferential flowpaths as is demonstrated in the solute
transport simulations of Figures 4.8 and 4.9 and it hence represents a valuable
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alternative able to explain the occurrence of significant preferential flow and
transport.

4.6 Conclusions

We have presented a detailed geostatistical analysis of the flowmeter data at
the MADE site. Furthermore, we have analyzed tracer transport for different
models of spatial correlation in comparison with the tritium tracer experi-
ment (MADE-2). One of the principal conclusions of this research is that,
when small-scale variability of hydraulic conductivity is correctly modeled at
the flowmeter measurement support scale, the advection-dispersion equation
is capable of reproducing the anomalous tracer spreading observed in the field.
Furthermore, it was demonstrated that the model chosen for the spatial cor-
relation of hydraulic conductivity plays a crucial role when simulating solute
transport at the MADE site. Below, we list the specific conclusions of this
work.

1.) The geostatistical analysis of the flowmeter data did not reveal the exis-
tence of a significantly larger spatial correlation of the high or low conductivity
values. However, a hole effect structure could be observed in the experimen-
tal semivariogram, indicating the occurrence of irregularly clustered lenses or
facies.

2.) Using kriging for the generation of the hydraulic conductivity field at
the MADE site does not lead to a proper reproduction of tracer spreading
due to an insufficient representation of the variability of hydraulic conductiv-
ity, independently of a potentially insufficient small grid scale, the potential
inability of the ADE to simulate anomalous solute transport, or the type of
spatial correlation chosen.

3.) Sequential simulations demonstrated that a cdf assuming a multivariate
Gaussian distribution approximates field conditions better for the MADE site
conditions than the random function model of the indicator approach, which
is hampered by the limited number of indicator thresholds.

4.) Neglecting the hole effect structure in the sequential Gaussian simu-
lation leads to a reduced tailing of the tracer. This indicates that, although
connectivity of extreme values could not be detected from the field data, pref-
erential flow still plays a significant role and is enhanced by the appearance of
clustered lenses and facies.

5.) While direct evidence of the occurrence of diffusion into intragranu-
lar porosity and dead-end pores was found in laboratory studies, the solute
transport results presented in this work suggest that the heterogeneity at the
flowmeter measurement scale is the main contributor to the non-Gaussian
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plume behavior and that mass transfer effects are principally the results of
the use of an inadequate model grid block scale.

Although we could demonstrate that, when explicitly representing small-
scale heterogeneity, anomalous spreading of solute transport for highly het-
erogeneous aquifers can be simulated using the ADE, in practice these high-
resolution models are often not feasible due to the computational effort or the
lack of adequate field data. Dual domain models, continuous time random
walk or other models, able to account for the strongly delayed solute trans-
port when not explicitly representing small-scale heterogeneity via for example
mass transfer processes are therefore good alternatives when trying to predict
transport as demonstrated by many authors. However, quantifying the re-
lationship between the occurrence of non-Gaussian solute spreading and the
scale of heterogeneity represented in a numerical model remains still a field of
ongoing research.
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Fractional dispersion, Lévy motion, and the MADE tracer tests, Transport
in Porous Media, 42, 211–240.

Berkowitz, B., and H. Scher (1998), Theory of anomalous chemical transport
in random fracture networks, Physical Review E, 57 (5), 5858–5869.

Boggs, J. M., S. C. Young, D. J. Benton, and Y. C. Chung (1990), Hydro-
geological characterization of the MADE site, Top. Rep. EA-6915, Electr.
Power. Res. Inst., Palo Alto, Calif.

Boggs, J. M., S. C. Young, and L. M. Beard (1992), Field study of dispersion in
a heterogeneous aquifer 1. Overview and site description, Water Resources
Research, 28 (12), 3281–3291.

Boggs, J. M., and E. E. Adams (1992), Field study of dispersion in a het-
erogeneous aquifer 4. Investigation of adsorption and sampling bias, Water
Resources Research, 28 (12), 3325–3336.

109



“Thesis” — 2006/8/11 — 11:41 — page 110 — #128

110 BIBLIOGRAPHY

Boggs, J. M., L. M. Beard, and W. R. Waldrop (1993), Transport of tritium
and four organic compounds during a natural-gradient experiment (MADE-
2), Tech. Rep. EPRI TR-101998, Electr. Power. Res. Inst., Palo Alto, Calif.

Bowling, J. C., A. B. Rodriguez, D. L. Harry, and C. Zheng (2005), Delineat-
ing alluvial aquifer heterogeneity using resistivity and GPR data, Ground
Water, 43 (6), 890–903.

Bowling, J. C., C. Zheng, A. B. Rodriguez, and D. L. Harry (2006), Geophysi-
cal constraints on contaminant transport in a heterogeneous fluvial aquifer,
Journal of Contaminant Hydrology, 85, 72–88.

Brauner, J. S., and M. A. Widdowson (2001), Numerical simulation of a nat-
ural attenuation experiment with a petroleum hydrocarbon NAPL source,
Ground Water, 39 (6), 939–952.

Carrera, J. (1993), An overview of uncertainties in modeling groundwater
solute transport, Journal of Contaminant Hydrology, 13, 23–48.
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5
General Conclusions

5.1 Summary

The complexity of solute transport in heterogeneous porous media has caused
many models, assuming a simple homogeneous parameter distribution, to fail
when used for prediction and decision making. The awareness of the necessity
to include heterogeneity in flow and transport models has triggered the devel-
opment of more sophisticated approaches to characterize these processes, e.g.
the use of stochastic models to quantify and reduce uncertainty using Monte
Carlo simulations and inverse modeling, or the development of methods to
upscale parameters which have a small-scale variability in order to be used
in coarsely discretized models. However, these more sophisticated approaches
often require the analysis of hundreds or even thousands of aquifer realiza-
tions or the study of the effects on transport behavior moving from a highly
discretized model grid to a coarsely discretized one. One valuable alterna-
tive of modeling solute transport for this purpose is the random walk particle
tracking method.

In Chapter 2 the basic mathematical concepts of this method have been
presented. The principal advantages of the random walk methodology are the
high computational efficiency and the absence of numerical dispersion. The
limitations in simulating nonequilibrium processes like non-linear sorption or
the reactions between different chemical species constitute its main disad-
vantages. Three different numerical implementation methods to overcome the
problem of local solute mass conservation were examined: (1) the interpolation
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method, (2) the reflection method, and (3) the generalized stochastic differ-
ential equations approach. The different methods were analyzed for solute
transport in a simple two-layer case and in various synthetic heterogeneous
aquifers. It was demonstrated that the interpolation method using a hybrid
scheme, i.e., linear interpolation for velocities and tri/bilinear interpolation for
the dispersion tensor field, provides a local as well as global divergence-free
velocity field and that it approximates well mass balance at grid interfaces
of adjacent cells with contrasting hydraulic conductivities. The generalized
stochastic differential equations method and the reflection method suffer both
from an artificial shift of mass into zones of low hydraulic conductivity, hence
not conserving well local mass balance, which results in an overestimation
of the macrodispersion and an underestimation of the average velocity for
strongly heterogeneous cases with abrupt transitions between different zones
of hydraulic conductivity.

Chapter 3 introduced a new numerical approach to include multirate mass
transfer into random walk particle tracking. For this purpose the normalized
zeroth spatial moments of the multirate transport equations were derived and
used as phase transition probabilities. The particle distribution between the
mobile domain and any immobile domain can then be simply determined by
performing a Bernoulli trial on the appropriate phase transition probabilities.
Examples for the first-order mass transfer and the multirate mass transfer were
illustrated and compared satisfactorily with analytical and semi-analytical so-
lutions. Furthermore, the effects of the time step size, the approximation of
the matrix exponential with a third order Taylor series, and the truncation
of the multirate series were evaluated. It was demonstrated that if a criteria
for the matrix exponential approximation and the time step size is introduced
mass transfer processes can be efficiently simulated using this new approach.
Furthermore, the applicability of this method was illustrated using a syn-
thetic example of the effects of a heterogeneous intraparticle pore diffusion
distribution. The major advantages of this newly developed approach are the
flexibility in the sense that it does not impose any restrictive assumptions
on the spatial variability of advection, dispersion, and mass transfer and its
low computational cost even for highly discretized models having a spatially
heterogeneous mass transfer rate. It furthermore preserves the principal ca-
pacities of the multirate model to describe a variety of different mass transfer
processes as well as the advantages of the random walk method.

Finally, Chapter 4 presented the advantages of modeling solute transport
using random walk particle tracking for a field application (the tracer test at
the Macrodisperion Experiment site) where the strong aquifer heterogeneity
requires a highly discretized model grid. For this purpose a detailed geosta-
tistical analysis of the flowmeter data was performed. Evaluating the spatial
continuity of the hydraulic conductivity data revealed a hole effect structure
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indicating an increased occurrence of clustered lenses or facies in the aquifer
apparently improving preferential flow. Indicator variography did not show
an increased connectivity of high/low hydraulic conductivity values. Tritium
transport was modeled in three kriged fields as well as for three sequential sim-
ulations all of them using a high grid-resolution with a grid block size similar
to the flowmeter measurement support scale to explicitly represent small-scale
heterogeneity. The kriged fields were not able to simulate anomalous tracer
spreading as observed in the field based on an insufficient representation of
the variance of lnK. The sequential Gaussian simulations generally demon-
strated a better tailing than the sequential Indicator simulation indicating
that a multiGaussian distribution of lnK approximates field conditions better
at the Columbus aquifer. Using the hole effect structure for the spatial model
of the Gaussian simulations resulted in an increased tailing of the tracer and
a good reproduction of the non-Gaussian plume shape observed in the field,
illustrating the importance of preferential flow on anomalous solute transport.
These results furthermore suggest that the heterogeneity at the flowmeter
measurement scale is the main contributor to the non-Gaussian plume behav-
ior and that mass transfer effects, claimed to be responsible for the anomalous
transport at the MADE site, are principally the consequence of the use of
an inadequate model grid block scale. It is concluded that, when small-scale
variability of hydraulic conductivity is correctly modeled at the flowmeter
measurement support scale, the advection-dispersion equation is capable of
reproducing the anomalous tracer spreading. If not representing explicitly this
small-scale variability other models, able to account for the strongly delayed
solute transport (e.g., dual domain, continuous time random walk, fractional
ADE) have to be employed. However, quantifying the relationship between
the occurrence of non-Gaussian solute spreading and the scale of heterogeneity
represented in a numerical model remains still a field of ongoing research.

5.2 Recommendations for Future Research

This dissertation has demonstrated that the random walk particle tracking
method is a valuable alternative to other numerical approaches for modeling
solute transport. However, this work has also highlighted some of the numeri-
cal disadvantages related to this method, which still require a research effort in
order to be overcome. Furthermore, the results of this work have also opened
up new possibilities for future lines of investigation. Some of the recommenda-
tions for the future research, either employing random walk particle tracking
method as a numerical tool, or improving the method itself are listed below:

• Further development and improvement of the RW3D program code: Al-
though the RW3D code has been used in a large number of scientific
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papers for the numerical solute transport simulations (see Appendix A),
its flexibility to model solute transport for a broader range of boundary
conditions, e.g. modeling solute transport under transient flow condi-
tions or in unconfined systems, still can be improved. Furthermore in-
creasing the adaptability to MODFLOW2000 output files would increase
the user-friendliness and increase its applicability.

• Including concentration-dependant processes into random walk : As stated
in Chapter 2 one of the disadvantages of the random walk methodology is
the difficulty of including concentration-dependant processes, e.g. non-
linear sorption or reactions between different chemical species. Although
some work has been done on this topic the results all demonstrated a
significant decrease in computational efficiency and an increase in nu-
merical errors as concentrations have to be calculated for each time step
and each grid cell. However, using a similar probabilistic approach as
illustrated in Chapter 3 for the mass transfer might enable a better im-
plementation of these processes into the random walk methodology.

• Evaluating the effects of heterogeneous mass transfer processes: The im-
plementation of the multirate mass transfer model as outlined in Chapter
3 provides a powerful tool to assess the influence of a variety of heteroge-
neous mass transfer processes on solute transport. Although the example
for a heterogeneous intraparticle pore diffusion presented in Chapter 3
did not reveal a strong effect on solute transport in comparison to the ho-
mogeneous first-order mass transfer model the herein presented approach
permits the investigation of the effects of spatially variable, small-scale
mass transfer processes (e.g., intraparticle pore diffusion, diffusion into
low permeability zones, diffusion into a rock matrix) in models with a
high grid-resolution on solute transport.

• Upscaling of solute transport : Recent studies have demonstrated that
when upscaling solute transport the classical macrodispersion model is
not capable of accounting for the mass transfer between model grid
blocks. While these results have led some researchers to employ a differ-
ent transport equation for modeling upscaled solute transport, e.g., frac-
tional advection-dispersion equation or continuous time random walk,
others added a simple first-order mass transfer process to the advection-
dispersion equation. Random walk particle tracking represents an ideal
tool for the numerical studies of solute transport upscaling due to its
excellent computational efficiency for highly discretized models and the
easiness of implementing first-order mass transfer as illustrated in Chap-
ter 3. Furthermore, the upscaling theories developed can be applied and
tested for the field case at the MADE site, presented in Chapter 4.
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A
RW3D - A three-dimensional

object-oriented solute
transport model based on

random walk particle tracking

Throughout this dissertation a numerical code (RW3D), initially developed by
Daniel Fernàndez-Garcia at the Colorado School of Mines, was used and fur-
ther developed to perform the solute transport simulations. RW3D is written
in FORTRAN 95 and has an object-oriented structure in order to facilitate
its extension and ongoing improvement. A flowchart diagram outlining the
program structure of RW3D is shown in Figures A.1 and A.2.

RW3D uses a hybrid scheme for the velocity interpolation as described in
Chapter 1 which has demonstrated to provide local as well as global divergence-
free velocity fields within the solution domain and a continuous dispersion ten-
sor field that approximates well mass balance at grid interfaces of adjacent cells
with contrasting hydraulic conductivities. For a detailed illustration of the
random walk equations see Chapter 1. Furthermore, a constant-displacement
scheme which modifies automatically the time step size for each particle ac-
cording to the local velocity is employed in order to decrease computational
effort. RW3D is capable of simulating advection, dispersion/diffusion, retar-
dation via linear sorption, and simple first-order mass transfer as well as mass
transfer into a spherical geometry. Currently, RW3D only allows for solute
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transport in confined aquifers either with a regular or irregular grid geometry.
RW3D can use flow velocities either provided by a file having GSLIB format
or can directly use the binary output file of MODFLOW2000. Tables A.1 and
A.2 present the necessary input files.

 

Read input parameters 
read_parameters 

Start loop for injections 

Inject particles and check 
particle properties 
inject_part 
check_part 
check_mtra 

 

Start loop for particle movements 

Get specific particle location and 
properties 

alloc_particle_ 
get_particle_from_plume_ 

Start loop for particle movements 

Update location, properties, velocity, and 
dispersion at each new move 

update_cell_location_particle_ 
update_properties_particle_ 
update_velocity_particle_ 

update_dispersion_nodes_particle_ 

Calculate advective and dispersive movement 
move_one_step_advective 
move_one_step_Gradient 
move_one_step_Brownian 

Calculate timestep and move 
particle accordingly 

calculate_time_step 

If mass transfer active 
modify timestep 

update_particle_tim
estep_mtra 

If particle pathline option selected 
for output print particle position 
print_particle_number_ 
print_position_particle_ 

Figure A.1. Flowchart of the RW3D program structure. Part A.
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Add move to particle 
add_move_to_particle_ 

Check if particle is out of bounds 
check_boundary 

If condition to remove 
particle is .TRUE. exit 

particle movements loop 

Update system information 
update_sysinfo_ 

If last particle exit particle loop 

Print out system information 
and results 

print_sysinfo_ 
print_results 

If last injection exit injection loop 

Stop program 

Check if particle has arrived at well or 
control plane or if last snapshot was taken 

check_well_arrival 
check_plane_arrival 

check_snapshot 

Figure A.2. Flowchart of the RW3D program structure. Part B.
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Line Variable Description
1 Text
2 Text
3 Text
4 Text
5 file Parameter file
6 Text
7 Text
8 Text
9 file File with histogram (pdf) of particle arrival times (btc)
10 file File with cumulative pdf particle arrival times (cbtc)
11 file File with particle snapshots with time
12 file File with particle paths
13 file File with cartesian spatial moments
14 file File with spatial moments of particle position
15 file File with particle position at control planes
16 file File with dilution index of Kitanidis
17 file File with radial spatial moments
18 file File with temporal moments
19 file File with dispersivities from control planes
20 file File with quartiles (5%, 25%, 50%, 75%, 90 %)

Table A.1. Name file for RW3D

Table A.2. Input parameter file for RW3D

Line Variable Description
1 Text
2 Text
3 nx,ny,nz number of cells in x,y,z direction
4 file,const,ivar,flag Size of cells in x-direction: if flag=0→

dx=const, else if → flag=1 use file of for-
mat GSLIB where ivar is the column to read
and the read values are multiplied with const

5 file,const,ivar,flag Size of cells in y-direction: if flag=0→
dx=const, else if → flag=1 use file of for-
mat GSLIB where ivar is the column to read
and the read values are multiplied with const

- continues on the following page -
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Line Variable Description
6 file,const,ivar,flag Size of cells in z-direction: if flag=0→

dx=const, else if → flag=1 use file of for-
mat GSLIB where ivar is the column to read
and the read values are multiplied with const

7 ibx1, ibx2, iby1,
iby2, ibz1, ibz2

Boundary conditions: ib = 0 for flux bound-
ary condition, ib = 1 for impermeable
boundary condition

8 Text
9 ixmom, irmom,

itmom, iwbtc,
iwcbtc, iwcshot,
idilut, iwpath

Program Options: ixmom = calculate spa-
tial cartesian moments, irmom = calculate
spatial radial moments, itmom = calculate
temporal moments, iwbtc = write break-
through curve, iwcbtc = write cumulative
breakthrough curve, iwcshot = write snap-
shots of particles, idilut = calculate kitani-
dis dilution index (Not Available), iwpath =
write particle paths

10 ixmompl, iwcshotpl,
ipldisp

Program Options: ixmompl = spatial mo-
ments at control planes, iwcshotpl = write
particle position at planes, ipldisp = write
equivalent parameters at planes

11 Text
12 Logical Flag True (T) if package is used
13 file,const,ivar,flag Darcy velocity in x: if flag=0→ qx=const,

else if → flag=1 use file of format GSLIB
where ivar is the column to read and the
read values are multiplied with const, else if
→ flag=2 use MODFLOW2000 binary out-
put file (specification of qy and qz is not
necessary for this case)

14 file,const,ivar,flag Darcy velocity in y: if flag=0→ qy=const,
else if → flag=1 use file of format GSLIB
where ivar is the column to read and the
read values are multiplied with const

15 file,const,ivar,flag Darcy velocity in z: if flag=0→ qz=const,
else if → flag=1 use file of format GSLIB
where ivar is the column to read and the
read values are multiplied with const

- continues on the following page -



“Thesis” — 2006/8/11 — 11:41 — page 124 — #142

124 APPENDIX A. RW3D - A THREE-DIMENSIONAL OBJECT- . . .

Line Variable Description
16 file,const,ivar,flag Porosity: if flag=0→ qx=const, else if →

flag=1 use file of format GSLIB where
ivar is the column to read and the read val-
ues are multiplied with const

17 Text
18 Logical Flag True (T) if package is used
19 file,const,ivar,flag longitudinal dispersivity: if flag=0→

αL=const, else if → flag=1 use file of for-
mat GSLIB where ivar is the column to read
and the read values are multiplied with const

20 file,const,ivar,flag transverse horizontal dispersivity: if
flag=0→ αTH=const, else if → flag=1
use file of format GSLIB where ivar is
the column to read and the read values are
multiplied with const

21 file,const,ivar,flag transverse vertical dispersivity: if flag=0→
αTV =const, else if → flag=1 use file of
format GSLIB where ivar is the column to
read and the read values are multiplied with
const

22 Dm Molecular Diffusion
23 Text
24 Logical Flag True (T) if package is used
25 Bd Bulk Density
26 f Fraction of sorption sites in contact with mo-

bile zone
27 file,const,ivar,flag Distribution coefficient Kd: if flag=0→

Kd=const, else if → flag=1 use file of for-
mat GSLIB where ivar is the column to read
and the read values are multiplied with const

28 Text
29 Logical Flag, mtype,

nseries
True (T) if package is used, if mtype=0→
first-order mass transfer, else if → mtype=1
spherical diffusion with a total of nseries
compartments used by the multirate mass
transfer

30 file,const,ivar,flag Mass Transfer Rate: if flag=0→ α=const,
else if→ flag=1 use file of format PMWIN

- continues on the following page -
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Line Variable Description
31 file,const,ivar,flag Immobile Domain Porosity: if flag=0→

θim=const, else if → flag=1 use file of
format GSLIB where ivar is the column to
read and the read values are multiplied with
const

32 Text
33 Cu Courant Number
34 tlen, ntstep, tmult

(Only for snapshot
times)

Total length of time, number of steps, expan-
sion factor

35 Xr0, Yr0 (Only for ra-
dial spatial moments)

X, Y origin coordinates for radial spatial mo-
ments

36 ngrid, inc, ifker,
ifbw, bw

Variables for histogram and cumulative fre-
quency of particle arrival times: The pro-
gram uses kernel densities to calculate the
histogram (breakthrough curve) and needs
the following parameters: ngrid = number
support points for histogram, ifker = type
of kernel density function (ifker = 0 →
Box, ifker = 1 → Triangle, ifker = 2 →
Gaussian), ifbw = bandwith kernel density
(ifbw = 0 → Specified by the user with bw,
ifbw = 0 → optimal bw for Gaussian shape,),
the cumulative frequency distribution of ar-
rival times only needs: inc = Number of skip
points for plotting iwcbtc

37 Text
38 Nwell Number of wells

For each well:
39 xwell, ywell,

rwell, flag
X, Y well coordinates, well radius, if flag=1
remove particles

40 Nplane Number of control planes
For each control plane:

41 xdist, type, flag Distance control plane, type of plane, if
flag=1 remove particles

42 Text
43 np, totmass Number of particles, total mass injected
44 ninj Number of injections

For each injection:
- continues on the following page -
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Line Variable Description
45 Type (string) Type of injections: Point injection Type =

point; Vertical line injection, randomly dis-
tributed Type = line; Block injection, uni-
formly distributed Type = block; Circle in-
jection, randomly distributed Type = cir-
cle; Radial injection, uniformly distributed
Type = radial; Plane injection, uniformly dis-
tributed, perpendicular to x Type = plane;
Plane injection, randomly distributed Type
= plane random; Line injection by points,
uniformly distributed Type = line by points;
User defined distribution Type = user.

46 Parameters depending
on the type of injection

Point injection: xinj, yinj, zinj = x,y,z
point coordinates; Vertical line injection:
xinj, yinj, zbot, ztop, xinj, yinj =
x,y coordinates vertical line, zbot = z
line bottom, vertical position ztop = z
line top vertical position; Block injection:
idwn, jdwn, kdwn, iup, jup, kup, lower
left and upper right cell number in x,y,z
direction; Circle injection: x0, y0, zbot,
ztop, rcy, x0, y0 = coordinates origin
cylinder, zbot = z bottom position cylinder,
ztop = z top position cylinder, rcy = cylin-
der radius; Radial injection: xinj, yinj,
zbot, ztop, rcp, definition see Circle in-
jection; Plane injection: xdist, width,
height, xdist = x position of the vertical
plane, width = width of the plane in the
y direction, height = height of the plane
in the z direction; Plane injection random:
xdist, width, height definition see Plane
injection;Line injection by points: x1, y1,
z1, x2, y2, z2, x, y, z coordinates of the
first and second point;User defined injection:
filename (string).

The following articles have been published using RW3D for the numerical
solute transport simulations:



“Thesis” — 2006/8/11 — 11:41 — page 127 — #145

APPENDIX A. RW3D - A THREE-DIMENSIONAL OBJECT- . . . 127

• Cassiraga, E. F., D. Fernàndez-Garcia, and J. J. Gómez-Hernández
(2005) Performance assessment of solute transport upscaling methods
in the context of nuclear waste disposal, International Journal of Rock
Mechanics and Mining Sciences, 42(5-6), 756-764.
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